
Automatic generation of symbolic test purposes

Assia Touil
�

— Christophe Gaston
���

— Pascale Le Gall
�

�

Université d’Évry-Val d’Essonne, LaMI CNRS UMR 8042,
523 pl. des Terrasses F-91025 Évry Cedex, France

atouil@lami.univ-evry.fr
legall@lami.univ-evry.fr

���

CEA/LIST/SOL Saclay
F-91191 Gif sur Yvette Cedex

christophe.gaston@cea.fr

Abstract. We present a technique dedicated to compute automatically sets of test
purposes from IOSTS specification. A coverage criterion, namely the inclusion crite-
rion, is defined. Inclusion criterion is dedicated to decide whether set of test purposes
are sufficiently complete or not. Test case generation is then studied.

1. Introduction

We focus on conformance testing [1] [2] for reactive systems specified with In-
put Output Symbolic Transition Systems [3] [4] [5]. Such systems are continuously
sending and receiving data through channels. The Implementation Under Test (IUT)
is tested by observing whether sequences of Input Output exchanged with its environ-
ment conform to the specification. Test cases are extracted from the specification. A
test case is a structuring of inputs and intended outputs. When the test case is exe-
cuted, a verdict is emitted to express whether the implementation behaved as intended
in the test case definition or not. Roughly speaking, test cases extraction process can
be parameterized by two kinds of stopping criteria. The first kind is a static one: the
idea is to ensure that a set of selected test cases is such that all the specification has
been “covered”. This coverage notion is characterised by a so called coverage cri-
teria [6] which allows to quantify on some syntactical elements of the specification
to be covered by test cases (e.g. all transitions, all paths of a certain length given as

parameter �����): thus the process stops when the specification is “covered” according
to the coverage criteria. The second kind of stopping criteria is functional: the idea
is to characterize a set of functional properties, denoting typical intended behaviours
of the IUT and for each of these intended behaviours to construct a test case which
is supposed to activate the behaviour: thus the process stops when at least one test
case is associated to each intended behaviours. Classically such functional properties
are called test purposes [3]. Test purpose characterization are generally generally an
expert matter. In this contribution, we propose to automatically build test purposes
and derive test cases by analysing specifications with symbolic execution techniques.
Indeed, symbolic execution allows us to extract abstract behaviours. These behaviours
are good candidates in order to become test purposes. For that, we use the AGATHA
tool [7].

2. A symbolic framework for communicating systems

2.1. Input Output Symbolic Transition Systems

IOSTS (Input Output Symbolic Transition Systems)[4] allow the specifier to de-
scribe communicating systems with data by means of automata. Let us consider an
ATM system built over the two communicating automata depicted in Figure 1. The
IOSTS on the left side (UserInterface) is the specification of the interface with the
bank user and the IOSTS of the right side (InternalSystem) specifies treatments
made by the system to allow or forbid cash withdrawal.

ack= true cash!x

ack = false screen!"not enough money"

amount?x ci?ackci!x ci?y

y>m ci!false

m:=m−y
ci!true

deposit?m

y
�

m

���������	 � 	 � 	 � 	�

InternalSystemUserInterface

Figure 1. an ATM system

An IOSTS is composed of a set of states, an initial state, a variable set and a
transition set.

� In Figure 1,
���������
	����
�����
���

(resp.
����������	��������

) is the set of states of the UserI-
nterface (resp. InternalSystem) and

�
�
(resp.

���
) is its initial state.

� In the UserInterface, variables are
�
���

(a boolean variable which is true
when the system allows withdrawal and false otherwise) and � (corresponding
to the amount asked by the user). In the InternalSystem, variables are �
(for the available amount of money in the user bank account) and � (dedicated
to store the amount asked by the user).

� Transitions are made of a guard, a communication term and an assignment, each
of them possibly being empty:

– Guards are formulas on variables of the IOSTS. A guard conditions whether
the associated transition can be executed or not. For example, in the
InternalSystem, the transition from

� �
to
� 	

in the upper part of Fig-
ure 1 can be executed only if the condition ����� is satisfied.

