
� � � � � � ��� � �

	
 � �� � � � ��� � �

Andrea Arcangeli
andrea@suse.de

SuSE Kernel Developer

Operating Systems, Tools and Methods for
High Performance Computing on Linux Clusters

EDF R&D Clamart (France)
7th October 2003

� � �

� � � �

Copyright © 2003 Andrea Arcangeli – SuSE

� ��� �� �

The presentation will address some of the
recent innovations in the linux kernel 2.6 and
how they can affect various workloads,
especially the ones related to clustering

This should be most interesting for engeneers
planning to deploy the 2.6 kernel in clusters

Future cluster related kernel features will be
considered too

��� � �� � � !� � �"

Stable 2.4.22 (Marcelo Tosatti)

2.4.23-pre6 (Marcelo Tosatti)

2.4.23pre6aa3 (Andrea Arcangeli)
2.4.22-ac4 (Alan Cox)

Unstable 2.5.x is closed

Beta 2.6.x testing

2.6.0-test6 (Linus Torvalds)

2.6.0-test6-mm4 (Andrew Morton)
2.6.0-test6-mjb1 (Martin J. Bligh)
2.6.0-test1-ac3 (Alan Cox)

$�% # & '(&() $+* ,(% - ' .

Cache writeback at the pagecache layer
BIO – new I/O entity, allow large I/O
Asynchronous I/O
TSO – TCP Segment Offload
O(1) scheduler
Pluggable I/O scheduler (deadline/as/CFQ)
Hugetlbfs providing bigpages
Scheduler Kernel Preemptive
RMAP technique used to unmap address
space during paging
NPTL support
HZ boosted to 1000
epoll.... and lots lots more...

/0 1 23 45 4 /6 4 4 40 7 7 7

... already deployed into production in 2.4 via
backports (this is the case in various enterprise
server distributions out there that needed the best
performance and scalability in production ASAP)

The most obvious example is the O(1) sched

This is why we have 2.4 kernels in production that
for various benchmarks scales and perform
almost as well as 2.6
But 2.6 is capable of things 2.4 will never do, the
writeback cache rewrite and the bio, being two of
the most obvious examples

Those important 2.6 features are not self
contained, they spread all over the kernel in
drivers/flesystems in non trivial ways

8 9: ; < 8 8 ; =: = > = ? = < ;+@ A =: B B B
... affects cluster applications, some directly,
some indirectly
Some helps, some may hurt a little
Remember some of the major advances of
the 2.6 kernel have been achieved in terms of
SMP scalability and in terms of desktop
responsiveness compared to the 2.4 kernel
Lowest possible latency (and even maximal
possible scalability, though it's not really the
case here for 2.6), normally imply not the best
possible throughput
2.6 defaults seems a very good tradeoff but
you may really want to tune it for the best
throughput for computing in clusters

C DE F GH DI G J K D

Some sort of transparent process migration

FS with DSM providing a coherent cache

Page coloring (not significant for x86)

Different implementations exist in form of
external patches (openmosix, openSSI,
bproc, etc..)

This is not only about building massively
parallel processors, this is also about
environments with tons of idle desktop
machines with fast interconnects

SCHED_IDLE can recycle the cpu cycles

L MN O N PQ R S PT M O O U SN R U PV

Interconnects getting faster and cheaper

Example: migrating gcc can be technically
implemented to generate not much more
interconnect network overhead than running
a gcc executable from a NFS mount, with
data as well in the NFS filesystem

Maximum remote caching is the key

WX YZ [[\ W] ^ \ X _ [Z Y` W \ ^

Security implications in stealing cpu cycles
from random machines exists on both sides:

The binaries and the data payload will be
readable by the nodeowner (crypto can
make it harder but the private keys will
have to be somehow present on the client,
it's basically as secure as DVD decryption,
which mean every smart teenager will
always be technically able to extract the
private key if he really wants to)
The nodeowner will run unknown bytecode

The first problem is unfixable
The latter problem depends on the kernel not
to have exploitable holes keeping in mind that

A local DoS would become a remote DoS

a b c dfe gh g c ai e

Every time an application reads or writes to a
file using the read/write syscalls or by
mmapping the file in the address space,
some piece of ram (usually in PAGE_SIZE
units, so a "page") is allocated.

