
Interaction-Based Scenario Integration

Rabeb Mizouni1, Aziz Salah2, Rachida Dssouli1, and Benôıt Parreaux3

1 Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3H 1M8, Canada

{mizouni, dssouli}@ece.concordia.ca
2 Université de Québec A Montréal

Montreal, Quebec, Canada
salah.aziz@uqam.ca

3 France Telecom R & D, Lannion, France
benoit.parreaux@francetelecom.com

Abstract. We propose in this paper an interaction-based approach for
use cases integration. It consists of composing use cases automatically
with respect to interactions specified among them. To this end, we define
a state-based pattern for each of these interactions. Then we synthesize
a use case interaction graph, which serves the detection of not only un-
specified, but also implied use case invocations. Additional constraints are
added to the system in order to remove such illicit interactions, called in-
terferences.

1 Introduction

Due to the rapid growth of distributed systems and their complexity, the pro-
duction of a system specification has become an arduous task. An incremental
elaboration of partial behaviors seems to be more adapted for the requirement
elicitation process. Consequently, scenario-based approaches have emerged and
rapidly gained on popularity. Rather than specifying the system as a whole,
scenario-based approaches consists on describing the behavior as a set of use
cases. Each use case depicts a certain functionality of the system and represents
its execution traces, defined as scenarios.

Use cases play an important role in the lifecycle process. They can be used
in the requirement elicitation phase, as well as in the design, the code genera-
tion, and the validation phases. The level of formality in use case notations is
strongly dependent on the phase of the lifecycle. During the requirement elicita-
tion phase, use cases are usually described in a friendly notation understandable
by the stakeholders. Later on in the lifecycle process, these scenarios are used to
synthesize a state-based specification, a more suitable notation for code genera-
tion, validation, and verification phase. However, this task is not straightforward.
Use cases have to be translated and composed to obtain a formal system speci-
fication. In most cases, interactions between use cases do exist. They are either
explicitly specified with composition operators, or implicitly detected by a state-
based identification. However, in both cases, the resulting state-based model may

contain extra unspecified behaviors, called implied scenarios. They are due (in
part) to unpredicted use case interactions.

We present in this paper an explicit integration approach for composing uses
cases based on their interactions. The main objective is the automatic synthesis
of an automaton of the system without introducing implied scenarios resulting
from the use case merging . An interaction represents an invocation of a use
case by another. Given a set of use cases, we first translate them into use case
automata where edges are labeled with both actions and interactions. Using
state-based patterns, the interactions specified within the use cases are translated
into a state-based model in order to connect together the respective automata
of the interacting use cases. In this context, a pattern defines the state-based
representation of a use case interaction. In a second step, we build from the
system use cases a use case interaction graph. It is used to detect the potential
implied use case interactions, called interferences. Additional constraints are
added to the system automaton in order to eliminate such interferences.

The paper is structured as follows. In Section 2, we overview the use case
model we are using. Section 3 describes the methodology of synthesizing the
overall automaton of the system based on the interactions between use cases.
Discussions on some related work as well as future work are given in Section 4.

2 Scenario Acquisition : Model Presentation

We have defined in [5] a formal action-based use case representation. Each action
expresses the system state evolution. The observation of an action is controlled
by a precondition and a postcondition on variables. The approach in [5] allows
the synthesis from use cases of an extended automaton which has the behavior
specified by a given collection of use cases. When the extended automaton results
from only one use case, it is called the use case automaton.

An extended automaton behaves like a classical one, except that firing a tran-
sition is enabled by a precondition. Afterward, the system moves to the target
location of the transition, and variables values of the automaton are modified
according to the assignment of the transition.

In oder to describe the functional requirements of a system, the designer
needs to specify a set of use cases. In most cases, interactions between use cases
do exist. Offering a notation that gives the possibility to express these interac-
tions promotes not only the reuse, main feature of scenario-based approaches,
but also the simplification of the use cases. In fact, when a specific treatment
is needed by different use cases, a separate use case can be specified to achieve
this task. This use case will be invoked within the other use cases each time the
treatment is required, avoiding, in such way, the redundancy in the specifica-
tion. In this paper, we present three of the most needed interactions between
use cases, namely Include, Extend, and Interrupt.

