
A Formal V&V Framework for UML Models Based on
Model Transformation Techniques

Soon-Kyeong Kim and David Carrington

Information Technology and Electrical Engineering
The University of Queensland, St. Lucia, 4072, Australia

soon@itee.uq.edu.au
davec@itee.uq.edu.au

Abstract. This paper proposes a formal V&V framework where multiple formalisms
are integrated into an existing modeling environment for UML. In our framework,
each formal specification technique is defined in term of a metamodel and
integrated into the Eclipse Modeling Framework. The integration of informal
models and various formalisms is achieved using model transformation techniques.
Using metamodel-based model transformation, we provide precise and explicit
integration. Integrating multiple formalisms allows the developer to choose
formalisms that are appropriate for each analysis task.

1. Introduction

Formal methods have been used in conjunction with informal or semiformal
modeling techniques in software development [1, 6, 9, 17]. In such integrated
approaches, formal techniques provide an effective means to check the validity of
models, thus providing increased quality for both models and implementation.
Despite its potential, application of the integrated approach to large scale systems
has been limited. Beside those well-known barriers for formal techniques such as
difficulties in dealing with mathematical notation [17, 21], some barriers can be
overcome, for example:
• Inappropriate modeling techniques for analysis tasks
• Imprecise and implicit integration (e.g. informally defined transformation rules)
• Lack of tool support for the integration (e.g. manual transformations)
• Using a separate environment for the integration (e.g. stand-alone translation

tools).
Among other factors, the selection of appropriate formal techniques is a key

aspect for the success of the integrated approach in terms of appropriateness,
semantic comparability, and availability of tools and techniques such as type
checker, model checker and theorem prover. Unfortunately no single formal analysis
technique can address all these aspects because different formal techniques and their
supporting tools have different strengths in different areas. For UML [19], Object-Z
[3] can be considered as an appropriate formal modeling technique because it is a
mature object-oriented formal specification technique and provides well-defined
modeling constructs and structuring facilities (e.g. classes and inheritance). Also the

integration between UML and Object-Z does not require any semantic shift since
both use the same object-oriented paradigm. Nevertheless, Object-Z lacks automatic
analysis tools such as a model checker. Consequently, Object-Z is appropriate as a
formal modeling tool for UML, but it is not well-suited as an effective means for
tool supported formal analysis of UML models. In contrast, the Symbolic Analysis
Laboratory (SAL) formalism [16] provides a rich set of analysis tools (e.g. type-
checker, deadlock-checker and model checkers), but it is not yet clear how to
capture the object-oriented concepts in UML models using the SAL input language.
Nevertheless, the tool environment provided by SAL can provide an effective formal
V&V environment for UML models when we have well-defined transformation
rules between UML and the SAL input language.

For these reasons, it seems necessary to develop approaches and tools that
integrate more than one formalism for the V&V of informal models. In this position
paper, we propose a formal V&V framework that integrates multiple formalisms
into an existing modeling environment for UML (see Fig. 1).

In our framework, each formal specification technique is defined in term of a
metamodel integrated into the Eclipse Modeling Framework (EMF) [5]. The
integration of UML models and various formalisms is achieved using model
transformation techniques in the same modeling environment. The significance of
our approach is summarized below:
• An informal UML model is

readily transformed to any
formalism integrated into the
development environment and
developers can choose
formalism(s) that are
appropriate for each analysis
task – addressing the
inappropriate modeling
techniques integration problem.

• The Eclipse-based
metamodeling technique
provides a rigorous semantic
foundation for such integration
- addressing the precision
problem in the integration.

• Using model transformation, we
provide precise, explicit and automatic transformation - addressing the implicit
transformation problem and lack of tool support.

• The integration is incorporated into an existing modeling environment
facilitating the application of the integration approach in practice - addressing
the integration environment problem.
The structure of the rest of this paper is as follows. Section 2 presents

motivations and the potential of our approach. Section 3 describes the integration
environment. Section 4 demonstrates an integration example using UML and
Object-Z. Finally, Section 5 concludes.

Fig. 1 Formal V&V environment
 for UML

2. Motivation and the potential of our approach

2.1 Why UML?

UML has become the dominant object-oriented modeling language in both
industry and academia. Despite its popularity, the quality of UML as a precise
formal modeling language has been challenged by numerous researchers [7, 15]. A
lack of precision in the modeling language definition, and lack of support for
rigorous analysis of UML models and verification activities are the well-identified
drawbacks in UML. Our integrated approach aims to tackle these limitations. There
is a significant amount of research that considers mappings from UML to other
(mostly formal) modeling techniques to validate UML models (e.g. using B [14],
CSP [6], SPIN [15, 17], PVS [21], Z/Eves [1] and our work with Object-Z [9, 10,
13]). We can integrate these existing approaches into our framework with a
minimum of effort - facilitating reuse of existing work. UML has been proposed as a
core modeling language in the OMG’s Model Driven Architecture (MDA) [18], thus
our UML-centered approach provides a solution for V&V related to MDA.

