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Abstract— A two-layer spiking neural network is used to
segregate double vowels. The first layer is a partially connected
spiking neurons of relaxation oscillatory type, while the second
layer consists of fully connected relaxation oscillators. A two-
dimensional auditory image generated by the enhanced spectrum
of cochlear filter bank envelopes is computed. The segregation
is based on a channel selection strategy. At each instant of time
each channel is assigned to one of the sources present in the
auditory scene, i.e. speakers. No prior estimation of pitch for the
underlying sources is necessary.

Index Terms – Computational Auditory Scene Analysis
(CASA), bio-inspired neural networks, sound segregation, co-
chleotopic/AMtopic map (CAM), temporal binding.

I. I NTRODUCTION

This work deals with the segregation of double vowels
using a two-layered spiking neural network. The approach
we propose is based on a bio-inspired solution to CASA
(Computational Auditory Scene Analysis). Some previous
works based on CASA techniques use correlation as a pre-
processing stage to segregate sounds or vowels [1], [2], [3].
Another parallel technique to the latter mentioned approach
is the use of spectral information [4], [5], [6], [7]. In this
work we use a spectral analysis of the filterbank envelopes
outputs. Todd [5] proposed a Cochleotopic/AMtopic map, in
which a two dimensional representation is generated using
two sets of orthogonal filterbanks. In our proposed map, the
second dimension of this cochleotopic analysis is replaced by
an enhanced FFT analysis (reassigned spectrum [8]). Some
references propose expert system solutions to CASA [4], [9]
and others neural network based ones [1], [2]. We propose here
a bio-inspired approach to the problem that doesn’t require any
prior detection or knowledge of the pitch of the underlying
source signals. In addition, it doesn’t compute any correlation.

A. Computational Auditory Scene Analysis

Humans are able to segregate a desired source in a mix-
ture of sounds (”cocktail-party effect”). This is not the case
for computer speech recognition systems. In fact, commer-
cial state of the art speech processing programs work well
mostly in quiet environments. The Computational Auditory
Scene Analysis (CASA), partially based on psychological and
physiological observations, is aimed to solve that kind of
shortages.

B. Bio-inspired Neural Networks

Bio-inspired neural networks are dynamic. In fact, infor-
mation in this kind of networks is coded in the spike timing
of neurons, which is a generalization of the classical neural
networks. It is possible to design more autonomous and
flexible neural networks using these bio-inspired neurons than
by using conventional ones. In this work, we use a two-layered
bio-inspired neural network.

The building blocks of this network are oscillatory neurons
[1]. The dynamics of this kind of neurons is governed by
a modified version of the Van der Pol relaxation oscillator
(called the Wang-Terman oscillator) as described in section
II-B. There is an active phase when the neuron spikes and a
relaxation phase when the neuron is silent.

C. The Binding Problem

We can assume that our segregation problem is a generalized
classification problem, in which we want to bind features to
different sources. This generalized classification problem was
first addressed by Rosenblatt [10].

Temporal correlation theory was first proposed by Malsburg
[11], [10] to solve the binding problem. In this theory, objects
belonging to the same entity are bound together in time.
In other words, synchronization between different neurons
and desynchronization among different regions perform the
binding [12].

II. T HE ARCHITECTURE

A. The preprocessing

The CAM output for voiced double-vowels has a pseudo-
structured pattern.

We use a filter bank of 24 filters centered on Bark scaled
frequencies ranging from 200 Hz to 4.7 kHz. The envelope
demodulation (extraction) is done only for channels 5-24 [13].

We use the spectrum of the outputs of the cochlear filterbank
to create an enhanced version of the Cochleotopic/AMtopic
(CAM) map proposed in [5]. Our CAM generation algorithm
is as follows. The sampling rate of the signal is 16000
samples/s.

– Extract the envelope (AM demodulation) for channels 5-
24 ; for other channels use raw outputs.
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– Compute the STFT (Short Time Fourier Transform) using
a 1024 Hamming window (equal to 64 ms).

– In order to increase the spectro-temporal resolution of the
STFT, find the reassigned spectrum of the STFT [8] (this
consists of applying an affine transform to the points in
order to relocate the spectrum).

– Compute the logarithm of the result. This stage enhances
the pattern of the underlying harmonicity we want to
extract.

Another approach proposed in the literature is to replace the
CAM by correlograms [1], [3]. Autocorrelation-based models
rely on the observation that, while a representation based on
the average discharge rate in an auditory filterbank is unable to
resolve speech harmonics in the high-frequency range directly,
precise temporal information, extracted by correlograms, is
present in the discharge pattern seen in each channel.

