Automated Analysis of Natural Language
Properties for UML Models*

Sascha Konrad — Betty H.C. Cheng'
{konradsa,chengb} @cse.msu.edu

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering
Michigan State University
3115 Engineering Building
East Lansing, Michigan 48824 USA

Abstract

It is well known that errors introduced early in the development process are
commonly the most expensive to correct. The increasingly popular model-driven
architecture (MDA) exacerbates this problem by propagating these errors auto-
matically to design and code. This paper describes a round trip engineering
process that supports the specification of a UML model using CASE tools, the
analysis of specified natural language properties, and the subsequent model re-
finement to eliminate errors uncovered during the analysis. This process has been
implemented in SPIDER, a tool suite that enables developers to specify and an-
alyze a UML model with respect to behavioral properties specified in terms of
natural language.

1. Introduction

Errors introduced early in the development process are known to have above-average
correction costs [[I4]]l. To worsen this problem, in the increasingly popular model-
driven architecture (MDA) [22]], platform-independent models are transformed to
platform-specific models via transformation techniques. As such, these errors are
directly propagated to the platform-specific models and may also be propagated to

*This work has been supported in part by NSF grants EIA-0000433, EIA-0130724, CDA-9700732,
CCR-9901017, Department of the Navy, Office of Naval Research under Grant No. N00014-01-1-0744,
Eaton Corporation, Siemens Corporate Research, and in cooperation with Siemens Automotive, Detroit
Diesel Corporation, and General Dynamics Land Systems.

TPlease contact this author for all correspondences.

code, thereby motivating their detection in the platform-independent models. Vali-
dating UML models according to metrics and design guidelines can be an effective
means to catch structural errors [[I} B, but generally not behavioral modeling errors.
Several tools for the behavioral analysis of UML models have been developed, where
a user typically specifies properties in terms of formal specification languages. How-
ever, these formal specification languages often have a complex syntax and semantics
and are, therefore, rarely used in practice. To ease the use of formal specification lan-
guages, we have developed a customizable process for specifying properties of formal
system models in terms of natural language and formally analyzing these properties
using various formal analysis tools [[[T|.

Several other tools exists to support the design and validation of system models.
Commercial tools commonly offer validation and/or animation capabilities, such as
Rhapsody [[7]] and Rational XDE [B]. In general, these tools aid in uncovering struc-
tural errors, but are not designed for the analysis of behavioral properties of a system
model. Other tools have been developed for the formal analysis of system models
specified in terms of UML, such as vUML [[13]], Hugo [23], and Fujaba [[I8]. How-
ever, these tools have still not gained a widespread use in industry. One main reason
is the need to use complex specification logics and/or formal analysis tools. Conse-
quently, only users with an advanced knowledge in formal methods are inclined to use
these tools for the specification and analysis of their system models.

In this paper, we present three main contributions: First, we developed a process
for specifying and analyzing formal properties, where the objective is to make the for-
mal nature transparent to the user. As such, property templates based on specification
patterns developed by Dwyer et al. [Q]] can be specified in natural language and used
to analyze the system model. We implemented this process in SPIDER (Specification
Pattern Instantiation and Derivation EnviRonment), and we show how SPIDER can
be used in combination with a previously developed UML formalization framework,
termed Hydra [I6], for the analysis of UML models. Second, to facilitate the specifi-
cation process, we provide support for instantiating the natural language property tem-
plates with information that is automatically extracted from the formal system model
under consideration. Third, the process is customizable for different domain-specific
natural language vocabularies and specification styles, specification pattern systems,
and analysis tools.

In this work, we show how our process can be used to specify and analyze nat-
ural language properties of UML models. More specifically, our round trip engi-
neering process is configured to read UML 1.4 [20] modeldl specified in terms of
XMI 1.1 [I9] and generate the formal specification language Promela for the model
checker Spin [[6]]. Natural language properties are derived using a previously devel-
oped grammar [[I2]] that supports the specification patterns by Dwyer et al. [Q]]. Our
grammar enables the natural language representation of these specification patterns.
In this paper, the grammar is used to specify linear-time temporal logic (LTL) proper-
ties [13]], the property description language of the Spin model checker. The grammar

'CASE tool support for the recently finalized UML 2.0 [ZT] is still limited.

can be customized according to vocabulary and specification style of a domain. For
example, the vocabulary and natural language specification style to capture a cause-
effect property for the embedded systems domain may be different from that used for
a web service application. As such, the mappings from the structured natural language
grammar to the specification patterns should reflect the appropriate intent. In addition,
the semantic UML mapping rules of Hydra can be customized and adapted to other
domains [[T6]]. In this paper, we use a semantic interpretation considered to be suitable
for the embedded systems domain. Our approach does not require the user to know the
specific syntax and semantics of the formal specification language used or the details
of the analysis procedures of the targeted formal analysis tool. An analysis process
can be automatically executed and the analysis results are displayed to the user in a
form easy to comprehend.

