OSCAR

Open Source Cluster Application Resources

Stephen L. Scott

Oak Ridge National Laboratory

scottsl@ornl.gov

www.csm.ornl.gov/~sscott

Workshop on: Operating Systems, Tools and Methods for High Performance Computing on Linux Clusters EDF R&D – Clamart (France) October 7, 2003

ORNL CS Research

Significant impact and world-wide influence on Parallel computing and the Science enabled by it

 Track record of developing very popular software

- PVM - 400,000

- OSCAR - 112,922

Cumulys - 300

Influencing Standards

MPI, BLAS, LAPACK, PAPT

Enabling Science PVM, MPI, enote, etc. are widely used in

education, research, and industry

Goal is to accelerate the process of Scientific Discovery

Over Ten years of leadership in heterogeneous distributed computing

Networks of Workstations

Wide-area GRID experiments

PC Clusters

Scalable Systems Software for Terascale Computer Centers

www.scidac.org/ScalableSystems

Problem

- Computer centers use incompatible, ad hoc set of systems tools
- Present tools are not designed to scale to multi-Teraflop systems

Solution

- Collectively (with industry) define standard interfaces between systems components for interoperability
- Create scalable, standardized management tools for efficiently running our large computing centers

Impact

 Revolutionize the way system software is designed and used.
 Oak Ridge National Laboratory -- U.S. Department of Energy

Job management

OSCAR - the beginning

First cluster "distro"

redhel.com | Announcing Estrene Linus.

http://www.redhat.com/about/prescenter/1990/pers_may 1390.html

- May 13, 1998
- \$29.95 CD

Announcing Extreme Linux

Called Extreme Linux, and also known as The Beowulf Project, this collaboration between Red Hat, Inc. NASA Goddard Space FlightCenter, and over two dozen leading research centers will bring the speed and power of multiple computers--parallel processing as one computer -- to students, researchers, and end-users worldwide. Extreme Linux is perhaps the most effective example of how the cooperative software development model that has produced the award-winning Linux OS results in better technology at a revolutionarily low-cost.

Building a computer duster with the OS and tools that are included in this \$29.95 CD-ROM product will provide researchers with radical improvements in the amount of processing power available to them for a given dollar of investment. Having access to complete source code of these tools will allow the students. researchers, and technical end users to understand this technology at a level never before possible, resulting in a more effective, higher performance computing platform.

For more information, check here.

For More Information: Bryan Scanlon or Dan Ring Schwartz Communications for Red Hat Phone: (781) 684-0770 redhat@schwartz-pr.com

Copyright & 2001 Red Hot, Inc. All rights reserved. Legal statement: Privacy statement: Your Account: Contact Red Hat Search by Google

OSCAR Background

- Meeting back in April 2000
 - Cluster assembly is time consuming & repetitive
 - Nice to offer a toolkit to automate
 - First public release in April 2001
- Use "best practices" for HPC clusters
 - Leverage wealth of open source components
 - Target modest size cluster (single network switch)
- Form umbrella organization to oversee
 - Open Cluster Group

Open Cluster Group

- Informal group formed to make cluster computing more practical for HPC research and development
- Membership is open, direct by steering committee
 - Research/Academic
 - Industry
- Current active working groups
 - OSCAR
 - Thin-OSCAR (diskless)
 - HA-OSCAR (high availability)

OSCAR 2003 Core Organizations

- Dell
- IBM
- Intel
- MSC.Software
- Bald Guy Software

- Indiana University
- NCSA
- Oak Ridge National Laboratory
- Université de Sherbrooke

Open Source Cluster Application Resources

What is OSCAR?

- Framework for cluster installation configuration and management
- Common used cluster tools
- Wizard based cluster software installation
 - Operating system
 - Cluster environment
 - Administration
 - Operation
- Automatically configures cluster components
- Increases consistency among cluster builds
- Reduces time to build / install a cluster
- Reduces need for expertise

The OSCAR strategy

- OSCAR is a snap-shot of best-known-methods for building, programming and using clusters of a "reasonable" size.
- To bring uniformity to clusters, foster commercial versions of OSCAR, and make clusters more broadly acceptable.

