Generating test data to test UML Design
Models *

Trung Dinh-Trong, Sudipto Ghosh, Robert France!
{trungdt,ghosh,france} @cs. colostate. edu
and Anneliese Andrews?
aandrewsQeecs.wsu. edu

! Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
? Department of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164

Abstract. This paper presents an approach to generating inputs that
can be used to test UML design models. A symbolic execution based
approach is used to derive test input constraints from a Variable Assign-
ment Graph (VAG), which presents an integrated view of UML class and
sequence diagrams. The constraints are solved using Alloy, a configura-
tion constraint solver, to obtain the test inputs.

Keywords: design quality, test generation, testing models, UML, sym-
bolic execution, test adequacy criteria

1 Introduction

For model driven development approaches to succeed, there is a need to develop
techniques for validating models. Studies show that many software faults occur
in the design phase [1], hence, finding and removing faults in design models
can lead to better quality software. Currently, UML design models are typically
evaluated using walkthroughs, inspections, and other informal types of design
review techniques that are largely manual and, consequently, tedious.

In our previous work, we proposed an approach to testing UML design models
consisting of class diagrams, sequence diagrams, and activity diagrams. We gave
a set of test adequacy criteria based on class and sequence diagram’s elements [2],
and described a technique to execute models under test with test inputs [3]. In
this paper, we propose a technique to generate test cases that satisfy the sequence
diagram criteria described in [2]. The technique uses a representation called a
Variable Assignment Graph (VAG) that integrates relevant information from
class and sequence diagrams. The VAG is used to derive test input constraints
that are then solved by the constraint solver, Alloy [4].

* This research was supported in part by National Science Foundation Award #CCR-
0203285 and an Eclipse Innovation Grant from IBM.

2 Model testing approach

A design model under test, DUT, consisting of class and activity diagrams, is
transformed into an executable form, EDUT. The EDUT is a program that
simulates the behaviors modeled in the DUT'. Test scaffolding is added to the
EDUT to automate test execution and failure detection. The result is referred
to as the testable form of the design, TDUT. Test execution is performed by ap-
plying the test inputs to the TDUT. During test execution, the system behavior
is recorded and observed in terms of changes in the system state, where a sys-
tem state is represented as an object configuration. Failures are detected when
the observed behavior differs from the expected behavior. For a more detailed
description of the test execution approach, please see [3].

In the testing approach, testers select a set of test adequacy criteria [2]. A set
of test inputs that satisfies the selected criteria is generated from the DUT'. Each
test input is generated based on one sequence diagam. In our previous work,
a test input includes a sequence of operation calls that executes the test [3].
In the test input generation approach described in this paper, the sequence
of operation calls contains only one element, which is the operation call that
initiates the sequence diagram under test. Thus a test input in this paper is a
tuple consisting of two components: the start configuration, S, and the set of
parameter values, P. Before a test is performed, the TDUT is brought to the
start configuration, S. A system configuration is described as a set of objects, a
set of links between the objects, and the set of object attribute values. Testing is
performed by invoking the system operation that initiates the sequence diagram
under test using the set of parameter values, P.

Our test case generation technique aims at deriving test inputs that satisfy
sequence diagram based test adequacy criteria described in [2]. Three criteria
were defined based on the coverage of conditions, predicates, and message paths
in interaction diagrams:

1. Condition Coverage criterion: Testing must cause each condition in each
decision to evaluate to both TRUE and FALSE.

2. Full Predicate Coverage criterion: Testing must cause each clause in every
condition in the sequence diagram to take the values of TRUE or FALSE while
all other clauses in the condition have values such that the value of the
condition will always be the same as the clause being tested.

3. All Message Path Coverage criterion: Testing must cause each possible mes-
sage path in the sequence diagram to be traversed at least once.