Overall, we introduce a customizable process that combines the completeness of a
pattern system for specifying properties of UML models with the accessibility of a nat-
ural language representation, and present a prototype implementation termed SPIDER.
To validate our approach, we have applied the process and tools to several examples
from industry, including an electronically controlled steering system and an adaptive
light control system. The remainder of the paper is organized as follows. Section 2
describes our process and the main components of SPIDER in more detail. Section 3
examines related work. Finally, Section 4 gives concluding remarks and discusses
future work.

2. Specification and Analysis

In this section, we introduce our specification and analysis process, and we also
overview major SPIDER elements. Figure [l contains a UML activity diagram
overviewing our process, where the first two steps of our process are initialization
steps and can be performed in any order. The shaded swimlane indicates this portion
of the process performed by an administrator for domain customization purposes.

(1) Configuring the Process and Deriving a Property

In the first initialization step, a specification pattern system has to be created. A
specification pattern system is a collection of properties, specified in terms of one or
more formal specification languages, with an accompanying natural language gram-
mar, containing natural language representations of all properties. In SPIDER, the
Pattern System Manager (shaded portion of Figure [I) is used to create and associate
formal properties to their natural language representations, or a previously created pat-
tern system can be loaded. For this paper, the specification pattern system consists of
formal properties from the specification patterns by Dwyer et al. [B]] and a correspond-
ing natural language grammar [[I2]]. The specification pattern system contains several
patterns applicable to software properties specified in different formalisms, such as
LTL [13]], computational tree logic (CTL) [, graphical interval logic (GIL) [24],
and quantified regular expressions (QRE) [23]]. Specification patterns are catego-

[osyo o}

sajpadoud alow ou ‘spjoy Auadoud]
I

T
[punoy uone|olA]

synsai

[Moayo 0y seiuadoid
asow ‘spjoy Apadoud]

sisfAjeue Aejdsig

Kyuadoud

uonewJojul
oy1oads
-|apow joea)x3

i

Buiols
paseq-Ayadoad
lopad [si0118 ou
paJanooun

uopeplea]

HE

suopejuasaidai
|Jewuoy 0}

IN sejenuessu;
19sn

I3pow JNN pue
fyadouad N depy

—

lapow
TN 3jepliea

paJ

[siou8

uoiepljen]

uolje|oIA
azijensip
—
T Jewuwe.b sBuiddew
abenbue| :
Japow panonns uonjesyyloads
lewuoy azAjeuy Jewuoy

Buisn Apadoad
-IN SaAuap Jasf

19pow TN
S}09.4109 19SS

-1IN S8jeaud 1asf

1 A

suonesyoads Jewwelb
Jewuoy TIN painjonis
sajeald Jasn sajeald Jasf

uoneinbyuod

2A00UN
Bunsixa peo

1spow JAN

A A

N

[3sixa jou saop
uopeinbiyuod uoneoyoads IN]

[sisixe uoneinbiyuod
uoneoyoads IN]

19zAjeuy
I9POIN TINN

J9jaadiayu
I9POIN TINN

sajeald Jasf

lojenuejsuj
Auadoud

103j93Uu09 |00] sisAjeuy [ewo4

|001 3ASVI JaAauaq Auadouad

19beuely walsAg uiayed

fication and analysis process

iagram overviewing our speci

Figure 1: UML activity d

rized into two major groups: occurrence patterns and order patterns. Occurrence
patterns are concerned with the occurrence of single states/events during the execution
of a program, such as existence and absence of certain states/events. Order patterns,
on the other hand, are concerned with the relative order of multiple occurrences of
states/events during the execution of a program, such as precedence or response rela-
tions between states/events. The specification patterns have been found sufficient to
specify most commonly occurring properties [Bl. However, while the pattern system
is largely reusable, the structured natural language grammar may have to be adapted
to accommodate the specification style of a specific domain.

