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Abstract—A two-layer spiking neural network is used to B. Bio-inspired Neural Networks

segregate double vowels. .The fir;t layer is a partjally connected Bio-inspired neural networks are dynamic. In fact, infor-
spiking neurons of relaxation oscillatory type, while the second ) !

layer consists of fully connected relaxation oscillators. A two- Mation in this kind of networks is coded in the spike timing

dimensional auditory image generated by the enhanced spectrum of neurons, which is a generalization of the classical neural
of cochlear filter bank envelopes is computed. The segregation networks. It is possible to design more autonomous and
is based on a channel selection strategy. At each instant of ime fjaxihle neural networks using these bio-inspired neurons than

each channel is assigned to one of the sources present in theD usina conventional ones. In this work. we use a two-lavered
auditory scene, i.e. speakers. No prior estimation of pitch for the y g ) ! y

underlying sources is necessary. bio-inspired neural network.
Index Terms - Computational Auditory Scene Analysis The building blocks of this network are oscillatory neurons

(CASA), bio-inspired neural networks, sound segregation, co- [1]. The dynamics of this kind of neurons is governed by
chleotopic/AMtopic map (CAM), temporal binding. a modified version of the Van der Pol relaxation oscillator
(called the Wang-Terman oscillator) as described in section
|. INTRODUCTION [I-B. There is an active phase when the neuron spikes and a

This work deals with the segregation of double vowel€laxation phase when the neuron is silent.
using a two-layered spiking neural network. The approach
we propose is based on a bio-inspired solution to CAS8. The Binding Problem
(Computational Auditory Scene Analysis). Some previous
works based on CASA techniques use correlation as a p
processing stage to segregate sounds or vowels [1], [2], [g
Another parallel technique to the latter mentioned approa
is the use of spectral information [4], [5], [6], [7]. In this
work we use a spectral analysis of the filterbank envelop,
outputs. Todd [5] proposed a Cochleotopic/AMtopic map, i

We can assume that our segregation problem is a generalized
assification problem, in which we want to bind features to

fferent sources. This generalized classification problem was
t addressed by Rosenblatt [10].

Temporal correlation theory was first proposed by Malsburg
], [10] to solve the binding problem. In this theory, objects

elonging to the same entity are bound together in time.

which a two dimensional representation is generated usi other words, synchronization between different neurons

two sets .Of orthogonal f|lterbanks. Ir? our propo;ed map, t fAd desynchronization among different regions perform the
second dimension of this cochleotopic analysis is replaced ?ﬁding [12]

an enhanced FFT analysis (reassigned spectrum [8]). Some

references propose expert system solutions to CASA [4], [9]

and others neural network based ones [1], [2]. We propose here Il. THE ARCHITECTURE
a bio-inspired approach to the problem that doesn’t require afty The preprocessing

prior detection or knowledge of the pitch of the underlying the cam output for voiced double-vowels has a pseudo-
source signals. In addition, it doesn’t compute any correlatiogyy,ctured pattern.

We use a filter bank of 24 filters centered on Bark scaled

A. Computational Auditory Scene Analysis frequencies ranging from 200 Hz to 4.7 kHz. The envelope

Humans are able to segregate a desired source in a ndrmodulation (extraction) is done only for channels 5-24 [13].
ture of sounds ("cocktail-party effect”). This is not the case We use the spectrum of the outputs of the cochlear filterbank
for computer speech recognition systems. In fact, comméo- create an enhanced version of the Cochleotopic/AMtopic
cial state of the art speech processing programs work wgllAM) map proposed in [5]. Our CAM generation algorithm
mostly in quiet environments. The Computational Auditoris as follows. The sampling rate of the signal is 16000
Scene Analysis (CASA), partially based on psychological ars&amples/s.
physiological observations, is aimed to solve that kind of — Extract the envelope (AM demodulation) for channels 5-
shortages. 24 ; for other channels use raw outputs.