This "page" is then indexed so - at a later
time – we can find this page just allocated
and indexed in the cache.

jk l lm l nop q nfr s n q l j q

The whole point of the cache for reads, is to
avoid hitting the disk multiple times, if the
same offset of the same file is being read
multiple times
Secondly the cache abstraction allows us to
generate readahead (we pre-fill the cache so
future reads won't need to wait for I/O to
receive the data, and more important to build
big contigous scsi commands to the disk that
will be served with a single DMA, this is a
must to generate high performance)
the cache could be pure memory-bus
overhead too (fix with O_DIRECT or RAWIO)

tu v vw v xyz { xf| } x { }yz v {

In the general case with writes we don't care
about the previous contents in the files, we
would overwrite it anyways, so the cache for
writes is useful for a different reason:

it allows writes to be asynchronous
secondly the cache can also avoid some
write-I/O because multiple writes to the
cache may result in a single I/O-write to
the disk

For example if two writes at the same
inode offset happens with a very short
intermediate delay

~ �� � � �f� � � � �� � � �� � �

Like for reads, we allocate or we find the
page in the cache.
Then we copy the contents of the userspace
buffer into the cache and we mark it dirty.
Then we give a timeout of 30 seconds to the
dirty cache when it become dirty for the first
time.
Every 5 seconds a kernel thread (called
pdflush in 2.5/2.6 and kupdate in 2.4) checks
the timeout of the dirty cache, and it flushes
to disk the dirty cache asynchronously if
needed marking it clean at the same time

� �� � � �� � �� ���

Write intensive applications instead can still
become synchronous because while we
generate dirty pages, we also have check if a
too large part of the vm become dirty, in such
case we start writing out stuff synchronously
before returning from the write operation, this
is called "write throttling" and it is
fundamental to avoid filling the whole vm with
dirty "not immediatly freeable" pages.
This vm-synchronous-dirty-level is also
managed by a kernel daemon with an
hysteresis algorithm (tunable again with the
same bdflush sysctl).

� � �� � �� � �� �

2.4 kernels are used to keep track of dirty
cache to flush asynchronously using a linked
list of buffer-headers (aka BUF_DIRTY), that
maps some memory to the physical block in
some blkdev

When it's time to flush the cache we
completly lost track of its logical form.

In 2.5 we use logical pages attached to
inodes to flush dirty data, this also allows
coalescing of multiple pages into a single bio
submitted to the I/O layer, if the file is not
fragmented on disk.

� � �� � �� � �� �

Assume there are two pages dirty and they
belongs to the same inode

� � �� � �� � �� �

But at some point some other page from
other inodes is market dirty too and it gets
queued in BUF_DIRTY.

� � �� � �� � �� �

The new design allow us to coalesce at best
all the pages from the same inodes (so
probably contigous).

�

Big help for:

Filesystems coalescing more than one
page of data contigous on disk

O_DIRECT (when the data is contigous)

RAWIO (especially for large buffers)

� �f� � �� � � ¡ � � ¢

Available in 2.5 (future 2.6) and 2.4.20rc2aa1
with the same kernel API
Allows applications like databases to post
read/writes and to never block
Those apps definitely don't want to wait
read/write(2) to return before they can do
something else with the machine
Current 2.4 workaround is to use threads, but
context switches, task structures, message
passing to other task are more costly than a
true AIO that will avoid all such overhead
Signal driven I/O completion notification is not
yet available (completion ports)

£ ¤ ¥¦ §¨ ¤© ¥ ¤ ¥¦ § ª ¥ ¤ ¥¦

§ ª ¥ « ¨ ¬¦

x86 and other archs provides multiple
PAGE_SIZEs
PAE enabled (64G or x86-64)

2M pages
PAE disabled (4G)

4M pages
If a single tlb entry can cache more than 4k
(usual PAGE_SIZE), 10 tlb entries will be
able to cache an amount of VM larger than
40k: they will be able to cache up to 40M!
Caching more VM translations into the TLB
cache means less overhead in the
pagetables

£ ¤ ¥¦ §¨ ¤© ¥ ¤ ¥¦ § ª ¥ ¤ ¥¦

§ ª ¥ « ¨ ¬¦

Very useful for number crunching too (if
working with large datasets, which is a
realistic scenario for some cluster workload)
At the moment it's not provided via
anonymous memory (i.e. malloc()), so a
temporary file in the hugetlbfs has to be
created for this (it can be deleted immediately
after the mapping has been established with
mmap(2))

 ®

This will hurt the performance of the clusters
doing pure userspace computations
The slowdown for a kernel compile [from
cache] (w/o altering the cacheline or the
scheduler behaviour) is estimated at around
1%
HZ=1000 doesn't help that much to make the
system more responsive, because the
scheduler timeslices are not affected by HZ
We should differentiate between desktop and
server/cluster environments
We sure want HZ=100 or even less (HZ=50)
for number crunching setups

 ®

On the desktops we don't only want
HZ=1000: we also want to trim the timeslices
down of an order of 10, to allow the
rescheduling to happen 10 times more
frequently, to guarantee way more than 50
reschedules per second
In 2.4.23pre6aa2 and in SL9, the 'desktop'
parameter will tune the scheduler to
reschedule 10 times more frequently than w/o
it, and at the same time it will boost HZ to
1000 dynamically
HZ=50 can also be used with the dynamic-hz
patch applied