– Include(uci) specifies a mandatory invocation of a use case uci . It models
the factorization of a part of the description that is used by many other use

cases. If the invocation is done at the end of a use case, Include expresses
simply the sequential concatenation.

– Extend(uci,condi) specifies an optional invocation of a use case uci. Hence,
uci is only executed when condi is verified.

– Interrupt(uci, condi) specifies an interrupting use case uci. It is used to
state explicitly the actions where an interruption of the current use case
can be performed. Unlike the previous relationships, Interrupt does not
allow the continuation of the interrupted use case after the execution of the
interrupting one.

An interaction between use cases is expressed in the calling use case in the form
(a, interaction) where interaction ∈ { Include(uci), Interrupt(uci, condi),
Extend(uci, condi) }, and a represents the action preceding the interaction.
We draw the attention that one may see that Include(uci) could be simply
written as an unconditional Extend like Extend(uci, true). However, as it will be
shown later on, the integration patterns of these two operators in the state-based
model are not the same and represent two different semantics. In addition, since
scenarios have the objective to facilitate the production of a formal specification
from the requirements, it is necessary that the language provides features that
are as close as possible to the vision the user has.

3 Integration Approach

We define a two-step automated approach to produce from a set of use cases an
automaton modeling the behavior of the overall system. The first step consists of
translating the use case interactions into a state-based model. It is achieved by
means of state-based pattern for each kind of invocations. Hence, the structure
of the obtained automaton reflects the specified interactions. The second step
consists of deriving a use case interaction graph, used to detect the induced but
undesired interferences between use cases. New control variables are consequently
added to the automaton to prevent such behaviors.

3.1 State-Based Interaction Patterns

Interaction patterns serve the automated merge of the use case automata into
an overall automaton of the system. They will provide the connection points
between the use case automata during their integration. Figure 1 shows the
integration pattern of Include, Extend and Interrupt invocations. Transfor-
mations are applied to the automaton of the calling use case: transitions are
added to refer to the initial location in the called use case. During this pro-
cess, non-determinism may be introduced because the execution of Extend and
Interrupt calls is conditional. The duplication of the action (for instance action
a in Figure 1.(b) and Figure 1.(c)) is inevitable, bringing non-determinism in the
automaton.

start uc and return uc are two new special labels used to connect use cases
together. The condition given within an Extend or an interrupt interactions

...

... C...

...

�����
�����
�����

�����
�����
�����

a a

...

...

...

return_uc

(b)

start_uc

pre=(cond)
start_uc

�����
�����
�����

�����
�����
�����

a a

...

...

...

...

(c)

pre=(cond)�����
�����
�����

�����
�����
�����

...

a

...

...

...

... return_uc

(a)

start_uc

return_ucreturn_uc

PSfrag replacements

1 11

1

2

22

2

3
4
5

1
1

1

2
2

2

3
3

3

4
4

4

5
5

5

6

C = (a, Include(uc2)) C = (a, Interrupt(uc2, cond))C = (a,Extend(uc2, cond))

uc2
uc2uc2

uc2
uc1

Fig. 1. State-Based Patterns of use case Interactions

is a precondition of the added transition start uc. The actions labeled with
start uc and return uc may be decorated afterward with additional pre and
post conditions according to the use case interaction graph as we will show later
on.

The derived automaton after interpretation of the use case interaction is
called Interaction-Free use case automaton. Its edges are no more labeled by
invocations.

