
Slide 1SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Approximation of (H)MSC semantics
by Event Automata

Dr. Nikolai Mansurov

Dmitri Vasura
Department for CASE tools

Institute for System Programming

Moscow Russia

Slide 2SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Outline

• Motivation

• Use Case Scenario Models

• Event Automata and requirement models

• What exactly they represent

• Use Case Studio toolkit

• Visualization of scenarios

Slide 3SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Motivation

• Accelerated Development Methodology

– improve adoption of formal modeling in
industry

• Use (H)MSCs to formalize scenarios in use
case methodology to improve requirements
validation and transformation tools

Slide 4SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Summary
• MSCs are used to capture functional requirements

• “Instance-oriented” semantics of MSCs
– we are interested in the behavior of the system actor with respect to

all possible behaviors of all external actors

• Event automata are a simple representation of the
“instance-oriented” semantics for a single instance

• Requirements model is a representation of the “collective”
“instance-oriented” semantics (for multiple instances)

• “Instance-oriented” semantics provides an approximation
of the standard (H)MSC semantics

• Gaps of the “instance-oriented” semantics are related to
defects in requirements and can be detected by model
checkers

• Tool support

Slide 5SAM’2000 (C) Copyright 2000 Nikolai Mansurov

MSCs are used to capture
functional requirements

• Use Cases
– black box specification of system

– external actors and the system actor

– exemplary behavior rather than complete

– start-to-end behavior rather than individual
operation (each use case should excite the
customer)

• Use Case behavior is non-symmetric

Slide 6SAM’2000 (C) Copyright 2000 Nikolai Mansurov

 Use Case Scenario Models

UseCaseModel UseCaseDiagram
1

Actor

Instance

UseCase

HMSC

MSC

1

1

1..* 1..*

1..* 1..*

1

1
Interface

Event
1..* 1..*

1

1

Slide 7SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Semantics of use case scenario
models

• Use case scenario models specify behavior of actors

• Exemplary specified behavior of an actor A in use case
scenario model U is a trace of events S(A), corresponding
to instance A in a ground MSC M(T), which corresponds
to some traversal T(U)

• Total specified behavior of an actor A is a union of all
exemplary specified behaviors S(A) in U

• Semantics of a UCSM U is a set of all total specified
behaviors for all actors in the use case diagram, including
the system actor

Slide 8SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Outline

• Motivation

• Use Case Scenario Models

• Event Automata and requirement models
• What exactly they represent

• Use Case Studio toolkit

• Visualization of scenarios

Slide 9SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Event Automata

• Event Automata represent the total specified
behavior of actors

• Event Automata are related to the theory of
formal languages :
– total specified behavior is a language of event

sequences

– sets of sequences of events are represented by
finite state recognizer automata

Slide 10SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Event Automata

• Event Automaton, corresponding to an actor
A in a UCSM U is a finite state automaton,
such that its alphabet of input symbols is
equivalent to the set of events for A, and its
input language is equivalent to the total
specified behavior of A

Slide 11SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Event Automata

TransitionState

1..* 1

EventAutomaton

Event
1..*

1

1

Message

0..1 1..*

Slide 12SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Semantics of Event Automata

• Exemplary accepted behavior of an event
automaton E is a sequence of events M,
corresponding to a sequence of transitions
through E from start state to end state

• Exemplary accepted behavior is a
“sentence” in the language, accepted by E

• Total accepted behavior of E(A) is
equivalent to total specified behavior of A

Slide 13SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Algorithm for construction of an
Event Automaton

• Construct initial states and transitions of the event
automaton, equivalent to the nodes and flow of the HMSC.
Transitions are empty

• For each referenced basic MSC, create an event
automaton, corresponding to the sequence of events
involving the given instance

• Replace each state, corresponding to an MSC reference by
the event automaton for the referenced MSC

• Minimize the resulting event automaton by eliminating
empty transitions

Slide 14SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example: Use Case Diagram

usecase_1

usecase_2actor_a

system_b

Slide 15SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example: MSCs

actor_a system_b

s1

r1

msc usecase_1 1(1)
actor_a system_b

r2

s2

msc usecase_2 1(1)

Slide 16SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example: HMSC

usecase_1 usecase_2

Slide 17SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example

actor_a system_b

s1

r1

msc usecase_1
actor_a system_b

r2

s2

msc usecase_2

Event alphabet for system_b

Slide 18SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example: initial automaton

actor_a system_b

s1

r1

msc usecase_1
actor_a system_b

r2

s2

msc usecase_2

Slide 19SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example: automaton after
replacing references

actor_a system_b

s1

r1

msc usecase_1
actor_a system_b

r2

s2

msc usecase_2

Slide 20SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example: minimized automaton

actor_a system_b

s1

r1

msc usecase_1
actor_a system_b

r2

s2

msc usecase_2

Slide 21SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example: resulting event
automaton

in(s1,actor_a)

out(s2,actor_a)

out(r1,actor_a) in(r2,actor_a)