3 Test input generation issues

The design test adequacy criteria used in our approach are similar to control flow
based programming test adequacy criteria [5]. In program testing, test inputs
that satisfy control flow based criteria are usually generated using path based
test case generation. In path based test generation approaches, execution paths
that satisfy test adequacy criteria are first identified. Test cases are then derived

so that the paths are traversed. Generally, path based test generation approaches
can be categorized into execution based and symbolic execution techniques [6].

Execution-based test generation [7] involves analyzing the execution of pro-
grams with actual inputs and iteratively refining the input values until a desired
path is traversed. The program is first executed with an input, and the execution
flow is monitored. When a branch that is not in the selected path is executed,
function minimization search algorithms are used to find an input value so that
the desired branch is traversed. Execution based test generation requires exces-
sive execution, especially when the chosen path is not traversable.

In symbolic execution techniques [8], programs are executed using symbolic
values of variables instead of actual values (such as numbers). As a result, every
branch predicate along the path is expressed in terms of the input symbols. Sym-
bolic evaluation is used to generate a set of equalities and inequalities involving
the program input values, which must be satisfied for the path to be traversed.
Constraint solvers (such as e-box consistency based solver [6]) can be used to
solve the inequalities and find a solution that serves as a test input.

The existing path based test generation approaches assume that programs are
described declaratively. In UML models, behavior can be described both declar-
atively and imperatively. While sequence diagrams are specified imperatively,
they only describe the interaction between objects (e.g., the method calls and
the creation of objects). What happens inside each object (e.g., the modification
of attribute values) can be specified declaratively in operation post-conditions.

Existing path based approaches have been developed for procedural pro-
grams. In existing symbolic execution techniques, the test inputs, which are
either program parameters or variables that are defined using input statements,
always have primitive types (such as boolean, integer, real, and sometimes, ar-
ray). Thus, these techniques lack a mechanism to model system configurations,
which are part of the test inputs in our testing approach. In our approach, inputs
may be (1) the parameters of the operation that initiates the sequence diagram,
and (2) the variables that are used to define the start configuration.

Another challenge in generating test inputs from UML models is that models
are described using various diagram types, where each type only captures a
partial view of the system. Class diagrams capture the structural view of the
system, sequence diagrams capture the interactions between objects, and the
pre- and post- conditions in class diagrams capture the effect of each operation.
Generating test inputs that satisfy the criteria described at the end of Section 2
requires analyzing the sequences of messages exchanged between objects and
the effect of executing the action associated with each object. The sequence
of messages, as well as the effect of executing actions associated with create
and destroy messages are specified only in sequence diagrams. The effect of
executing the action associated with the call operation messages, however, is
captured only in operation pre- and post-condition in class diagrams. Hence
generating test inputs from UML models requires a mechanism that combines
relevant information in class and sequence diagrams.

4 Generating test inputs using constraint solvers

To generate test inputs from UML class and sequence diagrams, we first integrate
the UML class and sequence diagrams into a directed graph called a Variable
Assignment Graph (VAG). A VAG combines the relevant information, which is
needed for test input generation, from UML class and sequence diagrams. A VAG
records how and when variables are defined and used in a sequence diagram. It
also records the conditions that enable the sending of messages in the sequence
diagram. VAGs have the form that is similar to the control flow graph in code
level. Hence, existing control flow graph based path generation technique, such
as [9], can be applied to VAGs.

4.1 Variable Assignment Graph (VAG)

A VAG is composed of nodes and directed edges. The nodes record the changes in
values of variables during the execution of a sequence diagram and the conditions
necessary for the changes to occur. The edges represent control flow.

There are two types of nodes: message nodes and control nodes. Each message
node, denoted by a rectangle, is derived from a message in the sequence diagram.
A message node is composed of three parts: Condition, Control action, and
Effect. The Condition part records the configuration constraints that enable the
sending of messages. Such constraints include the existence of the recipient of the
message and the link between the sender and the receiver objects. The Control
action part records the assignment of the actual parameter values to the formal
parameters. The Effect part records the changes in variables after the execution
of an operation call. These changes include object creation and destruction, as
well as state variable updates as specified in operation post-conditions. Any
part of a node can be empty. The Condition part is empty if the corresponding
message is a return message, since the existence of the receiving object and
the link is implied by the call message, which is already sent before the return
message. The Control action part is empty when a message does not have any
parameter. The Effect part is empty when there is no change in the configuration
when the message is received.