2.2 An extended formal V&V environment for informal models

In our framework, UML models can be potentially integrated to any formalism.
For example, adopting existing work integrating Object-Z with other languages (e.g.
the integration work with Object-Z and CSP to use a model-checker FDR [8] and the
integration work with Object-Z and Higher Order Logic (HOL) to use the theorem
prover Isabelle [20]), UML models can be potentially translated to any of these
languages indirectly via Object-Z. Consequently, the tools developed for these
languages could be used to check the UML models. In our integrated framework it is
crucial that transformation rules defined at each local level (e.g. transformation
between two languages) are correct, consistent and complete within the scope of the
integration. Unless these properties hold, any analysis performed on the transformed
models would not be reliable. Our metamodel-based transformation approach
addresses these issues associated with the transformation.

2.3 The integrated V&V framework and MDA

Our integrated approach can deliver benefits to model driven development
approaches such as MDA. To get the full potential of the MDA, the MDA
transformation infrastructure should include the ability to use modelling notations
that are the most appropriate to capture different aspects of a system, and should
have a capability of transforming between models in these different notations. Also
there must exist efficient ways to check models for properties such as consistency
and correctness. Currently UML and MOF are proposed as the central modelling
languages by the OMG in the MDA. However, using only UML limits the provision

Fig. 2 Integration environment

of these capabilities that are required for the MDA. Our integrated approach
combining formal and informal modeling techniques can contribute to this area. For
example, it provides the convenience to choose appropriate modeling techniques to
capture different aspects and to integrate the techniques.

3. Integration environment

Developing a special tool for each integration is expensive. We tackle this issue
by using an existing integration environment (EMF) and model transformation
techniques. In our approach, integrating a new formal technique requires a
metamodel of the language and a set of transformation rules to map that language to
other languages. Then the actual transformations are achieved using transformation
tools. Figure 2 shows the overall tool architecture used in our work. We use the
Eclipse Platform [4] as an integration environment. Two plug-ins used in our
integration are EMF [5] and the DSTC’s transformation engine Tefkat [2]. EMF is
used to define and implement metamodels of the languages in the integration.
Transformation rules are defined by using the DSTC’s model transformation
language [2] and the actual transformations are achieved using the DSTC’s Tefkat
transformation engine (i.e. once the OMG finalizes a standard transformation
language, our rules will be expressed in the standard language).

4. Transformation example from UML to Object-Z

We demonstrate an integration example using UML and Object-Z. In our
approach, different types of UML models such as the Class model, the State
machine and Interaction diagrams are transformed into Object-Z models. Then they
are integrated into a single Object-Z model to represent the overall system. The
model integration is achieved using the instantiation and inheritance mechanisms in

Fig. 3 UML and Object-Z metamodels

Object-Z. The Object-Z models developed in this way provide a precise semantic
basis from which various levels of checking activities to models can take place. For
example, the individual Object-Z models provide a precise basis to check intra-
model consistency, while the integrated Object-Z model provides a precise basis to
check inter-model consistency. The Object-Z models also provide a precise semantic
basis to map the UML models to other languages – providing a precise semantic
domain for UML.

Due to the page limitations, we show one example rule to transform a UML class
to an Object-Z class (Fig. 3 shows partial metamodels of UML and Object-Z) 1.

The following rule UMLClass2OZClass in the DSTC’s language maps a UML

class to an Object-Z class. Line 13 declares the rule name and variables to be used in
the rule. Line 15 introduces a WHERE...LINKS statement to find the correct Object-
Z model into which to place the created Object-Z class. Lines 15 and 16 effectively
find the UML model that contains the source UML class (umlm.ownedMember).
Line 17 creates the target Object-Z class, while Line 18 introduces a SET statement
that sets the attributes and references of created target elements. In this case, the
Object-Z class name is set to the same name as the UML class, and the Object-Z
class is added to the Object-Z model. Line 19 preserves the tracking relationship by
storing the corresponding UML class and Object-Z class as these will be used in
other rules.
13 RULE UMLClass2OZClass(umlm, ozs, umlc, ozc)
14 FORALL Class umlc
15 WHERE UMLModelOZSpec LINKS umlmodel = umlm, ozspec = ozs
16 AND umlm.ownedMember = umlc
17 MAKE OZClass ozc
18 SET ozc.name = umlc.name, ozc.owner = ozs
19 LINKING UMLClassOZClass WITH umlmodel = umlm, ozspec= ozs, umlclass =
umlc, oz-class = ozc;

1 we use the UML2.ecore file supplied by the UML2 project [4] for the UML
metamodel, and implement the Object-Z metamodel in [11] using EMF.