• Consortium of research, academic & industry members cooperating in the spirit of open source.

OSCAR Components

- Administration/Configuration
 - SIS, C3, OPIUM, Kernel-Picker, NTPconfig cluster services (dhcp, nfs, ...)
 - Security: Pfilter, OpenSSH
- HPC Services/Tools
 - Parallel Libs: MPICH, LAM/MPI, PVM
 - OpenPBS/MAUI
 - HDF5
 - Ganglia, Clumon, ... [monitoring systems]
 - Other 3rd party OSCAR Packages
- Core Infrastructure/Management
 - System Installation Suite (SIS), Cluster Command & Control (C3), Env-Switcher,
 - OSCAR DAtabase (ODA), OSCAR Package Downloader (OPD)

System Installation Suite (SIS)

Enhancement suite to the *SystemImager* tool. Adds *SystemInstaller* and *SystemConfigurator*

- SystemInstaller interface to installation, includes a stand-alone GUI Tksis. Allows for description based image creation.
- SystemImager base tool used to construct & distribute machine images.
- SystemConfigurator extension that allows for on-the-fly style configurations once the install reaches the node, e.g. '/etc/modules.conf'.

System Installation Suite (SIS)

- Used in OSCAR to install nodes
 - partitions, formats and installs nodes
- Construct "image" of compute node on headnode
 - Directory structure that **is** what the node will contain
 - This is a "virtual", chroot—able environment/var/lib/systemimager/images/oscarimage/etc/

.../usr/

- Use rsync to copy only differences in files, so can be used for cluster management
 - maintain image and sync nodes to image

C3 Power Tools

• Command-line interface for cluster system administration and parallel user tools.

- Parallel execution cexec
 - Execute across a single cluster or multiple clusters at same time
- Scatter/gather operations cpush/cget
 - Distribute or fetch files for all node(s)/cluster(s)
- Used throughout OSCAR and as underlying mechanism for tools like OPIUM's *useradd* enhancements.

C3 Power Tools

Example to run hostname on all nodes of default cluster:

\$ cexec hostname

Example to push an RPM to /tmp on the first 3 nodes

```
$ cpush :1-3 helloworld-1.0.i386.rpm /tmp
```

Example to get a file from node1 and nodes 3-6

```
$ cget :1,3-6 /tmp/results.dat /tmp
```

^{*} Can leave off the destination with cget and will use the same location as source.

Switcher

- Switcher provides a clean interface to edit environment without directly tweaking .dot files.
 - e.g. PATH, MANPATH, path for 'mpicc', etc.
- Edit/Set at both system and user level.
- Leverages existing *Modules* system
- Changes are made to future shells
 - To help with "foot injuries" while making shell edits
 - Modules already offers facility for current shell manipulation, but no persistent changes.

OSCAR DAtabase (ODA)

- Used to store OSCAR cluster data
- Currently uses MySQL as DB engine
- User and program friendly interface for database access
- Capability to extend database commands as necessary.

OSCAR Package Downloader (OPD)

Tool to download and extract OSCAR Packages.

- Can be used for timely package updates
- Packages that are not included, i.e. "3rd Party"
- Distribute packages with licensing constraints.

OSCAR Installation

Server Installation and Configuration

- Install Linux on server machine (cluster head node)
 - workstation install w/ software development tools
 - 57-page installation document!
 - (quick install available)
- Download copy of OSCAR and unpack on server
- Configure and install OSCAR on server
 - readies the wizard install process
- Configure server Ethernet adapters
 - public
 - private
- Launch OSCAR Installer (wizard)

OSCAR Wizard

Step 0

Enables you to download additional packages

OPD – Oscar Package Downloader does download

OPDer – GUI frontend to OPD

OPDer

clumon and PVFS selected for download

Step 1

Create your own flavor of cluster distribution

Select OSCAR packages to install.

