

Test generation methodology based on symbolic execution for
the Common Criteria higher levels

Alain Faivre, Christophe Gaston

CEA/LIST, Saclay F-91191, Gif-sur-Yvette Cedex, France
Email : alain.faivre@cea.fr, christophe.gaston@cea.fr

1 Introduction

 In the field of security software, the Common Criteria (CC) constitute an ISO standard for the
evaluation of products and systems from Information Technologies. The international recognition of the
Common Criteria justifies the investment undertaken by the manufacturers to obtain the certification of
their products. The evaluation criteria are defined according to the Evaluation Assurance Level (EAL).
There are seven EALs: EAL1 to EAL7, in an increasing order of security demand. For the upper levels
of evaluation, the use of formal methods is mandatory. In that case, supplies intended to realize
evaluation activities must contain components associated to modelling, proof and test. This contribution
proposes a methodology and a tool (AGATHA [1,2]) which allow to cover the requirements associated
to test generation for the upper levels of the Common Criteria. In that case, the criterion used to stop the
test generation activity is defined as follows: the generated test case set covers all functions of the
reference model. Each function must be covered “complete” way (although the term complete remains
ambiguous in CC definitions). The strategy presented in this paper provides a formal meaning to this
criterion and associated test generation techniques.

2 AGATHA tool

 The AGATHA tool allows to simulate specifications based on communicating automata (SDL,
Statecharts (STATEMATE), a subset of UML, ESTELLE and IF) and to automatically generate test
case sets in accordance with several coverage criteria. AGATHA mainly relies on symbolic execution
techniques. Now, we present the mechanisms linked to test generation from specifications expressed in
the input language called IOSTS (Input Output Symbolic Transition System) [3]. This language is based
on communicating automata with inputs and outputs. Communication between automata is a
synchronous one. The example of the Figure 1 shows two of these automata As we can see, the
following information can be associated with each IOSTS transitions:

• guards which are formula on variables used by the corresponding IOSTS. These guards are
conditions to trigger the transitions. In the IOSTS on the right, the transition between q’1 and q’2
can be trigger only if z is not equal to zero.

• expressions which denote communication. Outputs correspond to expressions of the form c!t
(where t is a term) and inputs to expressions of the form c?x. In the IOSTS on the right, the
transition between q’0 and q’1 can be trigger only if a value is received through the channel ci. This

MoDeVa’05

2/6

value is then assigned to the variable z (ci?z). In the example of Figure 1 we introduce two
channels: ci which is an internal channel used as a communication point between the two automata
and ce which is an external one used to communicate with the external environment.

• assigments which modelized updating of variables. In the IOSTS on the right of Figure 1, the
trigger of the transition between q’1 and q’2 has the effect of updating the variable z with its current
value divided by two.

Figure 1.

 Treatments carried out by AGATHA aim at characterizing the symbolic behaviours associated
to an IOSTS in an exhaustive manner. For that, the tool determines necessary and sufficient constraints
corresponding to each behaviour specified by the IOSTS. Now we show how the AGATHA tool
characterizes these constraints on the example described in Figure 1. Treatments made by AGATHA are
described in Figure 2. In fact in this case we want to determine constraints associated to behaviours
resulting of a system made up of two synchronously communicating IOSTS. Initially, the system is in
the state (q0,q’0) corresponding to initial states of the two IOSTS. For the moment the variables x and y,
manipulated by these IOSTS, are associated with no constraint. Thus, we assign two symbolic
constants, a and b, respectively to x and y, associated with no constraint (which is denoted by the true
expression). The IOSTS on the right of Figure 1 can not evolve since it is waiting for an input through
the internal channel ci and the IOSTS on the left is not in a state which allows to send an output through
this channel. On the other hand, the IOSTS on the left can evolve if it receives a value from the
environment through the channel ce. We represent this value by a symbolic constant c. Then, the system
evolves in the state (q1,q’0) in which c is assigned to x. In this new state, an internal communication can
occur (denoted by τ). This communication has the effect of updating the variable z with the value of x:
then z is assigned to c and the system evolves in the state (q2,q’1). Let us consider the arrow which
enables the system to evolve in the state (q2,q’2): this corresponds to trigger the transition between q’1 et
q’2 in the IOSTS on the right. This evolution is possible only if z ≠ 0. Since z is assigned with the
symbolic value c, we introduce the constraint c ≠ 0. Now the value of z must be divided by 2: z is
assigned with c/2. The other steps of calculus represented in Figure 2 are based on the same principle.
Now, for each behaviour (i.e. path) contained in the graph in Figure 2, we are able to associate a test
case. Let us consider the behaviour depicted by the path on the left in Figure 2: the associated calculated