– Communication terms denote value exchanges. For example, in the Inter-
nalSystem, the transition from

��	
to
���

contains the communication term�� "! � modelling a reception: a value is received through the channel
��

and
stored on the variable � . In the UserInterface, the transition from

� 	
to
� �

contains the communication term
�� �# � modelling an emission: the

value assigned to � is sent through the channel
��

.

– Assignments are performed when the transition is executed. For example,
in the InternalSystem, in the transition from

���
to
��	

in the lower part
of Figure 1, �%$'&(�*)+� means that the value �,)-� is assigned to the
variable � when the transition is executed.

The ATM system is the composition of the two IOSTS UserInterface and
InternalSystem. The IOSTS corresponding to the whole system is built using
“handshake” communications by synchronising emissions and receptions on common
channels (also called internal channels).

��
is the unique internal channel to be con-

sidered while the channels
� �/.�02143 , ���65�7 ,

5���8�9�9 1 and : 9�; . 5< 3 are external channels
representing communications with the environment (normally composed by the user
and the bank counter). States of the ATM system are made of an UserInterface

state and of an InternalSystem state (for example, the composite state
� � � 	

). The
ATM initial state,

� � � �
, is made of the two initial states. The variable set is the union

of the two variable sets. The ATM transitions are either internal transitions, denoted by
the internal communication term = , resulting from the synchronisation of an emission
and a reception on the same internal channel (for example

�2	���	->? �������
), or (normal)

transitions inherited from a transition of one of the two subsystems while the second

subsystem is stationary (for example,
� � � �A@�BDC�E�F�GIH"J? � 	 � �

).

When one wants to study systems composed of communicating IOSTS (for exam-
ple to extract test cases), it may be impracticable to construct the resulting product due
to its intrinsic large size. We propose to use symbolic execution based techniques to
provide a corresponding compact IOSTS representation.

2.2. Symbolic execution

Our approach provides the specifier with a set of structured behaviours deduced
from the system. These behaviours are given under the form of sequences of consec-
utive transitions starting from the initial state. Constraints, called path conditions, are
associated to each behaviour.

Figure 2 gives the set of all computed behaviours associated to the system pre-
sented in figure 1.

τ

τ τ

ack = true
cash!x

ack=false
screen!"not enough money"

amount?x

amount?xdeposit?m

deposit?m

� ��� ����� �
	 ��	�
 � �����

���������	���������������	� !�" #	�$%��$�	'&�(

)+* ��� � * ��,�
 �-,�./$0,�
��������-,-�����!��� ������ !����,-$%��$0,213��, &#(

)54 ��� � 4 � 4
 � �#����
'���6�"�-,-��������������,� !���-,�$%��$0, &�(

)+7 ��� � 	 � ,
 � , ./$,
�������� , �����!��� ������ !��� , $%��$, 18� , &�()+9 ��� �
	 ��,�
 �-,�:/$6,'
'�������-,-�����!��;���< =��> ����-,�$%��$0, &�(

) 	+��� �
	 ��,�
 � �����

'�����"��	��������������#	2 !�� #	2$?�"$0, &#(
) , ��� � , � ,
 � �#����
'���6�"� , ������������� , !�� 	 $?�"$, &#(

)+@	 ��� ��, ��	�
 � �����

��������-,-�������������
,- !�" #	�$%��$�	'&�(

)5A ��� � * ��,�
 ��,�:B$0,�
��������-,-�����!��;���< =��� !���-,�$%��$0, &�(

Figure 2. Symbolic execution

At the initialisation step, the system is in the state
�
�����

. The initial condition is
the 3 8 0 9 condition since at this step, there are no constraints on the variables. Each
variable handled in the ATM system is assigned by a constant symbol: � by the con-
stant � � (denoted by � ? � �), �
��� by the constant

�
��� �
, . . . All the constant symbols

introduced in the initial state are conventionally indexed by C and called initialisation
constant symbols. This information is stored in a so-called symbolic state

 1 3 at the
root of the tree. Note that the second component state

 1 3 is a formula: 3 8 0 9 . In any
symbolic state this second component denotes the path condition: that is the constraint
on the constant symbols to reach the symbolic state. In the case of

 1 3 there are no
constraints, thus the path condition is 3 8 0 9 .