VAG control nodes are denoted by rounded boxes and are used to repre-
sent(1) merging and branching of path, (2) loops control, and (3) the termination
of execution.

VAG edges are denoted by directed lines. An edge can be associated with
a branching predicate in the sequence diagrams. Sequence diagram branching
predicates include message conditions, conditions associated with alternative
fragments, and conditions associated with loop fragments. The branch predicates
in a VAG are shown by text displayed next to the corresponding edges.

Figure 1 shows an example of a UML design model (Figure 1(a)) and its cor-
responding VAG graph (Figure 1(b)). In this example, the ATM system handles
a “withdraw” request by first checking the balance in the correspond account.
If the balance is greater than the requested withdrawal amount, the transaction
will be executed and the balance will be deducted. Messages 3 and 5 are return

)

pre:

context Account.update(newBalance: float) B“

post: balance = newBalance |) Condigion
I ATM.instance->include(atm)
|
-account Account | L
-balance : float | @ @)
+update(in newBalance : float) | _ — _! A i _Ctondmo_n ud H Effect
. getBalance() : float ccount.ini ance-_>|nc ude(a) bea.balance
1 atm.account->include(a)
ATM b<—amout !(b<=amout)
+withdraw(in a : Account, in amount : float) (4)_
Condition
Account.intance->include(a)
atm:ATM_ a:Account atm.account->include(a)
Control Action
1:withdraw(a, amount) i newBalance=b-amount

J
(5)
Effect
balance = newBalance

2:b = getBalance()

3: return balance

(a) UML Models: Simple banking sytem (b) VAG

Fig.1. A UML model and its corresponding VAG

messages, denoting that the operation calls associated with messages 2 and 4,
respectively, are returned.

The k" VAG node in Figure 1(b) is derived from the k" message in the
sequence diagram. For example, node 4 is generated from message number 4, a
call message. The Condition part inside node 4 states that message 4 can be sent
if a exists, and there is a link between instances, atm and a. The Control Action
part inside node 4 records that the value of the actual parameter, b-amount, is
assigned to the formal parameter, newBalance. Node 5 is generated from the
return message 5. The Effect part inside node 5 records that the state variable,
a.balance, is updated with the new value, newBalance. This information is
derived from the post-condition of the operation Account: :update(float).

Because of the space limitation, we do not describe how UML models are
transformed into VAGs.

4.2 Generating test inputs from VAG

A sequence diagram based test adequacy criterion defines a set of sequence
diagram structures that need to be covered during testing. A set of paths in the
VAG needs to be selected such that the execution of these paths guarantees that
all the desired structures in the corresponding sequence diagram are traversed at
least once. Since each message in a sequence diagram is transformed into a VAG
node, it is easy to see that a set of paths that traverses all nodes in the VAG

satisfies the “Fach Message on a Link” criterion. A set of paths that traverses all
VAG edges satisfies the “Condition coverage” criterion. The set of all VAG paths
satisfies the “All Message Paths” criterion. Finding the set of paths that covers
all VAG nodes and edges is similar to finding paths that cover all statements or
branches in a program. Existing path generation techniques, such as those using
dominance and implication graphs [9], can be applied.

With a few modifications, symbolic execution can be applied to a VAG to gen-
erate path constraints. Traditional symbolic execution techniques use branching
conditions and the assignment statements to form the path constraints. In UML
models, only assignment statements that assign return values of method calls to
variables are explicitly specified in sequence diagrams, e.g., messeage number 2
in Figure 1(a). The other assignments, which happen inside the operations, are
implicitly specified in operation post-conditions. Hence, in our approach, a path
constraint must include changes that are stated in the post-conditions. Moreover,
path constraints in our approach must also include the configuration constraints
that enable the sending of messages. The path constraints can be constructed
by forming the conjunction of the following conditions:

1. All the conditions in the Condition part.
2. All the branch predicates.
3. All variable definitions in the Control Action and Effect parts.