¯° ±�² ³ ´ ± ¯ µ

After porting dynamic-hz to 2.6, we'll cover
the needs of the clusters too
Then you may want to experiment with
HZ=50

In the meantime you can simply set HZ back
to 100 to get the bit of performance back, like
in some of the unofficial kernel trees

Another source of overhead compared to 2.4 is
rmap:

Slowdown in

Page faults
munmap
Fork

Lots of zone-normal allocated in rmap data
structures

(theoretical payoff during heavy paging)

Objrmap seems to solve lots of this, despite it
introduces some complexity problem

¶�· ¸¹ º »¼ ½

With today's hardware I never seen the
system load being much different than ~zero
during heavy swapping
During heavy swapping most workloads
become I/O dominated
There's not much cpu to save with rmap with
current common hardware
Even if rmap would reduce the system load
associated with swapping of 90%, that would
be still less than 1% of the real time of the
whole workload so hardly visible, while the
overhead in the fast paths is definitely
measurable

¾ ¿ ÀÁ Â Á Ã Ä�Å

Available as a patch for 2.4 and 2.2
In the 2.4 patch has various problems, the
engine is good, but the callers of the engine
are not doing perfect static page coloring
Ideally should be selectable per-process
Kernel allocations should remain a dynamic
page coloring
Should allow strong and weak coloring,
where strong means shrinking the cache in
order to get the right color (number crunchers
want the right color no matter what)
2.2-aa achieves most of this

Æ ÇÈ É Ê Ë ÉÌ

Evaluate which is the next task to reschedule
during the task wakeup, not during the
context switch

Do it per-cpu with a per-cpu lock, and load
balance once in a while

High performance with an huge number of
tasks running, in particular in SMP thanks to
the improved scalability

Now being improved further for higher
desktop responsiveness in 2.6.0-test6,
dubious in terms of throughput though

Some version is very HT aware too

ÍÎ Î Ï ÐÑ Ò Ñ Ó Ï Î ÔÕ

Kernel compile time config option
Implicitly disables preemption in front of the
spinlocks
Must disable preemption before accessing
per-cpu data structures and before spinningÖØ× Ù Ö × ÚÜÛÝ Ý Þ ß Ú àá

â ã ß Ù ßÝ äå Û â â äÝ Ù Ö æ àá

â ß ÖØ× Ù ç äå è Ö ã ß ç Ö å Ö Ú çêé æ Ö âë ì ç Û â ßÝ Û Û ã ß Ú Ö ä×

í í í

Adds a significant complexity (and a number
of branches) to the kernel with the object of
reducing scheduler latencies
Number crunchers don't want/need it

ÍÎ Î Ï ÐÑ Ò Ñ Ó Ï Î ÔÕ

Preempt is mostly interesting for realtime
digital signal processing where the mean
latency matters
Almost doesn't matter for playback, playback
cares about the worst case latency
Lowlatency is more important than preempt
Preempt needs lowlatency too, preempt
cannot schedule inside a spinlock regionîðï ñ ò óô õ öï ÷ ø ùú ûü ø û ý ýï ï þ ñ ò û ø ù ñ òï ö û

ÿ ø ñ ÿ ù û ñ þ ÿ ø ýï �ú ü û � ÿï ø ñ�� ñï þ ü û û � þ ò � ÿ ò �ï ÷ ò

ýï � ý�� ò û ø �	 ñ þ û � ÿ
� ý �� ü û �ï ÷ ý ù øï ò ö û

û øï ÷ � �

ýï � ý�� ò û ø �	 ÿ ñ øï ü �� ý ý 	 û øï ÷ � � � ø ù ýï �

ï � ûü � û� ù

The new threading model has various
advantages
In practice, for good designed apps, the
biggest one is the usage of futex to
implement the pthread_mutex object
The futex (unlike sched_yield) will avoid a
scheduling collapse during heavy contentions
of a lock among different threads
NPTL is fully POSIX compiliant too (modulo
RT)
Due of the above point, NPTL obviously
can't be enterely backwards compatible (not
even at the source level) with linuxthreads

�� � ��� � ��� � � � � � � � ��� � � � �

It would be nice to provide a standard
process migration functionality in the future
during 2.7
The interconnects are getting faster and over
time we might threat a cluster like we threat
smp today
Not all applications are ideal to be migrated
transparently by the kernel, so for some
clustering application there is no need of
additional kernel support and it makes much
more sense to scale the load all in userspace
UML also provides interesting properties, but
it introduces a significant cpu overhead