The Pattern System Manager is intended to be used by domain experts and for-
mal methods experts as an administrative tool that configures SPIDER according to
a specification pattern system. It aids in the construction and management of speci-
fication pattern systems with their associated structured natural language grammars.
Structured natural language grammars are captured in Extended Backus-Naur Form
(EBNF) and internally translated into a BNF representation. For grammar rules con-
taining choices, additional descriptors are included. These descriptors comprise two
parts: an abbreviated name of the choice and a textual explanation of each choice.
This information is used in the derivation process to provide guidance and feedback
to the user when making a choice in the derivation process. The Pattern System Man-
ager is also used by the formal methods experts to create the mappings between the
sentences generated from the natural language grammar and elements from the speci-
fication pattern system.

After the process has been instantiated with a natural language grammar and map-
pings to a specification pattern system, the property to be analyzed is derived. In SPI-
DER, the Property Deriver is used to guide the user in a stepwise fashion in construct-
ing a structured language sentence capturing the property. Non-terminals are high-
lighted in the sentence that is being derived and the user resolves these non-terminals
with applicable production rules. The Property Deriver assists the user in making
specification choices by offering descriptive information about the consequences of
each choice. Each time the user highlights a particular choice, the Property Deriver
highlights corresponding descriptors. In addition, the Property Deriver gives a pre-
view of selecting a particular choice for the sentence being derived. After the sentence
is derived, the first step ends in the connector A in Figure [l

(2) Creating the UML Model

In the second initialization step, a UML model is created using a CASE tool. To
include the model in our process instantiation, the model is exchanged with SPIDER
using XMI [[9]]. Figure 2 shows an example UML class Class1 with an associated
state diagram capturing the behavior of the class. Initially, the model is validated by
Hydra using static analysis techniques [2]]. The model validation encompasses several
checks for intra- and inter-diagram validity, such as checks for well-formedness of
names and expressions, missing initial states, states without incoming or outgoing
transitions, and undeclared variables, operations, or types. If errors are found during
the validation that prevent a formally specified model to be generated from the UML

diagrams, then the user is prompted to correct these errors before proceeding. After the
model passes the validation checks, the UML Model Interpreter automatically extracts
information from the UML model. For example, for the UML diagram in Figure 2]
the UML Model Interpreter extracts the following information for class Class1:

Variable names: timerl
Signal names: reset
State names: Wait, Process

The UML Model Interpreter is part of the Formal Analysis Tool Connector that
is used to connect SPIDER with UML tools and the Spin model checker. In general,
the tool connector enables SPIDER to extract information from a system model, cre-
ate formal specifications of properties understood by the targeted formal analysis tool,
execute the verification of a property, and analyze the output generated by a verifica-
tion run of the formal analysis tool. SPIDER offers the ability to plug in additional
Formal Analysis Tool Connector components. Therefore, SPIDER is extensible to nu-
merous analysis tools beyond the ones explicitly mentioned in this paper. After the
information has been extracted, the second step ends in the connector B in Figure Il

timer1:=0
Class1
- [timer1>=2]/
timer1: timer Wait |- >{ Process
reset():void | reset()[l/
timer1:=0
(a) Class Diagram (b) State Diagram

Figure 2: Example UML models

(3) Instantiating the Property

After the previous two steps are completed in connectors A and B, the information
extracted by the UML Model Interpreter is then used by the Property Instantiator
to instantiate the structured language sentence with boolean propositions containing
model-specific elements. In addition to specifying boolean expressions on variable
values of UML classes, two other predicates are supported in the boolean propositions:
(1)Acall(...) predicate to specify that an operation of a class is called and (2) an
enter (...) predicate to specify that a class enters a specific state.

(4) Analyzing the Property

After the instantiation is complete, the model can be analyzed for adherence to the
specified property. In SPIDER, the UML Model Analyzer, which is also part of the
Formal Analysis Tool Connector, maps the instantiated natural language sentence to

the corresponding specification pattern instances, namely LTL formulae [I3] for the
Spin model checker [[@]. In order to reduce the cost of model checking, we perform an
automated abstraction of the formal model before executing the analysis. The UML
Model Analyzer performs a property-based slicing on the formal system model, where
it invokes the slicing algorithm provided by SpinlZI and removes constructs identified
as redundant. After the slicing is complete, SPIDER invokes the Spin model checker
and performs the analysis.