For example, the constraint for the path 1-2-3-END is as shown in Fig-
ure 2(a).

-account

ATM.instance->include(atm)
and Account.intance->include(a)

and atm.account->include(a) atm : ATM a_: Account
and b=balance balance : float = 1

and !(b<=amout)

(b) A start configuration that satisfy the constraint

(a) Constraint for path 1-2-3-END (given that amount = 2)

Fig. 2. The constraint and a solution for the path 1-2-3-END

The path constraints produced in our test generation approach contain nu-
meric symbols (e.g., 1_0) as well as symbols that represent system configurations
(e.g., pc and pc.categories). Hence our constraint satisfaction problem cannot
be solved by pure numerical constraint solvers (e.g., the e-box consistency based
constraint solver [6]).

Alloy [4] allows the specification of constraints that contain integer and con-
figuration symbols. We specify the path constraints, which are originally specified
using the OCL, using the Alloy constraint language. Since the input configura-
tions need to satisfy the class diagram constraints, we also transform the class
diagram using the Alloy constraint language.

We solve our constraints using Alloy, a configuration constraint solver. Gen-
erally, the domain of configurations that a solver needs to search is infinite.
However, Alloy can solve the constraint problems if we restrict the search range
by setting a maximum total number of objects in the solution. In such cases, Al-
loy will either give us a solution, or report that there is no valid solution within
the range. When we use Alloy to solve the constraint in Figure 2(a), with the
maximum number of objects set to 2, we get a solution with amount = 2, and a
start configuration as shown in Figure 2(b).

5 Conclusions

We outlined a systematic approach to generating inputs to test UML design
models. We are currently conducting empirical studies to evaluate the effective-
ness of the approach. The performance of a symbolic execution approach depends
primarily on the size of the path constraints. We plan to study the growth of
the constraints in our approach when the size of the model grows. Since design
models are specified in less detail than the programs, we expect that in general
the design level path constraints will be simpler than program level path con-
straints. We are also developing a prototype tool that automates the test input
generation described in this paper.

References

1. Pressman, R.: Software Engineering - A Practitioner’s Approach. 7th edn. McGraw-
Hill, New York, NY (2001)

2. Andrews, A., France, R., Ghosh, S., Craig, G.: Test Adequacy Criteria for UML
Design Models. Journal of Software Testing, Verification and Reliability 13 (2003)
95-127

3. Dinh-Trong, T., Kawane, N., Ghosh, S., France, R., Andrews, A.: A Tool-Supported
Approach to Testing UML Design Models. In: Proccedings of the 10th IEEE In-
ternational Conference on Engineering of Complex Computer Systems (ICECCS).
(2005)

4. MIT Laboratory for Computer Science: Alloy. http://alloy.mit.edu/ (2005)

. Myers, G.J.: The art of software testing. John Wiley & Sons (1979)

6. Tran Sy, N., Deville, Y.: Consistency techniques for interprocedural test data gen-
eration. In: Proceedings of the 9th European software engineering conference held
jointly with 10th ACM SIGSOF'T international symposium on Foundations of soft-
ware engineering, Helsinki, Finland (2003) 108-117

7. Korel, B.: Automated software test data generation. IEEE Transactions on Software
Engineering 16 (1990) 870-879

8. Boyer, R.S., Elspas, B., Levitt, K.N.: Select—a formal system for testing and debug-
ging programs by symbolic execution. In: Proceedings of the International Confer-
ence on Reliable Software, Los Angeles, CA (1975) 234-245

9. Bertolino, A., Marre, M.: Automatic generation of path covers based on the control
flow analysis of computer programs. IEEE Transactions on Software Engineering
20 (1994) 885-899

ot

