CLIC Cluster Linux pour le Calcul

http://clic.mandrakesoft.co m

Yves Denneulin (@imag.fr)
ID-IMAG Projet Apache
http://www-id.imag.fr

CLIC project

Clusters + Linux : great but not easy (management, use, programming tools)

Three partners:

- Bull: mainframe and IA64 experts
- ID : cluster experts + users
- Mandrakesoft : Linux experts

Funded by the French government (RNTL)

Challenges

- 1)As good as others (OSCAR, Rocks, Score, Alinka, Scyld, etc)
- Classical tools : Installation, MPI, PVM, PBS, Ganglia
- 2) Mandrake spirit (as many packages as possible)
- Math libraries (blas, scalapack, PETSC)
- Cluster middleware (CORBA, java)
- Virtual Reality software, etc

Challenges

3) Compatibility

 Hardware support (IA64, Myrinet, SCI, Opteron, etc) and software support (Mosix, HA, LVS, etc)

4) Scalability

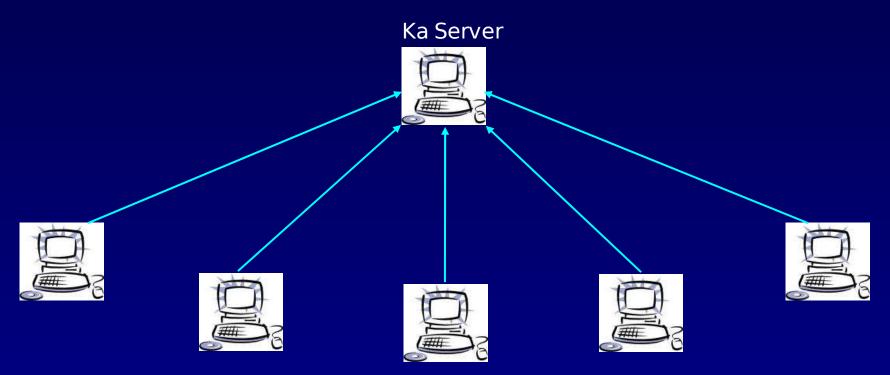
 Installation (ka-deploy), parallel commands (ka-run, etc), file systems (NFSp, PVFS)

Scalability

- How to avoid bottlenecks in large clusters
 - Cluster installation
 - Parallel commands
 - Data staging
 - File systems

Ka-tools

- Ka-deploy
 - Deploys a cluster cloning the golden node
 - allows heterogeneous hardware configurations
 - Ka-run
 - Parallel and distributed command launcher (rshp)
 - Optimized file copy on cluster (mput)

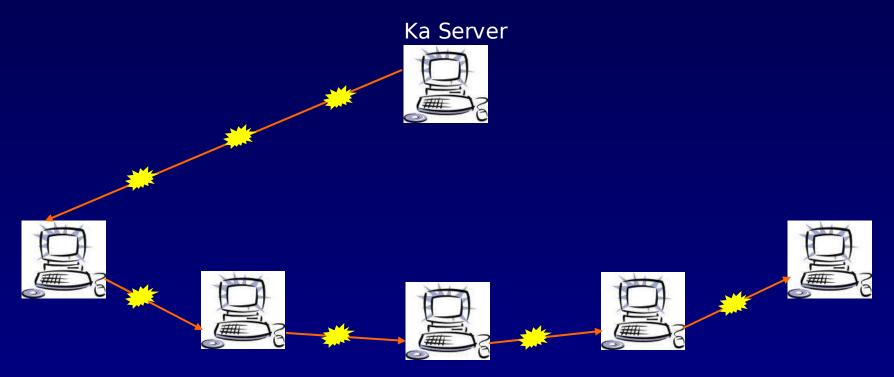

Launching Ka replication

- Ka-deploy requires network boot to be used efficiently
 - a PXE/DHCP server with a tftp server
 - Network boot capable nodes
- After the boot sequence, the replication can start...

