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Abstract. We present in this paper a rigorous and automated based approach for 
the behavioral validation of control software systems. This approach relies on 
metamodeling, model-transformations and process algebra and combines semi-
formal object-oriented models with formal validation. We perform the validation of 
behavioral aspects of object-oriented models by using a projection into a well-
defined formal technical space (Finite State Process algebra) where model-checkers 
are available (we use LTSA; a model checker for Labeled Transition Systems). We 
then target an implementation platform, which conforms to the semantics of the 
formal technical space; in turn, this ensure conformance of the final application to 
the validated specification. 

1 Inroduction 

 The increasing complexity of control software systems makes their 
comprehension and their construction more and more difficult [11]. The approach 
proposed in this paper (figure 1) simplifies the reliable design of these software 
systems through a complete software development cycle (from the specification to 
the code) in a coherent and automated way. It is based on existing techniques, from 
different fields of software engineering, and integrates: 

– a specification phase based on object-oriented decomposition. 
– a validation phase based on formal methods and model-checking tools, so as 

to provide software designers with checking techniques that improve their 
design quality. 

– an implementation phase to ensure the coherence of the generated code 
according to both the validation and specification phases. 

– a model-based software engineering process in accordance with Model-
Driven Engineering (MDE) [4], which allows - through a metamodel 
architecture - the integration of the specification, the validation and the 
implementation phases into a coherent software development cycle. 
Moreover, model transformation – a key concept in MDE – helps to go from 



one modeling field to another, which, in turn, helps to obtain automatically, 
from a source model, models that are adapted to a particular technical space. 
These transformations make the software designer's tasks easier by hiding, as 
far as possible, the complexity of formal tools which often require an 
important learning effort. 

  
 As the whole approach cannot be described in this paper, only the specification 
and validation phases, with the associated transformations, will be considered here 
(dark gray in figure 1). 
 
 

 
 

Figure 1. Projection of the behavioral aspects into a process algebra technical space 
 
 

The approach is based on a specification model which represents an abstraction 
of the control software. This model is specified using classes, objects and Finite 
State Machines (FSM) so as to describe the different aspects (structure, behavior, 
and configuration) of the system under study. FSMs have been chosen as this 
formalism is based on known semantics [8] which can be interpreted in terms of 
Labeled Transition System (LTS) [1]. The precisely defined semantics is necessary - 
on one hand - to allow the easier use of model transformation techniques and - on 
other hand - to ensure the coherence of the approach, since the behavioral aspects of 
the proposed models (specification, validation and implementation) are also based 
on semantics that can be described in term of LTS. The FSMs are translated into a 
process algebra [3] called Finite State Processes (FSP) [8]. This leads to a validation 
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model which can be analyzed with the Labeled Transition System Analyzer (LTSA) 
model checking tool [8].  
 
 This paper is divided into four parts. The first part presents the running example 
which will be used to illustrate the proposed approach. The second and third sections 
describe an overview of the specification model and the validation model 
respectively. Finally, the fourth section presents the model transformation concepts 
necessary for the generation of the validation model.  

2 Running Example 

 The system used to illustrate the present approach is a control software whose 
role is to manage the locomotion function of an hexapod robot [12] (figure 2.a). A 
leg moves in a cyclic way between two positions aep (anterior extreme position) and 
pep (posterior extreme position) (figure 2.b). The control architecture is based on 
decentralized control [7]; the walking cycle of a leg (L) is obtained with local 
controllers (LC) and the global behavior is obtained with six local supervisors (LS) 
which coordinate the local controllers (figure 2.c). 
 
 

 
 

Figure 2. a) Mobile platform, b) Walking cycle, c) Control architecture 
 
 

 To ensure flexible and robust locomotion, this system must satisfy a set of 
liveness and safety properties. As an example, one of these liveness properties says 
that all the legs must always execute their walking cycle, whatever the possible 
execution trace of the system. And in accordance with the safety properties, one leg 
can only be raised if its two neighbors remain on the ground (static stability). The 
control software of this robot is a typical example of the software systems which 
must be validated to avoid severe dysfunctions at runtime.  
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3 Specification Model 

 The specification model, based on object-oriented models, represents an 
abstraction of the control software and includes three complementary aspects which 
represent, respectively, its structure, its behavior and its configuration. 

3.1 Specification of the structural aspects  

 To describe the different types of entities present in control systems, we specify 
the structural aspects in the form of two conceptual levels [9]. The first level models 
the passive objects which must be controlled, while the second level corresponds to 
behavioral objects (active entities) whose role is to control passive objects in their 
state space (figure 3.a). This explicit representation of behaviors allows these to be 
considered as full objects and so, to be manipulated and organized within an object-
oriented architecture. Moreover, the systematic separation of passive objects from 
behavioral objects helps to abstract and isolate them and thus to simplify their 
specification. This organization can also be generalized since a passive/behavior 
association can be considered as a new (passive) object which is, itself, supervised 
by another behavior (figure 3.a). 