3.2 Use Case Interaction Graph

When specifying the use cases, the designer has defined different interactions.
However, since it is difficult that she/he draws the big picture, it could happen
that the specified use case interactions generate interferences. The latter may
lead to unexpected scenarios in the overall system behavior. Let’s consider the
case of two use cases making an Include invocation to the same use case (c.f.
Figure 2 (a) and (b)). After the application of the state-based pattern, the system
may eventually run through (a, uc1, d). The same anomaly appears when a use
case makes multiple calls to the same use case (c.f. Figure 2) in different places
through the use case. In order to detect such situations, we synthesize a use case
interaction graph in which a node is associated to each use case. An edge links
together the nodes of two use cases if they interact. The edges are labeled with
the type of the interactions as well as the number of their occurrences. The label
(Include, 2) in Figure (2 (c)) indicates that the call of the use case uc1 occurs
twice in the description of uc2.

undesired behaviors

(b)

(include,1)

Use Case Relationship Graph

(c)

(include,2)

c a

bd

...

start_uc start_uc

a

post=(calling_uc :=uc3)

c

return_uc

pre=(calling_uc =uc3)

return_uc
d

...

... ...

start_uc

post=(calling_uc :=uc2) and

return_uc
b

post=(calling_uc :=uc2) and
(n_occurrence:=1)

pre=(calling_uc =uc2) and
(n_occurrence=1)

(n_occurrence:=2)

pre=(calling_uc =uc2) and
(n_occurrence=2)

(d)

...

b

. . .

(a)

PSfrag replacements

uc1

uc1

uc1

uc2

uc2uc2

uc2

uc3
uc3uc3

uc3

(a, Include(uc1))

(c, Include(uc1))

(d, Include(uc1))

(callinguc := uc2)
(callinguc := uc3)

Fig. 2. Inter and Intra-Implied Scenarios Resulting from Use case Merging

The use case interaction graph helps to detect undesired interferences. We
distinguish two cases where control variables have to be added to the automaton
of the system in order to prevent implied behavior:

– if a use case is referred by many distinct use cases, independently from the
type of the interaction, inter-implied scenarios may occur. A new variable
calling uc is added to the automaton, and is set by transition start uc
to the identifier of the calling use case (c.f. Figure (2 (d)). The return uc
transition will be checking the value of the calling uc variable.

– if a use case is referred more than once within the same use case, intra-
implied scenarios may occur. A new variable n occurrence is added to the
automaton, and is set by the transition, start uc, to the number of the oc-
currence in the calling use case. In the same way, the return uc transition
will be checking the value of the n occurrence variable.

Interaction Interrupt makes exception to the previous rules: if a use case is only
called through Interrupt, no implied behavior is added as there is no return.
The number of additional variables added to prevent implied scenarios depend
on the existing interactions between the original use cases.

The use case interaction graph serves the generation of the automaton of the
system with respect to use case interactions. However, we believe that it could be
also used to detect potential problematic interactions. Situations like a use case
calling itself, or a mutual calls between two use cases may lead to a disconnected
or non-executable parts of the automaton of the system. If the automaton of a
use case is disconnected within the automaton of the overall system, it indicates
an eventual omission of some use cases or/and interactions, or errors.

At this stage, the merge of the Interaction-Free use case automata represents
the automaton of the system. Such automaton may be non-deterministic. The
initial locations of the automaton of the system need to be specified by the user.

4 Related Work and Discussion

Many approaches have been developed to synthesize, either automatically or not,
state-based models from a set of use cases [1]. State-based models are basically
needed to verify and validate the user requirements in order to detect as soon
as possible design problems. We brought in this paper the issue of automatic
generation of the system automaton based on use case interactions.

Many notations have emerged with different degrees of expressiveness to spec-
ify the use cases and their composition. Glinz [4] uses statecharts to model for-
mally scenarios. The integration of scenarios is done in a way to retrieve the
relationship between scenarios by keeping their internal structure unchanged,
and to detect inconsistencies. The approach proposed carries only the composi-
tion of disjoint scenarios with elementary constructors (sequential, alternative,
iteration and concurrency constructor). As an extension of this work, Ryser [7]
introduces a new kind of charts and notations to model dependencies among
scenarios.The advantage of this approach is the fact of defining a notation that
captures clearly these inter-scenarios dependencies. Yet, this work is not pre-
senting a methodology rather than a notation that can clarify the dependencies
between different scenarios.