(5) Displaying Analysis Results

After the analysis has completed, the UML Model Analyzer provides analysis re-
sults back to the Property Instantiator, which are then visually presented to the user
using a traffic light icon. Red indicates that the property was violated and a counter
example is returned; Green indicates that the property holds for the selected model;
and Yellow indicates that problems occurred during the analysis process that prohib-
ited the successful verification of the property. Example problems include exceeding
the available system memory for storing the states of the model during an exhaustive
state space exploration. If a violation of a property is found, then the user can visualize
the execution that lead to the violation, correct the model, and repeat the analysis. Fi-
nally, when the property holds on the selected model, the user can analyze additional
properties or exit from the tool and the analysis process.

3. Related Work

Due to space constraints, we only briefly overview related work. For a more detailed
discussion of related work, please refer to [21 [[11 [I&].

Several other projects have investigated how to make specification patterns more
accessible via more informal representations. Smith et al. developed Propel [26]],
where they extended the specification patterns by Dwyer et al. [B]] to address important
and subtle aspects about a property, such as what happens in a cause-effect relation if
the cause recurs before the effect has occurred. These extended specification patterns
are specified in terms of finite-state automata instead of temporal logic formulae and
natural language templates help a specifier to precisely capture a property in natural
language. In contrast to our approach, they focus on capturing subtle properties of
individual specification patterns, rather than applying the specification patterns to the
analysis of UML models. Mondragon et al. developed a tool called Prospec [T for
the specification of properties based on Dwyer et al.’s specification patterns. The tool
offers assistance in the specification process and extends the specification pattern sys-
tem by Dwyer et al. with compositional patterns. Differing from our tool suite, they
do not include support for natural language representations.

2The slicing algorithm of Spin is sound and complete with respect to any property specifiable in terms
of LTL [@].

4. Conclusions

We have presented a configurable process for UML model analysis implemented in
the SPIDER toolkit. We expect several benefits to be gained from using SPIDER.
First, users less experienced in the specification of formal properties are able to cre-
ate formally-analyzable natural language representations of properties for their UML
models. Feedback from industrial collaborators has indicated that this specification
style is preferred over formal specification languages. Second, SPIDER is extensible
to the use of several formal analysis tools by offering the ability to plug in additional
Formal Analysis Tool Connector components. Therefore, a wide variety of formal
analysis tools can be used to analyze the behavioral properties. Currently, SPIDER
supports the Spin model checker [[6] for UML models and support for additional for-
mal analysis tools is being developed.

Third, SPIDER provides a single environment for specification construction and
analysis. The tool suite enables a user to automatically analyze a system model and
visualize the analysis results. Currently, our tool is targeted at the novice specifier, as
evidenced by the step-by-step guidance during the derivation process and making the
formal specification language transparent to the user. We acknowledge that the step-
wise, specification-facilitating features, while helpful for the novice user, might be too
constraining for users with advanced knowledge in formal specification and analysis.
This problem is commonly encountered in syntax-directed editing approaches [and
we are investigating techniques to mitigate these problems, such as the use of multiple
views and different levels of assistance for the derivation and instantiation tasks.

Other directions of future work includes addressing how to incorporate previously
developed real-time extensions to our formalization framework [[I0]] and specification
patterns [[2]. The main issue that needs to be investigated is how to use standard
CASE tools to include timers and time invariants into UML models and how to output
this information to XMI. This work will also investigate how to best visualize the
analysis results. Finally, we also work with industrial collaborators to obtain feedback
on the usability of SPIDER.

References

[1] B. Berenbach. The evaluation of large, complex UML analysis and design models. In Pro-
ceeding of the 26th International Conference on Software Engineering (ICSE’04), pages
232-241. IEEE Computer Society, 2004.

[2] L. A. Campbell, B. H. C. Cheng, W. E. McUmber, and R. E. K. Stirewalt. Automatically
detecting and visualizing errors in UML diagrams. Requirements Engineering Journal,
7(4):246-287, December 2002.

[3] B. H. C. Cheng, R. Stephenson, and B. Berenbach. Lessons learned from metrics-based
automated analysis of industrial UML models (an experience report). In Proceedings of
the ACM/IEEE 8th International Conference on Model Driven Engineering Languages
and Systems, Montego Bay, Jamaica, October 2005. (Accepted to appear).