— Compute the STFT (Short Time Fourier Transform) usingre down-sampled to 50 points. Therefore, the first layer
a 1024 Hamming window (equal to 64 ms). consists of 24 x 50 neurons or 1200 neurons. Our observations

— In order to increase the spectro-temporal resolution of tehowed that the geometric interpretation of pitch (ray distance
STFT, find the reassigned spectrum of the STFT [8] (thiiterion) is less clear for the first four channels. For this
consists of applying an affine transform to the points ireason, we have also established long-range connections from
order to relocate the spectrum). "clear” (high frequency) zones to "confusion” (low frequency)

— Compute the logarithm of the result. This stage enhancames. These connections are defined only across the "channel
the pattern of the underlying harmonicity we want tmumber” axis of the CAM. This can help the network better
extract. extract harmonicity patterns.

Another approach proposed in the literature is to replace theThe layer can be reset by a master neuron that acts as a
CAM by correlograms [1], [3]. Autocorrelation-based modelmaster clock [16]. This clock can reset the network, so that it
rely on the observation that, while a representation based @wmesn’'t remember the long past.
the average discharge rate in an auditory filterbank is unable tofrhe  synaptic weight between neuron(i,j) and
resolve speech harmonics in the high-frequency range direcityuron(k,m) of the first layer is computed via the
precise temporal information, extracted by correlograms, fisllowing formula :
present in tr(;e discgargle pfi\ttern Iseen in each clharcljnel. - @ 1 0.5

For voiced sound, glottal impulses are convolved with the Wi 5 km(t) = — —
transfer function of the vocal tract. Supposing that the two ’ Card{N(i, )} eXlptt)=plemit)
sources have different pitches, we can assume that the geere p(i,j) and p(k,m) are respectively external inputs to
metric distance between rays on the map corresponds roughdyiron(i, j) andneuron(k,m) € N(i,5). Card{N(i,j)} is
to the pitch of the underlying source and that this distan@e normalization factor and is equal to the cardinal number
is different for different sources. These rays are produced fyumber of elements) of the sék(i, j) containing neighbors
the beats between harmonics filtered by the filter belongimgnnected to thereuron(i,j) (can be equal to 4, 3 or 2
to a channel, but are masked by the amplified values of tHepending on the location of the neuron on the map, i.e. center,
representation at resonance frequencies (fig. 2). This approacmer, etc. and whether the weight between the neuron and its
lets us enhance rays placedfat 2y, 3fo, etc. on the map, neighbors is greater than a predefined threshold). The external

®3)

fo being the pitch of one of the sources. input values are normalized. The value ofdepends on the
dynamic range of the inputs and is setXce= 1 in our case.
B. The Network This same weight adaptation is used for "long range clear

The auditory scene analysis in the brain is done in tV\}§ confusion zone” connections (Eq. 5). The influeri;

different stages : segregation and streaming [14]. Segreganoer{'md in Eq. 1 is computed by :

consists of finding elementary audio objects in the scene, whi@iy () = Z Wi j o () H (z(k, m; ) —G(t)+ Ly 4 ()
streaming is the "binding” of the elements that belong to an kymeN (irg)

object (source). These two steps are implemented in our two- 4)
layered neural network. H(.) is the Heaviside function(z(¢) is the influence of the

The dynamics of the neurons follows the following stateglobal controller as defined in [1], ard ;(¢) is the long range
space equations, whetg is the membrane potential (output)influence :

of the neuron andy; is the state for channel activation or 0 j>4
inactivation. L;(t) = . s
du () { D oke14,15,23,24 Wi,k (O H (2(2, ki) j < 4(5)
— =3r—a2+2—y+p+p+S 1 _
dt yrpTr @ The second layer is an array of 24 neurons (one for each
dy 1 L 5 channel). Each neuron receives the weighted sum of the out-
o = (L + tanh(z/5)) — ] () puts of the first layer neurons along the frequency axis of the