Now, the UserInterface (resp. InternalSystem) subsystem can evolve if it
receives a value for the variable � (resp. �) from the environment through the channel� � .�0 143 (resp. : 9�; . 5< 3). It corresponds to a symbolic transition yielding to a new

symbolic state, denoted by ���� , made of the composite state
� 	<���

, the path condition
3 8 0 9 and the variable assignment is modified by the new assignment � ? � 	 where � 	
is a new constant symbol denoting the value sent by the environment. The symbolic
state �

�
obviously corresponds to the reception : 9�; . 5< 3 ! � of the InternalSystem

subsystem.
�
	

is the next symbolic state when the two independent reception transitions
: 9�; . 5< 3 ! � and

� � .�02143 ! � have been executed. Independence of transitions means
that they can be executed in an arbitrary order while leading to the same state (ob-
servable interleaving). This is the case since the two automata share no variables.
Let us note that the path condition remains “ 3 8 0 9 ” since there are no guards on both
intermediate transitions.

The next symbolic transition is an internal communication = , obtained by syn-
chronizing the two subsystems on the channel

��
. This “handshake” communication

is executed by generating the node �
�

made of the composite state
�
�<���

, the path con-
dition 3 8 0 9 and the variable assignment modified by the new assignment � ? � 	 , � 	
being the current symbolic value of the variable � , sending by the UserInterface
to the InternalSystem. The symbolic transitions issued from �

�
are still inter-

nal communications on the same channel
��

, but corresponding to a sending of the
InternalSystem. According to the different symbolic values of the variables � and
� , the sent value may be true or false. The current assignment of the variables � and
� ensures the condition ��� � if and only if the associated symbolic values, � 	 for
the variable � and � 	 for the variable � satisfy � 	 � � 	 . This last condition be-
comes the path condition for the symbolic transition from �

�
to �

�
which is made of

the composite state
�6�<��	

and the new assignment
�
��� ? 3 8 0 9 induced by the “hand-

shake” communication. The symbolic state ��� is built in a similar way for the case in
which ��� � does not hold.

Symbolic execution is pursued in Figure 2 by creating two new symbolic states ���
et �
	 from the two previous states �

�
and �
� . The ATM system can be unfolded in

an infinite execution tree. So, symbolic execution techniques are helpful to provide
a set of symbolic behaviours, which are representative of all concrete behaviours for
which system variables are assigned by concrete values (in the set of natural numbers
for example). However, to be fully exploitable, one should be able to cut the compu-
tation of symbolic behaviours. A first natural way is to eliminate each branch issued
from a symbolic state provided with an unsatisfiable path condition. A second way
is to recognise redundant behaviours. This is done using the so called state inclusion
criterion.

Let us consider the symbolic node �
� .
� We remark that this symbolic state is made of the composite state

� � � 	
as in the

symbolic state �
�
.

� Moreover, the associated path condition (� 	 �-�) and the variable assignment
(� ? � 	 ����� � ? �) �) allows us to characterise a set of constraints on the
variables � ,

���<�
, � and � . These constraints are ��� C ,

���<� & 3 8 0 9 and � & � .
In the same way, we remark that there are no constraints on these variables in
the symbolic state

 1 3 .
In this situation, one says that the symbolic state ��� is included in �

�
. This precisely

defines the inclusion criterion between symbolic states. When a symbolic state � is
detected as included in another symbolic state � , then � is removed from the con-
struction and all transitions leading to � are replaced by transitions leading to � . In
the case of the ATM system, the states � � and � 	 are then both replaced by the state
�
�
. By applying such a reduction mechanism, we lost some information concerning

path condition or variable assignment but we preserve all the possible “future” execu-
tion paths (for example, any execution computed from ��� or � 	 is an execution that
can be executed from �

�
).