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

(12]

[13]

(14]

(15]

(16]

(7]

(18]

(19]

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, (2):244-263, April 1986.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for
finite-state verification. In Proceedings of the 21st International Conference on Software
Engineering, pages 411-420. IEEE Computer Society Press, 1999.

G. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-Wesley,
Reading, Massachusetts, 2004.

I-logix. Rhapsody, July 2005. [http://www.ilogix.com/rhapsody/]

IBM. Rational Rose XDE Developer, July 2005. |[http://www-306.ibm.com/|

|Isoftware/awdtools/developer/rosexde/}

A. A. Khwaja and J. E. Urban. Syntax-directed editing environments: Issues and features.
In SAC ’93: Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing,
pages 230-237. ACM Press, 1993.

S. Konrad, L. A. Campbell, and B. H. C. Cheng. Automated analysis of timing informa-
tion in UML diagrams. In Proceedings of the Nineteenth IEEE International Conference
on Automated Software Engineering (ASE04), pages 350-353, Linz, Austria, September
2004. (Poster summary).

S. Konrad and B. H. C. Cheng. Facilitating the construction of specification pattern-
based properties. In Proceedings of the IEEE International Requirements Engineering
Conference (RE0S), Paris, France, August 2005.

S. Konrad and B. H. C. Cheng. Real-time specification patterns. In Proceedings of the
International Conference on Software Engineering (ICSE05), St Louis, MO, USA, May
2005.

J. Lilius and I. P. Paltor. vUML: A tool for verifying UML models. In Proceedings of
the 14th IEEE International Conference on Automated Software Engineering, page 255,
Washington, DC, USA, 1999. IEEE Computer Society.

R. R. Lutz. Targeting safety-related errors during software requirements analysis. In
SIGSOFT 93 Symposium on the Foundations of Software Engineering, 1993.

Z.Manna and A. Pnueli. The temporal logic of reactive and concurrent systems. Springer-
Verlag New York, Inc., 1992.

W. E. McUmber and B. H. C. Cheng. A general framework for formalizing UML with
formal languages. In Proceedings of the IEEE International Conference on Software En-
gineering (ICSEO0I), Toronto, Canada, May 2001.

O. Mondragon and A. Q. Gates. Supporting elicitation and specification of software prop-
erties through patterns and composite propositions. International Journal on Software
Engineering and Knowledge Engineering, 14(1):21-41, February 2004.

U. Nickel, J. Niere, and A. Ziindorf. The FUJABA environment. In Proceedings of the
22nd International Conference on Software Engineering, pages 742-745, New York, NY,
USA, 2000. ACM Press.

Object Management Group. OMG-XML metadata interchange (XMI) specification, v1.1,
2000. [http://www.omg.org/cgi—-bin/doc?formal/00-11-02]

http://www.ilogix.com/rhapsody/rhapsody.cfm
http://www.ilogix.com/rhapsody/rhapsody.cfm
http://www-306.ibm.com/software/awdtools/developer/rosexde/
http://www-306.ibm.com/software/awdtools/developer/rosexde/
http://www.omg.org/cgi-bin/doc?formal/00-11-02

[20] Object Management Group. UML Specifications, Version 1.4, 2002.
lomg.org/cgi-bin/doc?formal/04-07-02}

[21] Object Management Group. UML 2.0 Superstructure Specification, 2004.
www.omg.org/cgi-bin/doc?ptc/2004-10-02}

[22] Object Management Group. Model driven architecture. [http://www.omg.org/]
2005.

[23] K. M. Olender and L. J. Osterweil. Cecil: A sequencing constraint language for automatic
static analysis generation. /EEE Transactions on Software Engineering, 16(3):268-280,
1990.

[24] Y. S. Ramakrishna, P. M. Melliar-Smith, L. E. Moser, L. K. Dillon, and G. Kutty. In-
terval logics and their decision procedures: Part I + II. Theoretical Computer Science,
166;170(1-2):1-47;1-46, 1996.

[25] T. Schifer, A. Knapp, and S. Merz. Model checking UML state machines and collabora-
tions. Electronic Notes in Theoretical Computer Science, 55(3):13 pages, 2001.

[26] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil. Propel: An approach
supporting property elucidation. In Proceedings of the 24th International Conference on
Software Engineering, pages 11-21. ACM Press, 2002.

http://www.omg.org/cgi-bin/doc?formal/04-07-02
http://www.omg.org/cgi-bin/doc?formal/04-07-02
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://www.omg.org/mda/
http://www.omg.org/mda/