Ka-deploy

Ka-deploy (2)

Ka Server

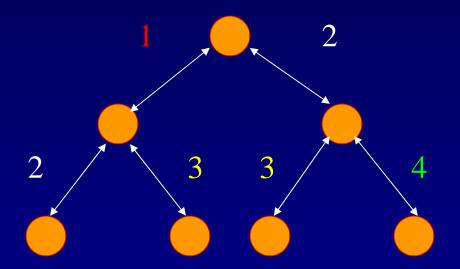


Ka-deploy (3)

Rshp

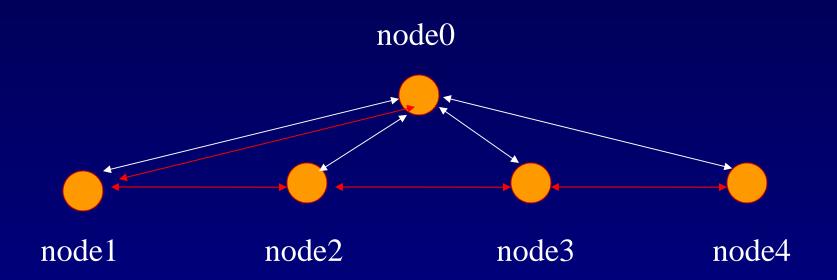
What?

 Launching one command from a server onto n remote nodes


How?

- Launchs distributed ssh or rsh connections
 - distribute the load betwenn the nodes
 - trees, work stealing, etc
- Executes the command and redirect outputs

Building the launching tree with rshp


Mput

- Quick diffusion of a file over the cluster
- Fastest topology to connect all the nodes : flat tree
- Most efficient topology to propagate a file : chain
- Mput = mixed method
 - mput is launched by a flat tree
 - The nodes get the file through a chain

Data staging

mput file copy command
Better than reliable multicast, trees, etc

A cluster oriented Linux Distro.

- CLIC is a real Linux Distro
 - Glibc, kernel, …
- But it also includes
 - Auto-configuration tools (clusterscripts)
 - Parallel tools (rshp, mput, urpmi parallel)
 - MPICH, LAM/MPI, PVM
 - Automated duplication tools (KA)

Parallel Urpmi

- Use rshp, mput and urpmi to quickly update a cluster to maintain the same set of rpms over the cluster
- rshp and mput use case
 - Rshp launch urpmi on all the nodes to compute the dependancies

Parallel Urpmi (2)

- rshp and mput use case
 - All these dependancies are analyzed to get the maximum set of rpms to mput over the cluster
 - Each node independently installs all the dependencies it needs to install the target rpm
 - -The same tools exists to uninstall rpms over the cluster

CLIC Status

- Phase 2 is about to be released
- New backend fully written in Perl
- New installation procedure (Just Power On)
- Dual ethernet cluster
 - Separated computing & administration network
- New urpmi/urpme parallel

Annexes

Parallel vs distribute

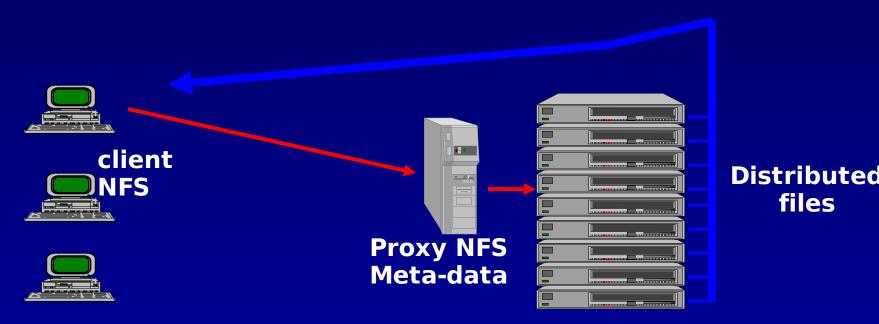
	Rshp client asynchrone	Rshp 200 threads	Rshp binomial	Rshp binaire	Rshp (ssh + processus) arité 4	C3 rsh	C3 ssh
Tps sec	0.45	0.49	1.4	1.6	2.19	2.57	14.52
Travail (%CPU x Tps)	27.9	32.2	<7	<8	10.3	243.9	1057
Nb processus	1	1	1	1	5	201	201

RSHP « null command » on 200 nodes

Mput performances 200 nodes

	Mput	Mput	Mput	Mput	Mput
	1Mo	2Mo	4Mo	8Mo	16Mo
Tps sec	0.97	1,09	1.35	1.81	2.82

Bandwidth:


- Mput 200 nodes: 8 MB/sec (latency 0,8 secs)
- •point to point network: 12 MB/sec
- Limited by disk bandwith

File systems in CLIC

- Direct Attached Storage aggregation
- One meta data server, several data servers: PVFS, NFSp (NFS compliant)

