
SPOPS

Secure Operating Systems for POPSs

Everest Team, INRIA Sophia-Antipolis
R2DP Team, LIFL, Lille University
SSIR Team, SUPELEC Rennes

http://www-sop.inria.fr/everest/projects/spops

December 12th, 2003

– p. 1/13



Context and Objective

POPSs require

security: POPSs are widely used
as secure authentication tokens (SIM Cards)
to store and manipulate sensible data

flexibility: POPSs must
interact with numerous heterogenous environments
provide execution support for a large panel of
applications
execute several applications simultaneously
load applications and OS components post-issuance

The objective of SPOPS is to propose a compromise for
addressing both needs simultaneously.

– p. 2/13



Topics

Secure application loading/executing
Real-time operating systems for availability
Enhanced bytecode verification for stronger
confidentiality (and integrity)
Logic-based methods for application verification

Modular and secure operating systems
Modular and reconfigurable operating systems
Secure component loading

Modular verification of OS components
PCC

– p. 3/13



Availability

Java security architecture does not address availability

Ressources:
Memory
Communication
CPU

Solutions:
Ticketing mechanisms for memory and
communication.
WCET and real-time mechanisms for CPU

Remark: no trust between applications, hence OS must
ensure equity

– p. 4/13



Availability in Camille NG

Results:

Validation of dynamically loaded schedulers

Split on-card/off-card computations for WCET

Further work

Implementation of split computations

Extension to JVM/OS

– p. 5/13



Confidentiality/Integrity

Java security architecture only addresses a limited form
of confidentiality/integrity

A basic recipe for enforcing stronger
confidentiality/integrity

Maintain the principle (dataflow analysis of an
abstract virtual machine)
Enrich the type structure with security levels

Information flow types guarantee that executing a
program does not reveal otherwise unaccessible data to
applets

– p. 6/13



Non-interference

Results

Indistinguishability on JVM states

Define a transition relation that rejects harmful
programs

�
�

�
� ��

� ��� �� � 	 
� � � � � 	 �

(Termination-insensitive) non-interference

Compilation

Non-interference for Java with exceptions
(joint work with D. Naumann)

Further work

Multi-threading

Trusted downgrading and logic-based analyses
– p. 7/13



Types vs. logic

Type-based analyses

are efficient and compositional

are imprecise and do not capture certain properties

Logic-based analyses are

are precise (and sometimes even complete) and
capture many forms of security, and functionality

complex to conduct

– p. 8/13



Our proposal

Proof finding is complex in general, but proof checking is
simple

Use proof finding for simple problems

Use proof checking for complex problems

Weakest precondition calculi lie at the core of our approach

Operate on annotated programs: pre-conditions,
post-conditions, invariants

Generate proof obligations from annotated programs

– p. 9/13



Security auditing

Security auditing for high-level security properties, e.g.

no run-time exception at top-level
no nested transaction

no call to X between calling Y and returning from Z

Generates core annotations from high-level properties

Propagate annotations globally throughout the code

Generate proof obligations with the WP calculus

Discharge proof obligations with efficient provers

– p. 10/13



JITS

Modular JVM used as an OS for POPS

Ideal platform for experimenting with secure dynamic
update

System components (existing or under development):
(OO) Memory components: garbage collector,
transactional memory model, etc.
CPU: scheduler, etc.
Communication: IP stack, etc.

– p. 11/13



Proof carrying code

Principles:
Code comes with proof of correctness
Proof is checked, not inferred
No trust infrastructure is required

Problems:
What to prove?
How to prove it?
How to package proofs?

Applications: secure component loading

– p. 12/13



Work programme

Complete work on availability and non-interference

Develop modular system components: access
controllers, protocol stacks, schedulers, etc.

Develop generic specifications for components and
verify components against specifications

Implement a WP for Java bytecode

Develop a PCC infrastructure and experiment with it

– p. 13/13


	SPOPS
	Context and Objective
	Topics
	Availability
	Availability in Camille NG
	Confidentiality/Integrity
	Non-interference
	Types vs. logic
	Our proposal
	Security auditing
	JITS
	Proof carrying code
	Work programme