In the same range of ideas, UML [6] use case diagrams offer a notation to
specify use case relationships. They are similar to the use case interaction graph
presented in this paper, but they are more abstract. The labeling of the edge in
our case is offering information about the number of occurrence of the interaction
through the calling use case, which is a different notion from the multiplicity
of a use case relationship in UML2.0. Nevertheless, we can easily extend our
model to handle such feature because it already supports control variables on
the transition.

Araujo et al. [2] focused on representing aspects during use case modeling.
They proposed to differentiate between aspectual and non-aspectual scenarios.
Similar to our approach, the integration is done on the state machine level.
The relationships between use cases are defined in terms of role. In our case,
we focus in addition on the automatic generation of the system specification
without introducing implied scenarios. To this end, we introduce the notion of
use case interaction graph synthesized from the given set of use cases. Bordeleau
et al. [3] have proposed integration patterns for scenario dependencies. UCMs
are used to detect dependencies between scenarios. A state-based specification
per use case is then generated for each component and integrated to reflect the
scenarios dependencies. The whole process is done manually and relies on the
creativity of the designer to connect together the different statecharts in the
right way.

Our approach defines a methodology to integrate use cases that consists of (1)
developing state-based patterns for the different possible interactions between
use cases, and (2) analyzing the relationships between use cases in order to avoid
unspecified behaviors. When interferences are detected, they are prevented by
adding control variables. The number of added variables is determined accord-
ing to the use case interaction graph. Hence, the obtained automaton of the
system will be as much as possible conform to the original use cases. Finally, our
approach promote scalability which is an important feature for industrial appli-
cations. The support offered by our method makes the designer do not worry
about the overall picture of the system structure when adding new functional-
ities. As a future work, we aim to develop techniques to minimize the number
of these variables. We have presented in this paper three possible interactions,
Include, Extend, and Interrupt to illustrate our approach, but our methodol-
ogy is not restricted to them. Other patterns can be similarly developed.

References

1. D. Amyot and A. Eberlein. An evaluation of scenario notations for telecommunica-
tion systems development, 2001.

2. J. Araujo, W. Whittle, and D. Kim. Modeling and composing scenario-based re-
quirements with aspects. In The 12th IEEE International Requirements Engineering
Conference (RE 2004),, Kyoto, Japan, September 2004.

3. F. Bordeleau and J. P. Corriveau. On the importance of inter-scenario relationships
in hierarchical state machine design. In FASE ’01: Proceedings of the 4th Inter-
national Conference on Fundamental Approaches to Software Engineering, pages
156–170, London, UK, 2001. Springer-Verlag.

4. M. Glinz. An integrated formal model of scenarios based on statecharts. In In
Schäfer, W. and Botella, P. (eds.) (1995). Software Engineering - ESEC ’95. Pro-
ceedings of the 5th European Software Engineering Conference, Sitges, Spain. Berlin,
etc.: Springer (Lecture Notes in Computer Science 989)., pages 254–271, 1995.

5. R. Mizouni, A. Salah, R. Dssouli, and B. Parreaux. Integrating use cases with
explcit loops. In In Proceedings of Nouvelles TEchnnologies de la RÉpartition
(NOTERE’04), Saidia, Marocco, June 2004.

6. J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual. The (2nd Edition) (Addison-Wesley Object Technology Series).

7. J. Ryser and M. Glinz. Dependency Charts as a Means to Model Inter-Scenario
Dependencies. In In G. Engels, A. Oberweis and A. Zündorf (eds.): Modellierung
2001. GI-Workshop, Bad Lippspringe, Germany. GI-Edition - Lecture Notes in In-
formatics, volume P-1, pages 71–80, 2001.