Package Selector

Core packages are automatically selected for you and can not "unselect"

Download does not equal installation!

Packages downloaded with OPDer are selected for installation here

Step 2

Configure OSCAR packages that require special configuration tasks

Step 3

Install OSCAR Server (cluster head node) specific packages on cluster head node

May take a few minutes

Wait for button...

Install server packages

Step 4

Specify and build system image for client (compute) nodes

Build image configure

Building image

Building image finished

success

Step 5

Define client nodes

Define client nodes

Define client nodes

Step 6

in one operation – setup networking for all cluster client nodes

for first time in installation process we will "touch" the client nodes

Setup network – initial window

machines named as specified in prior step 5

IP address as specified in prior step 5

Setup network – scanning network

Setup network – initial window

found and assigned all MAC addresses

Reboot Clients

reboot on own – "post install action" from step 4

or

manually reboot

Step 7

only after ALL clients have rebooted

runs "post install" scripts for packages that have them

cleanup and reinitialize where needed

Complete setup

```
root@rh9vm:/opt/oscar
                          |Shutting down ntpd: [FAILED]
                          |ntpd: Synchronizing with time server: [ OK ]
                          |Starting ntpd: [ OK ]
                           ----- oscarnode2.oscardomain-----
                          Shutting down ntpd: [FAILED]
                          |ntpd: Synchronizing with time server: [ OK ]
                          |Starting_ntpd: [ OK ]
                          --> About to run /opt/oscar/packages/loghost/scripts/post_install for loghost
                          ----- oscarnode1.oscardomain--
                          Setting loghost to 192,168,152,227
                          |Shutting down kernel logger: [ OK |
success
                          |Shutting down system logger: [ OK ]
                          Iscarting sustem logger: [ OK
                                                                             Successfully
                          Starting kerns! logger: [ OK
                                                                            completed
                          ----- oscarnode2.oscardomain--
                                                                            the cluster
                          Setting loghost to 192,168,152,227
                                                                            install
                          Shutting down kernel logger: [ OK ]
                          |Shutting down system logger: [ OK ]
                                                                                Close
                          |Starting system logger: [ OK ]
                          |Starting kernel logger: [ OK ]
                          Cluster setup complete!
                          --> Step 7: Successfully completed the cluster install
```

Step 8

test suite provided to ensure that key cluster components are functioning properly

Test cluster setup

All Passed!!!

OSCAR Cluster Maintenance Add / Delete Nodes

Add OSCAR Clients

increase the number of compute nodes in the cluster

Add OSCAR Clients

Operates in similar manner to steps 5, 6, and 7 in OSCAR installation

Action behind the scenes differs though...

decrease the number of compute nodes in the cluster

ready to select client(s) to delete

Quit OSCAR Wizard

Your OSCAR cluster is now ready to use

Thin OSCAR

Sherbrooke University Sherbrooke, Quebec, Canada

The Development Team

Benoit des Ligneris Michel Barrette Michel Dagenais Francis Giraldeau

Thin OSCAR implementation

- Root RAM system
 - uses ram disks (/dev/ramXX)
 - compressed RAM disk image transferred by network at each boot
 - minimal system in ram (~20MB)

HA-OSCAR

The Development Team

Louisiana Tech University

Chokchai Leangsuksun Lixin Sher Hertong Song Ericsson Research, Canada

Ibrahim Haddad

Oak Ridge National Laboratory

Stephen L. Scott

Conventional OSCAR Architecture

HA-OSCAR in active/hot-standby mode

HA-OSCAR in active/active mode

More OSCAR Information

Open Cluster Group

www.OpenClusterGroup.org/

OSCAR Home Page

oscar.sourceforge.net/

OSCAR Development site

sourceforge.net/projects/oscar/

Mailing Lists

oscar-users@lists.sourceforge.net oscar-devel@lists.sourceforge.net

Questions