For voiced sound, glottal impulses are convolved with the
transfer function of the vocal tract. Supposing that the two
sources have different pitches, we can assume that the geo-
metric distance between rays on the map corresponds roughly
to the pitch of the underlying source and that this distance
is different for different sources. These rays are produced by
the beats between harmonics filtered by the filter belonging
to a channel, but are masked by the amplified values of the
representation at resonance frequencies (fig. 2). This approach
lets us enhance rays placed atf0, 2f0, 3f0, etc. on the map,
f0 being the pitch of one of the sources.

B. The Network

The auditory scene analysis in the brain is done in two
different stages : segregation and streaming [14]. Segregation
consists of finding elementary audio objects in the scene, while
streaming is the ”binding” of the elements that belong to an
object (source). These two steps are implemented in our two-
layered neural network.

The dynamics of the neurons follows the following state-
space equations, wherexi is the membrane potential (output)
of the neuron andyi is the state for channel activation or
inactivation.

dx

dt
= 3x− x3 + 2− y + ρ + p + S (1)

dy

dt
= ε[γ(1 + tanh(x/β))− y] (2)

ρ denotes the amplitude of a Gaussian noise,p the input to the
neuron, andS the coupling from other neurons (connections
through synaptic weights).ε, γ, and β are constants. Initial
values are generated by a uniform distribution between the
interval [-2 ; 2] for x and between [0 ; 8] fory (these values
correspond to the whole dynamic range of the equations).
Forward Euler integration with a step size of0.01 is used to
solve equations 1 and 2. Bigger integration step sizes will lead
to complex network behaviors such as antiphase synchrony or
loose synchrony [15].

The first layer is a partially connected network of relaxation
oscillators [1]. Each neuron is connected to its four neighbors.
The CAM is applied to the input of the neurons. Since the
map is sparse, the original 512 points computed for the FFT

are down-sampled to 50 points. Therefore, the first layer
consists of 24 x 50 neurons or 1200 neurons. Our observations
showed that the geometric interpretation of pitch (ray distance
criterion) is less clear for the first four channels. For this
reason, we have also established long-range connections from
”clear” (high frequency) zones to ”confusion” (low frequency)
zones. These connections are defined only across the ”channel
number” axis of the CAM. This can help the network better
extract harmonicity patterns.

The layer can be reset by a master neuron that acts as a
master clock [16]. This clock can reset the network, so that it
doesn’t remember the long past.

The synaptic weight between neuron(i, j) and
neuron(k, m) of the first layer is computed via the
following formula :

wi,j,k,m(t) =
1

Card{N(i, j)}
0.25

eλ|p(i,j;t)−p(k,m;t)| (3)

here p(i, j) and p(k,m) are respectively external inputs to
neuron(i, j) andneuron(k, m) ∈ N(i, j). Card{N(i, j)} is
a normalization factor and is equal to the cardinal number
(number of elements) of the setN(i, j) containing neighbors
connected to theneuron(i, j) (can be equal to 4, 3 or 2
depending on the location of the neuron on the map, i.e. center,
corner, etc. and whether the weight between the neuron and its
neighbors is greater than a predefined threshold). The external
input values are normalized. The value ofλ depends on the
dynamic range of the inputs and is set toλ = 1 in our case.
This same weight adaptation is used for ”long range clear
to confusion zone” connections (Eq. 5). The influenceSi,j

defined in Eq. 1 is computed by :

Si,j(t) =
∑

k,m∈N(i,j)

wi,j,k,m(t)H(x(k,m; t))−G(t)+Li,j(t)

(4)
H(.) is the Heaviside function,G(t) is the influence of the
global controller as defined in [1], andLi,j(t) is the long range
influence :

Li,j(t) =
{

0 j > 4∑
k=14,15,23,24 wi,j,i,k(t)H(x(i, k; t)) j < 4

(5)
The second layer is an array of 24 neurons (one for each
channel). Each neuron receives the weighted sum of the out-
puts of the first layer neurons along the frequency axis of the
CAM. Since the geometric (Euclidian) distance between rays
(spectral maxima) is a function of the pitch of the dominant
source in a given channel, the weighted sum of the outputs of
the first layers along the frequency axis tells us about the origin
of the signal present in that channel. The weights between
layer one and layer two are defined aswll(i) = α

i where
i can be related to the frequency bins andα is a constant.
Therefore the input stimulus to the neuron(j) in the second
layer is defined as follows :

θ(j; t) = Σiwll(i)x(i, j; t) (6)

Wherex(i, j; t) is the output of the first layer for channelj, at
time t, and for frequencyi, averaged over a time window (the
length of the window is in the order of the discharge period).
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θ(j; t) is the input to the neuron j in the second layer at time t .
The synaptic weights in the second layer are adjusted through
the following rule :

w′
ij(t) =

0.2
eµ|p(j;t)−p(k;t)| (7)

µ is chosen to be equal to2. The ”binding” of these features is
done via this second layer. In fact, the second layer is an array
of fully connected neurons along with a global controller. The
global controller desynchronizes the synchronized neurons for
the first and second sources by emitting inhibitory activities
whenever there is an activity (spikings) in the network [1].