3.2 Specification of the behavioral aspects 

 We model the dynamic aspects of control systems by associating each 
behavioral class with a Finite State Machine (figure 3.b). Figure 3.b models the 
discrete behavior of a leg controlled by its local controller, which is itself 
coordinated by its local supervisor. Once specified in this way, the behavioral 
objects execute an elementary task, in an autonomous and independent manner, and 
their concurrent execution describes the entire state space of the six legs. 
 
 

 
 

Figure 3: Specification model of the Locomotion function: a) structural aspects, b) 
behavioral aspects, c) configuration aspects 
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 To ensure reliable locomotion, some of these states - for example the state in 
which all the legs are raised at the same moment - must be prohibited. To restrict the 
entire state-space to the allowed state-space, we allow (or not) some transitions to be 
fired by synchronizing the actions of the LC instances with those of the LS 
instances. These synchronizations (or shared actions) are detailed in the 
configuration aspects.  Moreover, we propose to combine behavioral and passive 
objects together in a composite object (figure 3.a), so as to explicitly represent a 
modeled software function (here the Locomotion). To make design easier and 
development effort profitable these composite can be manipulated and (re)used to 
model more complex software functions in a hierarchic and modular way. 

3.3 Configuration aspects 

 The previously described behavioral and structural aspects specify a set of 
possible configurations of a family of software systems in terms of classes, 
interactions and behaviors. Consequently, modeling a particular software system of 
this family requires the description of a particular configuration. This particular 
configuration, which is represented with an object diagram (figure 3.c) helps to 
better define the structural aspects by specifying the topology and interactions of the 
instances which make up the software system. Moreover, it also helps to better 
define the behavioral aspects by specifying - in the form of relabeling annotations 
[8], (instance1.actionA /instance2.actionB) - the actions which are shared between 
these instances. These shared actions allow to synchronize instances in order to 
obtain the desired behavior. The object diagram in figure 3.c illustrates part of the 
configuration of the mobile platform. This diagram shows, in accordance with the 
previously mentioned safety property, how the local supervisor ls3 allows the 
evolving of local controller lc3 according to the position of the two neighboring legs 
l2 and l4. Indeed if legs l2 and l4 are raised (lc2 and lc4 receive the privilege to do 
their protraction: ls3.privilege/lc4.transfer or ls3.privilege/lc2.transfer) then leg l3 
can only be in the Down state (figure 3.b). Conversely, if the legs l2 and l4 remain 
on the ground, leg l3 can be allowed to rise (ls3.up/lc3.transfer) which will then 
preempt the privilege of its neighbors. 
 
 This last specification phase helps to complete the specification model whose 
global behavior (Locomotion function) must be validated so as to make sure that its 
specification respects the expected properties. 

4 Validation Model 

 Simulation and model-checking techniques aim to make software reliable by 
ensuring designers that their models meet their requirements [2, 5]. The integration 
of these complementary methods into object-oriented constructions seems pertinent 
as they allow the efficient validation of software systems. In the proposed approach, 



the validation model is described in the form of process algebra called Finite State 
Process (FSP) [8] in order to use LTSA [8]. The advantage of LTSA is that it allows 
both the simulation and the checking of behavioral models. 

4.1 Specification of the validation model using FSP 

 In LTSA, a system is structured using a set of primitive processes, whose 
behavior is modeled in FSP in the form of expressions combining local processes 
and actions. The representation of the global behavior of systems is obtained with 
the composition of instances of these processes (instance: Process) and with the 
representation of their interactions through shared actions within a composite 
process. So similarly to the specification model, modeling a composite process 
allows the specification of a complex system in a modular, hierarchic way; the 
instances of composite processes are potentially reused in another composite. To 
specify the validation model, we collect the entities contained in the specification 
model (states, actions, relabeling annotations, …) to transform these entities into 
FSP (i.e. section 5). Thus, as shown in figure 4.a, for the local controller (LC), the 
behavior of a behavioral class, graphically described by its FSM (figure 3.b), is used 
to obtain the primitive process (LC) in FSP.  
 
 

 
 

Figure 4. Behavioral description in FSP, a) of the LC primitive process, b) of the 
Locomotion composite process 

 
In a second step, the composite type instances which are presented in the 
configuration aspects (figure 3.c) are used to generate the composite processes in 
FSP (figure 4.b). As an example, the Locomotion behavior is obtained from a set of 
six instances (lci) of the primitive process local controller (LC) and six instances 
(lsi) of primitive processes local supervisor (LS). These instances are composed in a 
parallel way ( || ), then synchronized ( / ) using their shared actions - thanks to the 
annotation (ls3.privilege/lc2.transfer, ls3.up/lc3.transfer, etc…) - included in the 
Locomotion composite object (figure 3.c). This Locomotion behavioral model is then 
checked using LTSA.  