p denotes the amplitude of a Gaussian nojsthe input to the CAM. Since the ge_ometric (Euclidian) di.stance betweer_1 rays
neuron, andS the coupling from other neurons (connectionéSPectral maxima) is a function of the pitch of the dominant
through synaptic weightsk, v, and 8 are constants. Initial SOUrce in a given channel, the We|gh'_[ed sum of the outputg pf
values are generated by a uniform distribution between tthe first layers along the frequency axis tells us about the origin
interval [-2; 2] for = and between [0; 8] foy (these values of the signal present in that cha_nnel. The weights between
correspond to the whole dynamic range of the equation&jyer one and layer two are defined ag(i) = ¢ where
Forward Euler integration with a step size @f1 is used to | ¢an be related to the frequency bins ands a constant.
solve equations 1 and 2. Bigger integration step sizes will ledé#érefore the input stimulus to the neuron(j) in the second
to complex network behaviors such as antiphase synchrony@yer is defined as follows :
loose synchrony'[15]. . ' 0(j:1) = Siwy ()20, j: 1) (6)

The first layer is a partially connected network of relaxation
oscillators [1]. Each neuron is connected to its four neighbotlherex (i, j; ) is the output of the first layer for channglat
The CAM is applied to the input of the neurons. Since théme ¢, and for frequency, averaged over a time window (the
map is sparse, the original 512 points computed for the FRangth of the window is in the order of the discharge period).




6(j;t) is the input to the neuron j in the second layer attime t . 0
The synaptic weights in the second layer are adjusted through
the following rule :

0.2

rpy U2
wi;(t) = erlp(ist)—p(k;t)| ")

1 is chosen to be equal b The "binding” of these features is
done via this second layer. In fact, the second layer is an array
of fully connected neurons along with a global controller. The
global controller desynchronizes the synchronized neurons for
the first and second sources by emitting inhibitory activities
whenever there is an activity (spikings) in the network [1].

frequency (Hz)

P

Channal Numhar

Fig. 2. CAM for the /di/ and /da/ mixture &N R = 0 dB andt = 166
ms.

time: discrete iterations

Fig. 1. Architecture of the Two-Layer Bio-inspired Neural Network. G :
Stands for global controller (the global controller for the first layer is not
shown on the figure). One long range connection is shown in the figure.

Although for the given double vowel separation problem,
the CAM doesn’t vary so much in time, in the case of unvoiced neuron number
speech (like stop consonants, etc.) or fast changing noises
the temporal aspect could become very important. Hence, t
architecture should be also useful for that kind of problems.

3. Spike activity until synchronization for the stimulus presented in Fig. 2
chronization time in the order of the number of neurons (24) oscillations).

. RESULTS the first or to the second source. There could be a slight

A mixture of the French /di/ (female speaker) and /da/ (matf#ifference of frequency between different synchronized zones
speaker) (double-vowels) are used to test the system. Théntensity levels are directly applied as input. This could
signals have equal power, therefore tH& R = 0dB. The lead to what is called "partial synchronization”. In order to
CAM is extracted for the aforementioned signal. Note that gircumvent this problem, we decided to apply the H(.) of the
contrast with most of the techniques proposed in the literatuirgut to the neurons so that the intensity of all stimuli is equal.
no prior pitch detection is made for the sourc@his is in The initial intensity difference between regions is implicitly
agreement with the physiological observations, which staagplied through synaptic connections. Regions with different
that no region in the brain is identified as "pitch extractorfirst layer activity will dissociate through very weak synaptic
and that “pitch extraction” is the byproduct of the Auditoryconnections, producing desynchronization (similar frequencies
Scene Analysis undertaken in the brain. but different phases) and similar region will synchronize (simi-

Figure 2 shows the CAM for the /di/ and /da/ mixture. lar frequency and phase) through strong synaptic connections.

Figure 3 shows the output of the second layer. Note that theWe use the PEL (Percentage of Energy Loss) criterion to
binding of channels 1-6 and 19-23 has been made possibtiieasure the performance of our system. The PEL is defined
through long distance synaptic weights in the second layes follows :
Since there is no energy (or very little energy) in channels PEL — Se?(t) (®)
12-16, the network has bound those channels arbitrarily to T X,02(t)
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