EA system_b

Slide 22SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Outline

• Motivation

• Use Case Scenario Models

• Event Automata and requirement models
• What exactly they represent

• Use Case Studio toolkit

• Visualization of scenarios

Slide 23SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Requirements model

• Requirements model represents “collective”
behavior of several event automata

• Concurrent processes, communicating by
asynchronous messages; each process has a single
input port

• Event Automata are generators of the
corresponding behaviors

• Dependencies on input port for send and receive
events are considered

Slide 24SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Requirements Model

RequirementsModel

Process

1..*

Transition

Input Port

State

1..* 1

EventAutomaton

Event
1..*

1

1

Message

1

1..*

0..1 1..*

1 1

Slide 25SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Semantics of requirements model
• Exemplary implemented behavior of an actor A

in requirements model R is a sequence of events
S(A), performed by the process P(A),
corresponding to some sequence of transitions
through E(A) starting from the start state

• In contrast to accepted behavior, receive event can
be part of some implemented behavior if there was
a corresponding send event

• exemplary implemented behavior is an
equivalence class of paths through the state space
of the requirements model

Slide 26SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Outline

• Motivation

• Use Case Scenario Models

• Event Automata and requirement models

• What exactly they represent
• Use Case Studio toolkit

• Visualization of scenarios

Slide 27SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Failed behavior
• Exemplary failed behavior of an actor A in

requirements model R is a sequence of events
S(A), performed by the process P(A),
corresponding to an unfinished sequence of
transitions through E(A), and P is not able to
perform any further transition
– all other processes have reached their end states without

sending the message M, responsible for the progress of
P

– the set of processes, capable of sending the message M,
exercise some failed behavior themselves (deadlock)

Slide 28SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Approximation of the standard
semantics

• Semantics of Use Case Models is already an
approximation of the standard (H)MSC semantics

• Total implemented behavior of an actor A is
equivalent to total accepted behavior of E(A) and
total failed behavior of E(A)
– total accepted behavior is included into the total

implemented behavior

– there is no other behavior than accepted of failed

– failed behavior exists

Slide 29SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Approximation of the standard
semantics

• complete implemented behavior of all
instances in requirements model
(“symmetric” traces involving events from
all instances) is more complex:
– there exists specified behavior, which is not

implemented (e.g. message overtaking)

– there exist implemented behavior, which is not
specified (interleaving of events in referenced
MSCs)

Slide 30SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Example: Failed behavior

actor_a

r2

r1

msc deadlock_2 1(1)
system_bactor_a system_b

s1

s2

msc deadlock_1 1(1)

Slide 31SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Implications for requirements
validation

• Approximation of scenarios by event
automata adds failed behavior

• This failed behavior can be related to poor
understanding of requirements (e.g.
distributed choice implies either a missing
actor or missing synchronization
requirement)

• Failed behavior can be discovered by model
checkers

Slide 32SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Implications for requirements
validation

• Use case scenario models allows designers to
concentrate on typical primary scenarios (success
stories)

• Subsequent approximation of scenarios by event
automata automatically discovers gaps in
requirements and generates failed scenarios

• Simulation of synthesized event automata models
can discover unwanted scenarios

• Corrected scenarios are added to the initial set of
scenarios, and the requirements model is
synthesized

Slide 33SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Requirements engineering
process

• capture initial system requirements in tabular form, capture
the set of external actors and use cases

• specify partial functional requirements by providing
primary scenarios for each use case

• provide secondary scenarios where necessary

• identify individual transactions or operations

• specify complete behavior of the system by arranging
transactions into an behavior graph

• validate requirements

Slide 34SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Outline

• Motivation

• Use Case Scenario Models

• Event Automata and requirement models

• What exactly they represent
• Use Case Studio toolkit
• Visualization of scenarios

Slide 35SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Use Case Studio

• The methodology is implemented in Use
Case Studio toolkit
– Validation and Generation Kernel

– Visualization tools

Slide 36SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Validation and Generation Kernel
• UCD, MSC, HMSC analyzer

• Synthesizer of Event Automata

• Code Generation platform (API to Event
Automata)

• Simulator of Event Automata

• Generator to SDL

• Generator to TTCN

Slide 37SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Visualization tools

• UML Use Case Diagram Editor

• MSC/ UML Sequence Diagram Editor

• HMSC/ UML Activity Diagram Editor

• Interface Editor

• Scenario Recorder

• HMSC “Episode Simulator”

• Model Navigator

Slide 38SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Conclusions
• We presented a framework for requirements

engineering based on formal use case scenario
models

• Event Automata representation of instances is
non-symmetric and thus provides only an
approximation of the standard (H)MSC semantics

• However it leads to intuitive structure of the
synthesized model, allows to use model checkers
for requirements validation and allows to build
transformation tools, e.g. to generate TTCN test
from requirements

Slide 39SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Visualization: Interface Editor

Slide 40SAM’2000 (C) Copyright 2000 Nikolai Mansurov

Visualization: Scenario Recorder