ci!x

ci?x

ce?x

q1

q0

q2

q3

ce !x

q’0

q’1

 ci?z

 ci!z

 z≠0
 z = 0z:=z/2

 q’2

 ci!z

MoDeVa’05

3/6

constraint is c≠0. The tool generates an arbitrary value verifying this constraint: for example c=6.Two
other symbolic constants a and b must be associated with any numerical values, for example a=2 and
b=3 (these values have no consequence on the generated test script). Then the tool works out the
corresponding numerical trace: ce?6 ce!3. The corresponding test case is: enter the value 6 and compare
the output value with 3. If the value sent by the system is effectively 3, the verdict is success, otherwise
the verdict is failure.

Figure 2.

 Of course, in case of reactive systems (which continuously interact with the environment),
there is no reason to stop the symbolic execution process. Then, in order to generate test cases, we
characterize stopping criteria applied to symbolic execution. The simplest is to cover all system
transitions. The advantage is to simplify calculation and to obtain a weak-size set of numerical tests.
From the testing point of view, such criterion can be too weak. We propose a more sophisticated
criterion: the inclusion criterion, based on the inclusion of symbolic states calculated by the tool. This
criterion allows the exhaustive calculus of the system symbolic behaviours. Its advantage is to supply a
test set associated with a high confidence level. Its disadvantage is to cause a combinatory explosion
during analyse of complex systems with high level of parallelism. Now, we present this criterion with
the help of the example of Figure 1 with its associated symbolic execution in Figure 2. In this figure
each node of the graph is associated to a 3-uplet, named symbolic state, which contains: 1) the reached
states by the IOSTS of the system, 2) the constraint on symbolic inputs, named path condition,
necessary to reach the node, 3) the symbolic value of each variable associated to each IOSTS (e.g. in
symbolic root node the assignment is: x → a et z → b).

 From there we are able to characterize constraints on variables manipulated by the IOSTS to
reach any symbolic state. For each symbolic state, we are able to characterize what we name “symbolic

(q0 q’0, true, x→a z→b)

(q1 q’0, true , x→c z→b)

ce?x

(q2 q’1, true , x→c z→c)

τ

(q2 q’2, c≠0 , x→c z→c/2) (q3 q’0, c=0 , x→c z→c)

z≠0 z:=z/2 z=0 τ

(q3 q’0, c≠0 , x→c/2 z→c/2)

τ

(q0 q’0, c=0 , x→c z→c)

ce!x

(q0 q’0, c≠0 , x→c/2 z→c/2)

ce!x

MoDeVa’05

4/6

state semantics”: a couple which contains the reached states and the constraints associated to the
variables manipulated by the IOSTS. Thus, the semantics of the symbolic root node (q0q’0,, true ,x→a
and z→b) is
 Sem (q0q’0,, true ,x → a and z → b) = (q0q’0,, true).
Similarly, if we consider the “leaf” symbolic state (at the bottom and on the left of Figure 2)
 (q0q’0,, c ≠ 0, x → c/2 and z → c/2),
its associated semantics is
 Sem (q0q’0, c ≠ 0, x→c/2 and z→c/2) = (q0q’0 , x ≠ 0).

 AGATHA offers a mechanism to compare the semantics of symbolic states: we say that the
semantics Sem1 of a symbolic state S1 is included in the semantics Sem2 of a symbolic state S2 (or more
simply S1 is included in S2) iff: 1) the first component of Sem1 is equal to the first component of Sem2
(the two symbolic states characterize the same reached states), 2) the second component f1 de Sem1
characterizes a constraint “stronger” than the second component f2 of Sem2 (in other words f1 ⇒ f2 is a
tautology). For example in Figure 2, the symbolic state (q0q’0,, c ≠ 0, x → c/2 and z → c/2) is included
in the root symbolic state. Actually their semantics denote the same reached states q0q’0 and the formula
x≠0 ⇒ true is a tautology.

 When the AGATHA tool carries out a symbolic execution with the aim to satisfy the inclusion
criterion, the process is the following:

• As soon as a new symbolic state Q is calculated, its semantics is compared to the semantics of the
previous symbolic states.

• If the semantics of Q is included in no semantics of the previous symbolic states, all possibly
triggered transitions from Q are executed in a symbolic manner. With each executed transition, a
new symbolic state is defined and again the same process is executed.

