
Using Process Algebra to Validate Behavioral
Aspects of Object-Oriented Models

Alban Rasse*, Jean-Marc Perronne*, Pierre-Alain Muller**, Bernard
Thirion*

* MIPS, ESSAIM, Université de Haute Alsace
 12 rue des frères Lumière, 68093 Mulhouse, France

{Alban.Rasse, Jean-Marc.Perronne, Bernard.Thirion}@uha.fr

** IRISA / INRIA Rennes, Campus Universitaire de Beaulieu
 Avenue du Général Leclerc, 35042 Rennes, France

pierre-alain.muller@irisa.fr,

Abstract. We present in this paper a rigorous and automated based approach for
the behavioral validation of control software systems. This approach relies on
metamodeling, model-transformations and process algebra and combines semi-
formal object-oriented models with formal validation. We perform the validation of
behavioral aspects of object-oriented models by using a projection into a well-
defined formal technical space (Finite State Process algebra) where model-checkers
are available (we use LTSA; a model checker for Labeled Transition Systems). We
then target an implementation platform, which conforms to the semantics of the
formal technical space; in turn, this ensure conformance of the final application to
the validated specification.

1 Inroduction

 The increasing complexity of control software systems makes their
comprehension and their construction more and more difficult [11]. The approach
proposed in this paper (figure 1) simplifies the reliable design of these software
systems through a complete software development cycle (from the specification to
the code) in a coherent and automated way. It is based on existing techniques, from
different fields of software engineering, and integrates:

– a specification phase based on object-oriented decomposition.
– a validation phase based on formal methods and model-checking tools, so as

to provide software designers with checking techniques that improve their
design quality.

– an implementation phase to ensure the coherence of the generated code
according to both the validation and specification phases.

– a model-based software engineering process in accordance with Model-
Driven Engineering (MDE) [4], which allows - through a metamodel
architecture - the integration of the specification, the validation and the
implementation phases into a coherent software development cycle.
Moreover, model transformation – a key concept in MDE – helps to go from

one modeling field to another, which, in turn, helps to obtain automatically,
from a source model, models that are adapted to a particular technical space.
These transformations make the software designer's tasks easier by hiding, as
far as possible, the complexity of formal tools which often require an
important learning effort.

 As the whole approach cannot be described in this paper, only the specification
and validation phases, with the associated transformations, will be considered here
(dark gray in figure 1).

Figure 1. Projection of the behavioral aspects into a process algebra technical space

The approach is based on a specification model which represents an abstraction
of the control software. This model is specified using classes, objects and Finite
State Machines (FSM) so as to describe the different aspects (structure, behavior,
and configuration) of the system under study. FSMs have been chosen as this
formalism is based on known semantics [8] which can be interpreted in terms of
Labeled Transition System (LTS) [1]. The precisely defined semantics is necessary -
on one hand - to allow the easier use of model transformation techniques and - on
other hand - to ensure the coherence of the approach, since the behavioral aspects of
the proposed models (specification, validation and implementation) are also based
on semantics that can be described in term of LTS. The FSMs are translated into a
process algebra [3] called Finite State Processes (FSP) [8]. This leads to a validation

Part described
in this paper

Semantics equivalence of the
behavioral aspects ≡

Model
transformation

(behavioral
aspects only)

Model
transformation

LTSA
Model-Checker

Checking

Specific
platform

Execution

structure
1

2

configuration
a1: b2:

a2: c1:

Specification Model

Meta
Model

Meta
Model

Meta
Model

Implemen-
tation model

Properties
model

(FSP code)

Meta
Meta
Model

Validation
model

(FSP code)

≡

≡

≡

behavior

model which can be analyzed with the Labeled Transition System Analyzer (LTSA)
model checking tool [8].

 This paper is divided into four parts. The first part presents the running example
which will be used to illustrate the proposed approach. The second and third sections
describe an overview of the specification model and the validation model
respectively. Finally, the fourth section presents the model transformation concepts
necessary for the generation of the validation model.

2 Running Example

 The system used to illustrate the present approach is a control software whose
role is to manage the locomotion function of an hexapod robot [12] (figure 2.a). A
leg moves in a cyclic way between two positions aep (anterior extreme position) and
pep (posterior extreme position) (figure 2.b). The control architecture is based on
decentralized control [7]; the walking cycle of a leg (L) is obtained with local
controllers (LC) and the global behavior is obtained with six local supervisors (LS)
which coordinate the local controllers (figure 2.c).

