
A Modelling Method for Embedded Systems

Ed Brinksma∗ — Angelika Mader∗ — Jelena Marincic∗ — Roel Wieringa∗

* University of Twente, The Netherlands
{Brinksma | Mader | J.Marincic | R.J.Wieringa} @ ewi.utwente.nl

Abstract. We suggest a systematic modelling method for embedded systems. The goal is to derive
models (1) that share the relevant properties with the original system, (2) that are suitable for com-
puter aided analysis, and (3) where the modelling process itself is transparent and efficient, which is
necessary to detect modelling errors early and to produce model versions (e.g. for product families).
Our aim is to find techniques to enhance the quality of the model and of the informal argument that
it accurately represents the system. Our approach is to use joint decomposition of the system model
and the correctness property, guided by the structure of the physical environment, following, e.g.,
engineering blueprints. In this short note we describe our approch to combine Jackson’s problem
frame approach [1, 2] with a stepwise refinement method to arrive at provably correct designs of
embedded systems.

1 Introduction

Successful verification of embedded systems needs good models, i.e. models that share the relevant
properties with the original systems (truthful), that are small enough to be analyzed by verification
tools (feasible), and, that can be derived in an efficient and transparent way (trustworthy). In state-
of-the-art verification most focus is on verification algorithms and tools, and less on modelling issues
(model hacking).
For embedded systems modelling decomposes in a natural way into modelling of the control and
modelling of the physical environment. In general, modelling software is easier, because software in
itself is already a formal object. For the physical environment modelling has to bridge between an
informal, physical object and a formal one. This process is far from understood, i.e. different people
tend to produce different models of the embedded system, and our trust in the models often depends
upon our trust in the people who made them. We want to improve the quality of the modelling
process that is at the heart of the verification process. By this we mean that (1) In the modelling
process, reusable and validated knowledge about the modelled system is used, making the modelling
process more efficient and less dependent on the genius of the modeller and (2) The justification that
the model accurately represents the system (wrt a correctness property) is clear and understandable,
making the resulting model more reusable. Our solution idea is to construct the system model and
the proof of its correctness wrt the property of interest at the same time. We produce the model
by means of stepwise non-monotonic decomposition of both the environment and the property of
interest, so that the accuracy of the model wrt the property is justified by a structural similarity
between the model and the system.



2

2 The Method

Our goal is to derive good models of embedded systems that can be used for verification. Quality
criteria for a good model are: (1) The model shares the properties of interest with the original system.
(2) The model is suitable for computer aided analysis, i.e. small sized models. (3) The derivation
process is transparent and efficient, such that design errors can be detected easily and variations of
the model (for, e.g., product families) can be applied straightforwardly.

Program

Actuator

Sensor

P

P1 P2

P4 P5P3

D1
D2

D3
D4

D5

Control machine CPhysical environment E

Programmable device
(e.g. a PLC)

Property tree

The system: A control application

Figure 1: Stepwise decomposition of the environment model and
the correctness proof. P is a property of desired behaviour D of the
environment. D is decomposed into Di and Pi is a property of Di.

The systems we consider are control
applications, consisting of a control
machine interacting with a physical
environment. The control machine
itself consists of a physical part, such
as a programmable logic controller
(PLC), sensors and actuators, and a
software part. We want to achieve
the quality criteria mentioned above
by a systematic modelling method
with the following ingredients:
A verification theorem that describes the logical relation between environment, control and proper-
ties: E∧S |= P , where E describes the potential or assumed behaviour of the environment (without
the control machine) and P describes the desirable behaviour of the environment (interacting with
the control machine). S is a specification of the control machine. The verification theorem guides
our method in the sense that we will have a number of instances of the theorem, that are constructed
by addition of (physical) details, design decisions, decomposition, etc.
Non-monotonic decomposition of environment, control and properties with respect to the desired
behaviour (see figure 1). The justification of the decomposition steps comes from different sources,
such as engineering diagrams, problem patterns, experiments.
Non-monotonicity means that adding new details can require more assumptions, natural laws etc,
such that the refined instance of the verification theorem may no longer imply the one at the previous
level. Moreover, adding more details can also result in weaker properties, e.g. when a technical
restriction only allows for a less general goal. Describing all possible behaviour of the environment
typically ends up in models that are too large for computer aided analysis. Therefore, a relevant
aspect here is that we restrict the description to the desired behaviour (and the error cases we do
want to consider).
Patterns. Another relevant ingredient of our method is the use of problem and modelling patterns,
following the idea of problem frames introduced by Jackson [ 1, 2]. Using patterns gives (at least) two
advantages: first, it makes a decomposition argument more transparent, because we can use some
form of standard argument, and, second, it makes the decomposition steps more reliable, because we
make use of well-proven solution fragments. To make the idea of problem frames useful we need a
library of identified patterns with modelling solutions.

3 An example

Due to lack of space we will only demonstrate some features of our method and cannot present the
formal representation of the design. However, in earlier work we have proven a description of this
example with the theorem prover PVS and the model checker Uppaal [ 3].



3

QUEUE OF 
BLOCKSCONVEYER BELT

MOTOR C

MOTOR B

MOTOR ASCANNER

ROTATION 
SENSOR B

ROTATION 
SENSOR C

Figure 2: Top view on the Lego plant

The example is a small PLC-controlled
Lego-plant that sorts yellow and blue
blocks according to their colour (see fig-
ure 2). A number of blocks is in a queue.
When the belt is moving the first block
of the queue moves to the belt. At the
scanner the colour of a block can be de-
tected. A block moves further on into
the sorter. The sorter consists of two
fork-like arms, each driven by its own
motor and equipped by an angle-sensor
that can be used to check whether the sorter arm has made a full rotation.