Fig. 1. Architecture of the Two-Layer Bio-inspired Neural Network. G :
Stands for global controller (the global controller for the first layer is not
shown on the figure). One long range connection is shown in the figure.

Although for the given double vowel separation problem,
the CAM doesn’t vary so much in time, in the case of unvoiced
speech (like stop consonants, etc.) or fast changing noises
the temporal aspect could become very important. Hence, this
architecture should be also useful for that kind of problems.

III. R ESULTS

A mixture of the French /di/ (female speaker) and /da/ (male
speaker) (double-vowels) are used to test the system. The
signals have equal power, therefore theSNR = 0dB. The
CAM is extracted for the aforementioned signal. Note that in
contrast with most of the techniques proposed in the literature
no prior pitch detection is made for the sources. This is in
agreement with the physiological observations, which state
that no region in the brain is identified as ”pitch extractor”
and that ”pitch extraction” is the byproduct of the Auditory
Scene Analysis undertaken in the brain.

Figure 2 shows the CAM for the /di/ and /da/ mixture.
Figure 3 shows the output of the second layer. Note that the

binding of channels 1-6 and 19-23 has been made possible
through long distance synaptic weights in the second layer.
Since there is no energy (or very little energy) in channels
12-16, the network has bound those channels arbitrarily to

Fig. 2. CAM for the /di/ and /da/ mixture atSNR = 0 dB andt = 166
ms.

Fig. 3. Spike activity until synchronization for the stimulus presented in Fig. 2
(synchronization time in the order of the number of neurons (24) oscillations).

the first or to the second source. There could be a slight
difference of frequency between different synchronized zones
if intensity levels are directly applied as input. This could
lead to what is called ”partial synchronization”. In order to
circumvent this problem, we decided to apply the H(.) of the
input to the neurons so that the intensity of all stimuli is equal.
The initial intensity difference between regions is implicitly
applied through synaptic connections. Regions with different
first layer activity will dissociate through very weak synaptic
connections, producing desynchronization (similar frequencies
but different phases) and similar region will synchronize (simi-
lar frequency and phase) through strong synaptic connections.

We use the PEL (Percentage of Energy Loss) criterion to
measure the performance of our system. The PEL is defined
as follows :

PEL =
Σte

2(t)
ΣtO2(t)

(8)
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Wheree(t) is the difference between the desired output and
the actual resynthesized outputO(t).

The PEL for the synthesized /da/ is 24.69% at SNR= 0dB
and is equal to 29.72% for the /di/. Perceptual tests have
shown that although we lose some sound quality after the
process, the vowels are separated and sound is recognizable.
This is an important aspect in ”speech enhancement”, because
some methods may have good PELs but fair perceptive quality
(discontinuities in the resynthesized speech, etc.).

IV. CONCLUSION AND FURTHER WORK

We proposed a technique to solve the double-vowel segre-
gation problem using a bio-inspired pre-processing stage and
a bio-inspired neural network. We think that the qualitative
and quantitative results we obtained from resynthesization
demonstrate a strong potential for the approach . In addition
we used no prior pitch detector in the architecture.

The lack of resolution in low-frequency channels makes
the binding process difficult in those channels and becomes
a source of energy loss in the resynthesized output. More
work should be done to increase the resolution. This could
be done by an increase in the number of channels, a mo-
dification in the CAM computation, or even by changing the
network architecture. Increasing the number of channels in the
filterbank may increase the performance of the separation by
reducing ”confusion zones” (described in section II-B). Also,
replacing cochlear filters by non-overlapping ones should
help us decrease the confusion zone and gives us a better
resynthesization performance. Preliminary results also show
that a similar map can be generated using the Instantaneous
Frequency (IF) using FM demodulation techniques.

By reducing the hamming window length, one should be
able to detect onset/offset times for consonants, which will be
popped out in the CAM representation. The network would be
able to bind the information using offset/onset of information
bins.

Top-down (schema-driven) processing of information can
also be used to further enhance the segregation by matching
pre-stored patterns to the signal extracted by the bottom-up
method proposed in this article. Oscillatory Dynamic Link
Matching can be used for this purpose [17].

In addition to the CAM, other representations can be used
for other types of signals. This multiple representation strategy
can be seen as a top-down (schema-driven) processing. In fact
efferent connections from higher auditory levels could control
the stiffness of cochlear hair cells, giving birth to different
auditory maps [18].
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