LC    = Retraction, 
Retraction   = ( pep           -> Wait    ), 
Wait   = ( transfert  -> Protraction ), 
Protraction  = ( aep           -> Retraction ). 

a) b) 
|| Locomotion =   ( lc1 : LC || lc2 : LC || … 

|| ls1 : LS || ls2 : LS || … ) 
/ { 
ls3.privilege / lc2.transfer,  
ls3.up / lc3.transfer, 
…}. 



4.2 Analysis of the validation model 

 LTSA allows the interactive simulation of the different execution traces of the 
specified model to ensure that the latter satisfies the expected behavior. Simulation, 
which is a non-exhaustive validation, can be completed with a search for violation of 
liveness and safety properties. In the validation model proposed here, only the 
liveness properties will be presented. A liveness property asserts that « something 
good eventually happens » [2]. In LTSA, liveness properties are expressed with the 
keyword progress. The liveness property mentioned earlier (at the end of section 2) 
consists in checking that each local controller (lci) can always execute its walking 
cycle, which results in the recurrent detection of the transfer action for each local 
controller (figure 5).  
 
 

 
 

Figure 5. Liveness properties in FSP 
 

 
 If a property is violated by the validation model, LTSA produces the sequence of 
actions leading to this violation. The designer can then modify his/her model 
according to the obtained results.  

5 Model Transformation 

 Model-Driven Engineering [4] aims to unify software activities from the 
specification down to the executable code production, through the integration of 
heterogeneous models into coherent software developments. This coherent 
integration is only possible - according to MDE - through a formally defined 
metamodeling architecture which allows - through different levels of abstraction 
(models, metamodels, metametamodel) - the precise definition of the concepts used 
to characterize a particular type of (meta)model. In this architecture, metamodels 
describe all the concepts necessary for the definition of a specific type of models, 
while the metametamodel specifies the concepts that are common to the metamodels 
used. So, from these common concepts, a set of relations between the entities of the 
metamodels can be deduced. Figure 6.a describes the correspondence of the 
concepts of the specification metamodel and those of the validation metamodel. The 
transformation rules which can be deduced from these relations are applied to the 
entities of a source model (here, the specification model) in order to obtain the 
entities of the target model (here, the validation model) in a systematic way. 
Moreover, the explicit representation of the metamodels and transformation rules 
allows the use of model transformation tools for the automated generation of 
specific target models (figure 6.b). In accordance with MDE, the present approach is 
based on the concepts of models, metamodels and model transformations and has 

progress Leg1_Cycle = {lc1.transfer },…, progress Leg6_Cycle = {lc6.transfer }. 



been prototyped with a metamodeling environment – MetaEdit [6] - in order to 
transform the specification model into a validation model (FSP code). The FSP code 
obtained in this way can directly be analyzed with the LTSA tool. As the proposed 
models respect the LTS semantics, the semantic gap between these models is 
reduced, which makes the transformation between models easier. Moreover, the use 
of model transformation tools makes the proposed approach even more reliable by 
avoiding the errors that would be caused by manual transcriptions.  
 

 
 

Figure 6.a). Correspondence between the specification and validation metamodel, b) 
Conceptual representation of metamodeling 

 
 
 As said in the introduction, the aim of the present approach is to produce an 
executable code for the implementation of validated control software. However, 
even if the joint use of object-oriented techniques, checking tools and model 
transformation techniques makes software development easier and more reliable, it 
does not guarantee that the implementation conforms with the validation. That is 
why, the approach presented in this paper is part of a global software development 
(figure 1) in which the use of a framework and a runtime platform – also in 
conformity with LTS semantics – helps to reduce the semantic gap between the 
models and thus allows the easier generation of a code in accordance with the 
specification and validation models [10]. So, this approach allows the creation of a 
coherent software development cycle that integrates specification, validation and 
implementation phases. 

Conclusion and Perspective 

 This paper has presented an approach combining object-oriented techniques with 
formal validation and MDE, to ensure the validated specification of control 
software. In a first step, it proposes an object-oriented specification completed with 
FSM for the modeling of software systems. The specification model thus obtained is 
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sufficiently precise to be used as a source model for automated software generation. 
It can be transformed into a process algebra so as to be validated with a model-
checking tool. This approach which has been applied on a locomotion software 
system has the advantage of making the conception of software systems easier while 
increasing their reliability and also of being integrated in a coherent global 
development ranging from the specification to the implementation. We will continue 
this work, in a first step, by the checking of other liveness and safety properties to 
validate more effectively the Locomotion function of the robot. In a second step, we 
plan to implement the approach on a number of various applications to test its 
robustness.   
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