Figure 2. a) Mobile platform, b) Walking cycle, c) Control architecture

 To ensure flexible and robust locomotion, this system must satisfy a set of
liveness and safety properties. As an example, one of these liveness properties says
that all the legs must always execute their walking cycle, whatever the possible
execution trace of the system. And in accordance with the safety properties, one leg
can only be raised if its two neighbors remain on the ground (static stability). The
control software of this robot is a typical example of the software systems which
must be validated to avoid severe dysfunctions at runtime.

a) b)
:L

:L

:L

:L

:L

:L

:SL

:LC :LC

:LC

:LC :LC

:LC

:LS

:LS :LS

:LS

:LS

c)

Protraction

Retraction pep

aep

3 Specification Model

 The specification model, based on object-oriented models, represents an
abstraction of the control software and includes three complementary aspects which
represent, respectively, its structure, its behavior and its configuration.

3.1 Specification of the structural aspects

 To describe the different types of entities present in control systems, we specify
the structural aspects in the form of two conceptual levels [9]. The first level models
the passive objects which must be controlled, while the second level corresponds to
behavioral objects (active entities) whose role is to control passive objects in their
state space (figure 3.a). This explicit representation of behaviors allows these to be
considered as full objects and so, to be manipulated and organized within an object-
oriented architecture. Moreover, the systematic separation of passive objects from
behavioral objects helps to abstract and isolate them and thus to simplify their
specification. This organization can also be generalized since a passive/behavior
association can be considered as a new (passive) object which is, itself, supervised
by another behavior (figure 3.a).

3.2 Specification of the behavioral aspects

 We model the dynamic aspects of control systems by associating each
behavioral class with a Finite State Machine (figure 3.b). Figure 3.b models the
discrete behavior of a leg controlled by its local controller, which is itself
coordinated by its local supervisor. Once specified in this way, the behavioral
objects execute an elementary task, in an autonomous and independent manner, and
their concurrent execution describes the entire state space of the six legs.

Figure 3: Specification model of the Locomotion function: a) structural aspects, b)
behavioral aspects, c) configuration aspects

« behavior »
Local Controller (LC)

1

1
1

« passive »
Leg (L)

« behavior »
Local Supervisor (LS)

1
control

control

« composite »
Locomotion

a)

privilege
Down

Up
down up

Protraction

Retraction

transfer aep

pep
Wait

b) c)
Platform

lc2: LC

l2:L lc3: LC

ls3:LS

l3:L
:Locomotion

ls3.privilege
/ lc4.transfer

ls3.privilege
/ lc2.transfer

ls3.up / lc3.transfer,
ls3.down / lc3.aep

lc4: LC

l4:L

 To ensure reliable locomotion, some of these states - for example the state in
which all the legs are raised at the same moment - must be prohibited. To restrict the
entire state-space to the allowed state-space, we allow (or not) some transitions to be
fired by synchronizing the actions of the LC instances with those of the LS
instances. These synchronizations (or shared actions) are detailed in the
configuration aspects. Moreover, we propose to combine behavioral and passive
objects together in a composite object (figure 3.a), so as to explicitly represent a
modeled software function (here the Locomotion). To make design easier and
development effort profitable these composite can be manipulated and (re)used to
model more complex software functions in a hierarchic and modular way.

3.3 Configuration aspects

 The previously described behavioral and structural aspects specify a set of
possible configurations of a family of software systems in terms of classes,
interactions and behaviors. Consequently, modeling a particular software system of
this family requires the description of a particular configuration. This particular
configuration, which is represented with an object diagram (figure 3.c) helps to
better define the structural aspects by specifying the topology and interactions of the
instances which make up the software system. Moreover, it also helps to better
define the behavioral aspects by specifying - in the form of relabeling annotations
[8], (instance1.actionA /instance2.actionB) - the actions which are shared between
these instances. These shared actions allow to synchronize instances in order to
obtain the desired behavior. The object diagram in figure 3.c illustrates part of the
configuration of the mobile platform. This diagram shows, in accordance with the
previously mentioned safety property, how the local supervisor ls3 allows the
evolving of local controller lc3 according to the position of the two neighboring legs
l2 and l4. Indeed if legs l2 and l4 are raised (lc2 and lc4 receive the privilege to do
their protraction: ls3.privilege/lc4.transfer or ls3.privilege/lc2.transfer) then leg l3
can only be in the Down state (figure 3.b). Conversely, if the legs l2 and l4 remain
on the ground, leg l3 can be allowed to rise (ls3.up/lc3.transfer) which will then
preempt the privilege of its neighbors.

 This last specification phase helps to complete the specification model whose
global behavior (Locomotion function) must be validated so as to make sure that its
specification respects the expected properties.

