SPOPS

Secure Operating Systems for POPSs

Everest Team, INRIA Sophia-Antipolis
R2DP Team, LIFL, Lille University
SSIR Team, SUPELEC Rennes

http://www-sop.inria.fr/everest/projects/spops

December 12th, 2003 J

—p. 1/1

Context and ODbjective
B o

POPSs require

#® security: POPSs are widely used
s as secure authentication tokens (SIM Cards)
s to store and manipulate sensible data

o flexibility: POPSs must
s Interact with numerous heterogenous environments

s provide execution support for a large panel of
applications

» execute several applications simultaneously
s load applications and OS components post-issuance

The objective of SPOPS is to propose a compromise for
Laddressing both needs simultaneously. J

—p. 2/

Topics

Secure application loading/executing
» Real-time operating systems for availability

s Enhanced bytecode verification for stronger
confidentiality (and integrity)

s Logic-based methods for application verification

Modular and secure operating systems
s Modular and reconfigurable operating systems

s Secure component loading
s Modular verification of OS components
s PCC

—p. 3/

Availability
B -

Java security architecture does not address availability

#® Ressources:
s Memory
s Communication
s CPU

® Solutions:

s Ticketing mechanisms for memory and
communication.

o WCET and real-time mechanisms for CPU

Remark: no trust between applications, hence OS must
ensure equity

o -

—p. 4/

Avallability in Camille NG
R

Validation of dynamically loaded schedulers

esults:

Split on-card/off-card computations for WCET
Further work

Implementation of split computations

Extension to JVM/OS

—p. 5/1

Confidentiality/Integrity

o .

Java security architecture only addresses a limited form
of confidentiality/integrity

A basic recipe for enforcing stronger
confidentiality/integrity
» Maintain the principle (dataflow analysis of an
abstract virtual machine)
s Enrich the type structure with security levels
[nformation flow types guarantee that executing a

program does not reveal otherwise unaccessible data to
applets

o -

—p. 6/

Non-interference
R

Indistinguishability on JVM states

esults

Define a transition relation that rejects harmful
programs

A, C,m,iF st,se = st', se
(Termination-insensitive) non-interference
o Compilation

Non-interference for Java with exceptions
(joint work with D. Naumann)

Further work
o Multi-threading
L.o Trusted downgrading and logic-based analyses

—p. 7/

Types vs. logic
nype-based analyses
are efficient and compositional
are imprecise and do not capture certain properties
Logic-based analyses are

are precise (and sometimes even complete) and
capture many forms of security, and functionality

complex to conduct

—p. 8/

Our proposal

-

Proof finding is complex in general, but proof checking is
simple

=

Use proof finding for simple problems
Use proof checking for complex problems
Weakest precondition calculi lie at the core of our approach

Operate on annotated programs: pre-conditions,
post-conditions, invariants

#® Generate proof obligations from annotated programs

o -

—p. 9/

© o o o

Security auditing

Security auditing for high-level security properties, e.g.

no run-time exception at top-level
no nested transaction
no call to X between calling Y and returning from Z

Generates core annotations from high-level properties
Propagate annotations globally throughout the code
Generate proof obligations with the WP calculus
Discharge proof obligations with efficient provers

=

-

—p. 10/1

JITS

f.o Modular JVM used as an OS for POPS T

l|deal platform for experimenting with secure dynamic
update
System components (existing or under development):

s (OO) Memory components: garbage collector,
transactional memory model, etc.

o CPU: scheduler, etc.
s Communication: IP stack, etc.

—p. 11/1

Proof carrying code

-

Principles:
s Code comes with proof of correctness
s Proof is checked, not inferred
» No trust infrastructure Is required

#® Problems:
s What to prove?
s How to prove it?
s How to package proofs?

o Applications: secure component loading

o -

—p. 12/1

Work programme
Complete work on availability and non-interference T

Develop modular system components: access
controllers, protocol stacks, schedulers, etc.

Develop generic specifications for components and
verify components against specifications

Implement a WP for Java bytecode
Develop a PCC infrastructure and experiment with it

—p. 13/1

	SPOPS
	Context and Objective
	Topics
	Availability
	Availability in Camille NG
	Confidentiality/Integrity
	Non-interference
	Types vs. logic
	Our proposal
	Security auditing
	JITS
	Proof carrying code
	Work programme