In Figure 3 we can see, the IOSTS representing the reduction of the symbolic exe-
cution of Figure 2. Symbolic states have been replaced by their names (

 1 3 , � � , . . .).
States � � and �
	 have been replaced using the inclusion criterion and the transitions
targeted on these two states are dotted. This IOSTS has the same symbolic execution
tree than the original ATM system.

τ
deposal?m amount?x

amount?x

ack=false
screen!"not enough money"

τ

τ

ack = true cash!x

deposit?m

��� ���� 	
� �
�
��
� �

���
��������

�����

Figure 3. Automata of Symbolic execution

The AGATHA tool ([8]) allows to compute for each IOSTS a corresponding IOSTS
which is reduced using elimination of unsatisfiable path conditions and inclusion cri-
terion on symbolic states. This is done thanks to mechanisms using convex polyhedra
in the frame of Presburger arithmetic. Note however, that the methodology presented
in this paper could be theoretically applied for any decidable data theory. Each re-
dundant symbolic state to be replaced by inclusion criterion is replaced by the first
symbolic state in which it is included in, according to the coverage strategy (depth or
width).

Moreover, the AGATHA tool is capable of detecting deadlock states and sym-
bolic states with non determinism choices for the transitions to be fired. It also anal-
yses IOSTS with respect to reachability issues. Using constraints solving techniques,
AGATHA can compute a numerical instance of any selected branch of the symbolic
execution tree.

3. Testing conformance for IOSTS

3.1. Test purposes

Conformance testing [1] is based on a conformance relation between the IOSTS
modelling the implementation under test (IUT) and the IOSTS denoting the specifi-
cation (SP). The most used conformance relation is the so-called ioco relation, which
requires that at any time, the IUT outputs are among the outputs allowed by SP, the ab-
sence of outputs (quiescence) being denoted by a special output symbol, often denoted
by � . A test case is a IOSTS interacting with the IUT and giving some test verdicts
according to some test purpose:

; �65�5
if the test purpose is recognised, � �� �� if the test

purpose is rejected and
 1 � .�1 � (for inconclusive) if nothing can be said with respect to

the considered test purpose. A test purpose allows the tester to select a property to be
tested. Given a test purpose under the form of a tree with leaves marked with

������9�; 3
or
8�9���9�� 3 for test target, the goal consists in building a test case in accordance with

both the specification and the test purpose. In most works [3], test purposes are sup-
posed to be given by an expert. Thus, tested behaviours may be “clever” but the price
to pay is that the specification is prone to be covered partially. On the contrary, test
purposes proposed in our approach are computed automatically, ensuring a coverage
of the specification (thanks to symbolic states inclusion mechanism).

By applying symbolic execution techniques and succeeding in computing a finite
reduced symbolic tree, then we get for free a set of finite symbolic paths which can
be naturally selected to build test purposes in the sense of [3]. For that, it suffices to
replace each symbolic transition whose target state is a state previously encountered
by a

������9�; 3 state. To illustrate, let us consider the IOSTS in Figure 3 representing
the reduction of the symbolic execution tree. If we replace the two dotted transitions
�
� ? �

�
and �

� ? �
�

by respectively the two transition ��� ? �
����9�; 3 and �
� ?�
����9�; 3 , then we naturally get a test purpose dedicated to test symbolic properties of

the specification (see Figure 4).

τ
amount?x

amount?x

τ

cash!x

ack=false

τ
ack = true

screen!"not enough money"

deposit?m

deposit?m �
�

�
�

�

�
�������� � � �

�
� 	�
�
�
����

� ���
��� �

	�
�
�
����

Figure 4. the test purpose

3.2. Test cases

In this section, we investigate the case of deterministic specifications containing
controllable variables. Intuitively, a specification is said to be deterministic if for all
transitions of same source, guards are mutually exclusive. Variables are controllable
if in the reduced execution tree, there are no symbolic states containing path condi-
tions built on initialisation constant symbols (which are in our case indexed by C).
Thus, executions do not depend on internal unobservable values assigned to the sys-
tem variables. The ATM system is deterministic since the two transitions �

� ? �
�

and �
� ? � � are exclusive (their respective guards are incompatible � � � and

� � �). All its variables are controllable since all path conditions only depend on
values � and � received respectively through the channels : 9�; . 5< 3 and

� � .�02143 .
Under these hypotheses on the specification, it suffices to select within the test

purpose any path from the initial state to an
������9�; 3 state. Let us choose for example

the path
 1 3 � � � 	 � � � � � ����9�; 3 . It corresponds to the input output sequence :

: 9�; . 5< 3 ! � 	 � � .�0 143 ! � 	 ���65�7 # � 	 , the = transitions being left implicit. At this path,
the symbolic execution tree gives the path condition � 	 � � 	 . It suffices to execute
the IO sequence : 9�; . 5< 3 ! � 	/� �/.�02143 ! � 	����65�7 # � 	 with concrete values � 	 and � 	
satisfying the corresponding path condition � 	 � � 	 . Such values can be generated
with the AGATHA tool (using constraints solving techniques). In practice, if � � 	

and
� � 	 are such generated concrete values (for example, resp. � C!C and � C), it suffices to
send the value � � 	

through the channel : 9�; . 5< 3 , then to send the value � � 	 through the
channel

� � .�02143 , then it is expected that the IUT sends the value � � 	 on the channel���
5�7
. If this is encoded in a test case, this scenario is labelled by

; �65�5
: the IUT

passes the IO sequence with success. Any other scenario (other intermediate events
or other final emission of the IUT) is labelled by � �� �� . In fact, as the specification is
deterministic and has only controllable variables, there are no inconclusive scenarios.
The expected behaviour of the IUT in response to the actions of the test case is unique.

4. Conclusion

In this paper, we have presented a functional criterion to extract a set of test pur-
poses (namely the inclusion criterion). This kind of criterion can be of great help for
experts that usually define test purposes manually. We have shown how to define test
cases for each test purpose when dealing with deterministic specifications with ini-
tialised variables. This constraints on determinism and initialisation can be relaxed
using techniques similar to those presented in[3].

References

[1] J. Tretmans, “Conformance Testing with Labelled Transition Systems: Implemen-
tation Relations and Test Generation,” Computer Networks and ISDN Systems,
vol. 29, pp. 49–79, 1996.

[2] M. Yannakakis and D. Lee, “Testing finite state machines,” in Proceedings of the
twenty-third annual ACM symposium on Theory of computing. ACM Press, 1991,
pp. 476–485.

[3] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva, “Symbolic test selection based
on approximate analysis,” in 11th Int. Conference on Tools and Algorithms for
tthe Construction and Analysis of Systems (TACAS), Edinburgh, Scottland, April
2005.

[4] V. Rusu, L. du Bousquet, and T. Jéron, “An approach to symbolic test generation,”
in IFM ’00: Proceedings of the Second International Conference on Integrated
Formal Methods. London, UK: Springer-Verlag, 2000, pp. 338–357.

[5] L. Frantzen, J. Tretmans, and T. A. Willemse, “Test generation based on symbolic
specifications,” in FATES 2004, ser. LNCS, J. Grabowski and B. Nielsen, Eds.,
no. 3395. Springer-Verlag, 2005, pp. 1–15.

[6] C. Gaston and D. Seifert, “Evaluating coverage based testing,” in Model-based
testing of reactive systems : advanced lectures, ser. LNCS, J.-P. K. Manfred Broy,
Bengt Jonsson and al., Eds., vol. 3472 / 2005. Springer-Verlag, 2005, p. 293.

[7] C. Bigot, A. Faivre, J.-P. Gallois, A. Lapitre, D. Lugato, J.-Y. Pierron, and
N. Rapin, “Automatic test generation with agatha.” in TACAS, 2003, pp. 591–596.

[8] N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois, “Behavioural unfolding of
formal specifications based on communicating automata,” in Proceedings of first
Workshop on Automated technology for verification and analysis, Taiwan, 2003.