4 Validation Model

 Simulation and model-checking techniques aim to make software reliable by
ensuring designers that their models meet their requirements [2, 5]. The integration
of these complementary methods into object-oriented constructions seems pertinent
as they allow the efficient validation of software systems. In the proposed approach,

the validation model is described in the form of process algebra called Finite State
Process (FSP) [8] in order to use LTSA [8]. The advantage of LTSA is that it allows
both the simulation and the checking of behavioral models.

4.1 Specification of the validation model using FSP

 In LTSA, a system is structured using a set of primitive processes, whose
behavior is modeled in FSP in the form of expressions combining local processes
and actions. The representation of the global behavior of systems is obtained with
the composition of instances of these processes (instance: Process) and with the
representation of their interactions through shared actions within a composite
process. So similarly to the specification model, modeling a composite process
allows the specification of a complex system in a modular, hierarchic way; the
instances of composite processes are potentially reused in another composite. To
specify the validation model, we collect the entities contained in the specification
model (states, actions, relabeling annotations, …) to transform these entities into
FSP (i.e. section 5). Thus, as shown in figure 4.a, for the local controller (LC), the
behavior of a behavioral class, graphically described by its FSM (figure 3.b), is used
to obtain the primitive process (LC) in FSP.

Figure 4. Behavioral description in FSP, a) of the LC primitive process, b) of the
Locomotion composite process

In a second step, the composite type instances which are presented in the
configuration aspects (figure 3.c) are used to generate the composite processes in
FSP (figure 4.b). As an example, the Locomotion behavior is obtained from a set of
six instances (lci) of the primitive process local controller (LC) and six instances
(lsi) of primitive processes local supervisor (LS). These instances are composed in a
parallel way (||), then synchronized (/) using their shared actions - thanks to the
annotation (ls3.privilege/lc2.transfer, ls3.up/lc3.transfer, etc…) - included in the
Locomotion composite object (figure 3.c). This Locomotion behavioral model is then
checked using LTSA.

LC = Retraction,
Retraction = (pep -> Wait),
Wait = (transfert -> Protraction),
Protraction = (aep -> Retraction).

a) b)
|| Locomotion = (lc1 : LC || lc2 : LC || …

|| ls1 : LS || ls2 : LS || …)
/ {
ls3.privilege / lc2.transfer,
ls3.up / lc3.transfer,
…}.

4.2 Analysis of the validation model

 LTSA allows the interactive simulation of the different execution traces of the
specified model to ensure that the latter satisfies the expected behavior. Simulation,
which is a non-exhaustive validation, can be completed with a search for violation of
liveness and safety properties. In the validation model proposed here, only the
liveness properties will be presented. A liveness property asserts that « something
good eventually happens » [2]. In LTSA, liveness properties are expressed with the
keyword progress. The liveness property mentioned earlier (at the end of section 2)
consists in checking that each local controller (lci) can always execute its walking
cycle, which results in the recurrent detection of the transfer action for each local
controller (figure 5).

Figure 5. Liveness properties in FSP

 If a property is violated by the validation model, LTSA produces the sequence of
actions leading to this violation. The designer can then modify his/her model
according to the obtained results.

5 Model Transformation

 Model-Driven Engineering [4] aims to unify software activities from the
specification down to the executable code production, through the integration of
heterogeneous models into coherent software developments. This coherent
integration is only possible - according to MDE - through a formally defined
metamodeling architecture which allows - through different levels of abstraction
(models, metamodels, metametamodel) - the precise definition of the concepts used
to characterize a particular type of (meta)model. In this architecture, metamodels
describe all the concepts necessary for the definition of a specific type of models,
while the metametamodel specifies the concepts that are common to the metamodels
used. So, from these common concepts, a set of relations between the entities of the
metamodels can be deduced. Figure 6.a describes the correspondence of the
concepts of the specification metamodel and those of the validation metamodel. The
transformation rules which can be deduced from these relations are applied to the
entities of a source model (here, the specification model) in order to obtain the
entities of the target model (here, the validation model) in a systematic way.
Moreover, the explicit representation of the metamodels and transformation rules
allows the use of model transformation tools for the automated generation of
specific target models (figure 6.b). In accordance with MDE, the present approach is
based on the concepts of models, metamodels and model transformations and has

progress Leg1_Cycle = {lc1.transfer },…, progress Leg6_Cycle = {lc6.transfer }.

been prototyped with a metamodeling environment – MetaEdit [6] - in order to
transform the specification model into a validation model (FSP code). The FSP code
obtained in this way can directly be analyzed with the LTSA tool. As the proposed
models respect the LTS semantics, the semantic gap between these models is
reduced, which makes the transformation between models easier. Moreover, the use
of model transformation tools makes the proposed approach even more reliable by
avoiding the errors that would be caused by manual transcriptions.