• If the semantics of Q is included in a previous symbolic state, no transition from Q is executed.

 Let us note that the symbolic execution tree of the Figure 2 satisfies the inclusion criteria.

3 Cover criteria consistent with CC

 In the framework of the CC, we propose a mechanism with two phases explained on the
example of Figure 1. Let us suppose that we would like to cover all the behaviours of the calculus
function represented by the IOSTS on the right side. The first phase consists in characterizing the
behaviours to cover. The Figure 3 represents the generated symbolic execution tree associated to the
IOSTS on the right of Figure 1. The resulting tree covers all transitions of the IOSTS and covers all
paths of some size N (in the example N=2) given as parameter to the tool. Of course, the ending
criterion for the symbolic execution used in the first phase can be more or less sophisticated, the
stronger being the inclusion criterion.

 The two generated paths in Figure 3 are respectively named Exec1 and Exec2. For these two
behaviours we would like to generate a test case. This point is the subject of the second phase. Again
the tool carries out a symbolic execution of the complete system. In that case, this symbolic execution

MoDeVa’05

5/6

must satisfy the following second criterion: the behaviour taken as argument (in our example Exec1 or
Exec2) is covered by at least one of the paths of the symbolic execution tree and it exists one path in this
tree which covers the behaviour and ends by an output to the environment.

Figure 3.

 If we consider the path Exec1, any symbolic execution of the system described in Figure 1 and
including the path of Figure 4 satisfies the test criterion. The phase 2 of our mechanism is then finished.

Figure 4.

 q0,q’0

 q2,q’1

 q1,q’0

 q2,q’2

 q3,q’0

 q0,q’0

ce?x

z ≠0 ∧¬ z=0 z :=z/2

z:=x

x:=z

ce!x

(q’0,true,z→ a)

 ci?z

(q’1,true,z→ b)

 z≠0
z :=z/2

(q’2,b≠0,z→b/2)

(q’0,b≠0,z→b/2)

 ci!z

 z = 0
 ci!z

(q’0,b=0,z→b)

Exec 1

Exec 2

MoDeVa’05

6/6

 More precisely, we have put a heuristic in place in order to constraint the symbolic execution
mechanisms to avoid an explosion combinatory which is inherent to this type of criterion.This heuristic
is about a symbolic adaptation of the « hit or jump » ([4]) algorithm. Let Sys the system made up of all
communicating automata, ch the path to cover and N an integer given as parameter to the algorithm.
The algorithm executes the following phases:

• Symbolic execution of Sys by constructing all paths of size N.
• If one of the paths (named ch1) contains ch (i.e. to construct ch1 it has been necessary to trigger all

transitions of ch, respecting the order implied by ch) then ch1 is a candidate to characterize the test
case.

• Otherwise let ch1… chn the set of all paths which contain the longer prefix of ch among all executed
paths. We consider only one of these paths randomly chosen: we named it chi. Then the algorithm
is again executed from the end state of chi and considering the prefix of ch not still cover (i.e. this
prefix becomes the path to cover).

• The test case will be extracted from a path prefixed by chi and suffixed by the result of recursive
execution of the algorithm.

4 Conclusion

 It is interesting to notice that this testing approach had been approved for the higher levels of
the Common Criteria by a CESTI which is an organisation in charge to certify methodologies and tools
in regards of CC.

 At the present time, we perfect the AGATHA tool by adding more subtle strategies associated
to the “hit or jump” algorithm and we plan to evaluate them on industrial size specifications.

References

[1] C. Bigot, A. Faivre, J.-P. Gallois, A. Lapitre, D. Lugato, J.-Y. Pierron and N. Rapin, “Automatic
Test Generation with AGATHA”, Proc. TACAS, 2003.

[2] N. Rapin, C. Gaston, A. Lapitre and J.-P. Gallois, “Behavioural Unfolding of Formal Specifications
Based on Communicating extended automata”, Proc. ATVA 2003.

[3] V. Rusu, L. du Bousquet, and T. Jéron, “An approach to symbolic test generation”, in IFM '00:
Proceedings of the Second International Conference on Integrated Formal Methods. London, UK:
Springer- Verlag, 2000, pp. 338--357.

[4] A. Cavalli, D. Lee, C. Rinderknecht and F. Zaidi, “HIT-OR-JUMP: an Algorithm for Embedded
Testing with Applications to IN Services”, Proc. FORTE/PSTV, 1999.