Plant MACHINEaR0

Figure 3: Problem diagram of the Lego plant and the
Machine (Control)

We start with a description of the system by
a problem diagram in figure 3. The problem
frame chosen is the simple required behaviour
frame. We have a Requirement R0 and the in-
terface description a. R0 represents the desired
property, which is a statement only about the
plant behaviour, not the machine. The inter-
face description a contains the phenomena that
should occur in both models, the one of the plant and the one of the machine. Informally, we have
R0: All blocks will be sorted eventually by the plant. The verification theorem in its first version is:
Plant ∧ Machine =⇒ R0

At this level of abstraction we do not yet have a meaningful description, so we continue with the
first refinement. Figure 4 contains the first refinement step, which corresponds to an architectural
decomposition (in contrast to a process based or a functional decomposition). Here, we have two
kinds of interface descriptions, ai’s for the interface between the PLANT and the MACHINE, and
pi’s between the (architectural) components of the plant, which mainly consists of the description of
the movement of blocks.
Additionally, the component behaviour has to be described in order to relate the phenomena on its
interface to its internal phenomena. The QUEUE consists initially of a pile of blocks. This is an extra
initial condition INIT that will be added to the left-hand side of our verification theorem. The first
block of the queue goes to the belt. The BELT description has to represent the blocks on the belt
and their behaviour when the belt moves. Additionally, when proving (instances of) the verification
theorem, it turnes out that we also need a specification of the behaviour of blocks, when the belt is
not moving, viz. ”staying where they are”. We regard this as a natural law N and add this also to the
left-hand side of our verification theorem. The SCANNER can distinguish three different values, for a
yellow block, a blue block and no block. This implies a restriction on the requirement R 0. We get a
weaker requirement R1 saying, if there are only blue and yellow blocks in the queue then these will
eventually be sorted. The SORTER can either be idle or sorting. A block can only enter the SORTER

if it is idle. The MACHINE must contain an abstraction of the phenomena in the plant. With respect
to the SORTER the MACHINE has to “know” whether there is a block or not in it. Unfortunately, we
have no sensor that would detect the presence of a block in the SORTER. The MACHINE can only
derive the presence of a block in the SORTER, if the block had been at the SCANNER before and the
belt was running long enough to transport the block to the sorter. We therefore have to determine by



4

experiment the maximum time that a block needs to get from the SCANNER to the SORTER while the
belt is running (open loop control). Additionally, we also have to assure that within this maximum
time it cannot happen that two subsequent blocks arrive at the sorter. A sufficient condition is that
subsequent blocks on the belt have a minimum distance. Also this condition will be an additional
requirement D on the left-hand side of the new instance of our verification theorem.

QUEUE

BELT

SCANNER

SORTER

MACHINE

p1

p2

p3

a1

a2

a3

R1

r1

r2

Figure 4: Refined problem diagram of the Lego plant and the
Machine (Control)

The second instance of our verification
theorem therefore has the form: Init ∧ N
∧ D ∧ Queue ∧ Belt ∧ Scanner ∧ Sorter
∧ Machine ∧ Natural Laws =⇒ R1

It is obvious that between this instance
of the verification theorem and the pre-
vious one no implication holds: in-
formally, there is an increasement of
knowledge about the plant and machine
which has the non-monotonicity of the
decomposition as consequence. A fur-
ther decomposition of the system could
address the belt motor, the sorter motors,
rotation sensors etc.

4 Discussion and conclusions

Our modelling method progresses from a top-level understanding of the system in its environment
into more detailed understanding, decomposing the environment model and its desired properties
in parallel. We stop decomposing when we reach environment phenomena that can be observed
or controlled by the control machine. At that level, we have obtained a correct specification of
the controller. We have applied this method on several cases, including the one discussed in this
paper [3, 4]). Many research questions remain, some of which we mention here.
The idea of problem frames (rather than solution patterns) was introduced by Jackson [ 1, 2] as a
means to identify reusable problem structures in different problem domains. In our example we
used a simple required behaviour frame, as described in Jackson’s sluice control problem. Specific
issues to be addressed for frames are: (1) The compositionality of problem (solution) frames,
(2) The robustness of decomposition trees under small changes in properties and/or environments
and (3) Systematic analysis of environment assumptions and consequences of their failure to hold.
Another research question is if informal engineering argumentation (physical, graphical, ...) can
be combined with formal reasoning. We believe that the decomposition process should provide the
justification of the accuracy of the model wrt the required property.
Acknowledgment. This paper benefited from extensive discussions with Michael A. Jackson.

References

[1] M.A. Jackson. Software Requirements and Spec-
ifications: A lexicon of practice, principles and
prejudices. Addison-Wesley, 1995.

[2] M.A. Jackson. Problem Frames: Analysing
and Structuring Software Development Problems.
Addison-Wesley, 2000.

[3] J. Kratz. A case study in PLC control: two ways
of verifying PLC control software for a lego plant,
1999.

[4] A. Mader, E. Brinksma, H. Wupper, and N. Bauer.
Design of a PLC control program for a batch plant
- VHS case study 1. European Journal of Control,
7(4):416–439, 2001.


	Introduction
	The Method
	An example
	Discussion and conclusions