Figure 6.a). Correspondence between the specification and validation metamodel, b)
Conceptual representation of metamodeling

 As said in the introduction, the aim of the present approach is to produce an
executable code for the implementation of validated control software. However,
even if the joint use of object-oriented techniques, checking tools and model
transformation techniques makes software development easier and more reliable, it
does not guarantee that the implementation conforms with the validation. That is
why, the approach presented in this paper is part of a global software development
(figure 1) in which the use of a framework and a runtime platform – also in
conformity with LTS semantics – helps to reduce the semantic gap between the
models and thus allows the easier generation of a code in accordance with the
specification and validation models [10]. So, this approach allows the creation of a
coherent software development cycle that integrates specification, validation and
implementation phases.

Conclusion and Perspective

 This paper has presented an approach combining object-oriented techniques with
formal validation and MDE, to ensure the validated specification of control
software. In a first step, it proposes an object-oriented specification completed with
FSM for the modeling of software systems. The specification model thus obtained is

b) a)

Transformation
rules

Model
transformation

tool

Source model Target model

Excerpt from the source
metamodel

aS0

b

conforms to

BehaviorA = S0,
S0 = (a -> S1),
S1 = (b -> S2),
S2 = (c -> S0).

FSM

Transition

Behavioral
 class

State

Behavior
A

ProcessDef :
ProcessIdent Paramopt =
ProcessBody
AlphabetExtensionoptRelabelopt

Hidingopt .
ProcessBody :
L lP

conforms to

Excerpt from the target
metamodel

S1
S2

c

Specification
metamodel

Validation
metamodel

Behavior classes Primitive processes
(Pp)

Instances Instance of Pp

FSM states Local processes

FSM action Action prefix

Guard Guard

Composite classes Composite processes

Shared action Relabeling

… …

sufficiently precise to be used as a source model for automated software generation.
It can be transformed into a process algebra so as to be validated with a model-
checking tool. This approach which has been applied on a locomotion software
system has the advantage of making the conception of software systems easier while
increasing their reliability and also of being integrated in a coherent global
development ranging from the specification to the implementation. We will continue
this work, in a first step, by the checking of other liveness and safety properties to
validate more effectively the Locomotion function of the robot. In a second step, we
plan to implement the approach on a number of various applications to test its
robustness.

Reference

[1] Arnold, A., Finite Transition System, Prentice Hall, Prentice Hall, 1994.
[2] Bérard, B. et al. Systems and Software verification. Model-Checking Techniques and

Tools, Springer, 2001.
[3] Bergstra, J.A., Ponse, A. and Smolka, S.A. editors, Handbook of Process Algebra.

Elsevier Science, Amsterdam, 2001.
[4] Bézivin. In search of a Basic Principle for Model-Driven Engineering, Novatica Journal,

Special Issue, March 2004.
[5] Clarke, E.M., Grumberg, O. and Peled, D. Model checking, The MIT Press, Cambridge,

Mass., 1999.
[6] Domain Specific Modeling with MetaEdit+, January 2005, http://www.metacase.com/
[7] Lin, F., and Wonham W.M., Decentralized Control and Coordination of Discrete-Event

Systems with Partial Observation. IEEE Transactions on Automatic Control, vol.35,
n°12, p.1330-1337, 1990.

[8] Magee, J. and Kramer, J., Concurrency. State Models & Java Programs. John Wiley &
Sons, Chichester, UK, 1999.

[9] Perronne, J.M., Rasse, A., Thiry, L., Thirion, B., A Modeling Framework for Complex
Behavior Modeling and Integration, Proceedings of IADIS’05, Algrave, Portugal, 2005.

[10] Rasse, A., Perronne JM., Thirion, B. Toward a Validated Object-Oriented Design
Approach to Control Software. Proceedings of 16th IFAC World Congress, Prague,
Czech Republic, 3-8 July, 2005.

[11] Sanz, R., Pfister, C., Schaufelberger, W. and De Atonio, A., Software for Complex
Controllers In: Control Of Complex Systems (Karl Astrom, P. Albertos, M. Blanke, A.
Isidori, W. Schaufelberger, R. Sanz, Ed.). Springer-Verlag, London, 2001, p.143-164.

[12] Thirion, B. and Thiry, L., Concurrent programming for the Control of Hexapode
Walking, ACM Ada letters, n°21, 2002, p.12-36.