UML metamodel

Attribute

 *

Class
 0..1

Operation

 0..1

 *

Parameter

 0..1

 *

Object-Z metamodel

OZAttribute

 *

OZClass
 0..1

OZOperation

 0..1

 *

OZParameter

 0..1

 *

5. Conclusion and future work

This paper has presented a framework for integrating multiple formalisms for
analysing informal models. We use model transformation techniques to achieve the
integration. Metamodel-based model transformation techniques allow us to define
the integration unambiguously and explicitly. Using an existing development
environment along with model transformation techniques, we achieve automatic
integration. The framework provides a unified formal V&V environment for
informal modelling techniques and an effective means to integrate different
formalisms. Incorporating the integration into an existing modelling environment
facilitates application of the integrated approach in software development. In
addition, our approach incorporates an effective V&V mechanism for model driven
approaches such as MDA. Currently, we are investigating integration between UML
and SAL [12] to generate test sequences from UML models.

REFERENCES

[1] N. Amalio, S. Stepney and F. Polack, Formal Proof from UML Models, ICFEM
2004, LNCS 3308, pp. 418-433, Springer-Verlag, 2004.

[2] DSTC Transformation Language and Tefkat, http://www.dstc.edu.au/tefkat
[3] R. Duke and G. Rose, Formal Object-Oriented Specification Using Object-Z,

Macmillan, 2000.
[4] Eclipse Foundation. http://www.eclipse.org/
[5] EMF, The eclipse modeling framework.

http://download.eclipse.org/tools/emf/scripts/docs.php?doc=references/overvie
w/EMF.html

[6] G. Engels, R. Heckel, and JM. Kuster, Rule-Based Specification of Behavioral
Consistency Based on the UML Meta-model, Proc. UML’01, LNCS 2185, pp.
272–286, 2001.

[7] R. France, A. Evans, K. Lano, and B. Rumpe, The UML as a Formal Modeling
Notation, Computer Standards and Interfaces, 19(7), pp. 325-334, 1998.

[8] G. Kassel and G. Smith. Model Checking Object-Z Classes: Some Experiments
with FDR. APSEC2001, pp. 445-452. IEEE Computer Society, 2001.

[9] S-K. Kim and D. Carrington, Formalizing the UML class diagram using Object-
Z, Proc 2nd IEEE conference on UML: UML'99, LNCS, No 1723, pp. 83 -98,
1999.

[10] S-K. Kim and D. Carrington, A Formal Mapping between UML Models and
Object-Z Specifications, International conference on ZB2000, LNCS 1878, pp.
2-21, 2000.

[11] S-K. Kim, A Metamodel-based Approach to Integrate Object-Oriented
Graphical and Formal Specification Techniques, PhD Thesis, ITEE, The
University of Queensland, 2002.

[12] S-K. Kim, L. Wildman and R. Duke, A UML Approach to the Generation of
Test Sequences for Java-based Concurrent Systems, Australian Software
Engineering Conference 2005, pp. 100-109, IEEE Computer Society, 2005.

[13] S-K. Kim and D. Carrington, An MDA Approach towards Integrating Formal
and Informal Modeling Languages, Formal Method 2005, LNCS 3582, pp. 448-
464, 2005.

[14] K. Lano, D. Clark and K. Androutsopoulos, UML to B: Formal Verification of
Object-Oriented Models, Proc. IFM’04, LNCS 2999, pp. 187 – 206, 2004.

[15] D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural
subset of UML statechart diagrams using the SPIN model-checker. Formal
Aspects of Computing, 11:430-445, 1999.

[16] L. de Moura, S. Owre, H. Rueb, J. Rushby, N. Shankar, M. Sorea, and A.
Tiwari, SAL2. Proc. Computer-Aided Verification (CAV2004), LNCS 3114, pp.
496-500. 2004

[17] W. McUmber and B. Cheng. A General Framework for Formalizing UML with
Formal Languages, IEEE International Conference on Software Engineering, pp.
433–442, 2001.

[18] OMG, MDA Guide Version 1.0.1, 2003. http://www.omg.org/docs/omg/03-06-
01.pdf

[19] OMG, UML 2.0 Superstructure Specification, OMG Document ptc/03-08-02.
http://www.omg.org/docs/ptc/03-08-02.pdf, 2003.

[20] G. Smith, F. Kammüller and T. Santen. Encoding Object-Z in Isabelle/HOL.
International Conference of Z and B Users, LNCS 2272, pp. 82-99. Springer-
Verlag, 2002.

[21] I. Traore and D. B. Aredo, Enhancing Structured Review with Model-Based
Verification, IEEE Trans. Software Eng., 30(11), pp. 736 -753, Nov., 2004.

