Adaptation of SOMT to the Development of Systems Based upon a Standard

Juan Pablo Albaladejo Márquez
, Javier Poncela González,

José Tomás Entrambasaguas Muñoz

Dpto. de Ingeniería de Comunicaciones. Universidad de Málaga

Campus de Teatinos, s/n, 29071 Málaga

Telf: +34 952 13 27 59, Fax:+34 952 13 20 27

E-mail: Juan.Albaladejo@nokia.com, poncela@ic.uma.es

 HYPERLINK mailto:

Abstract

The use of formal languages brings many advantages to the world of the systems engineering. Those languages can be combined with the object-oriented approach to make them even more powerful. SOMT is one of the methodologies meant to be used with SDL´92, but it does not meet the needs of specific developments. In this paper, a modification of SOMT (M-SOMT) is described adapting its phases and activities to the needs of a development based upon a standard. This modified methodology has been applied to the development of the DECT network layer. Models obtained during the study are also shown.

Keywords:
SDL’92, SOMT, methodology, use cases, object model, DECT, MSC, viewpoint.

1 Introduction

Systems engineering can be seen as the successive elaboration of one series of models, that represent from different points of view, with different notations and different objectives, the system that will be implemented. One major aspect in this process is the selection of the appropriate language for each of these models. The fact that each of these models meets its requirements depends on this selection. The effort needed for its elaboration and how understandable it is also depend it.

Formal languages play a key role in the systems engineering. Although it may be true that in many cases their use makes no sense, it is also true that in many other cases their advantages over natural language or informal notations are clear.

On the other hand we find the well-known advantages associated to the use of the object orientation approach in the programming languages. This mechanism provides the software with great capabilities for its reuse, allowing its adaptation to different applications and thus, saving much effort and time. The advantages obtained are even more if we talk about structured languages as they also provide information hiding.

Formality and object-orientation are desirable features in a programming language. In a more practical plane, it is also an advantage that the language counts with the support of official standardisation organisms, which ensure its continuous development and its renewal. It is also desirable to count with the support of private companies, that provide the creation and maintenance of tools that allow its utilization. All these features are present in SDL’92 (Specification and Description Language) [ITU Z.100][OLSE89][ELLS97] and make it a very interesting choice when designing a telecommunications system.

The work presented in this paper starts from the SOMT (SDL-oriented Object Modelling Technique) methodology used in the modelling of systems using SDL’92 and adapts each of its phases to the specific needs of developments based upon a standard. This methodology was selected because of the following key reasons:

· Object-orientation is one of the features aimed for the resulting methodology and is already provided by SOMT.

· The focus presented in SOMT was considered to be very appropriate. Viewing the engineering process as the elaboration of a number of models has many advantages. Linking those models makes this advantages even more meaningful.

· Tau Telelogic 3.2 is the tool selected to carry out this research. Integration of the methodology with the tool was also considered to be a great advantage.

 The necessary changes to carry out this adaptation will be obtained as a result of the application of the original methodology to the modelling of the network level defined in the DECT (Digital Enhanced Cordless Telephony) standard [ETS 300 175]. The result will show the behaviour defined in the access profile called GAP (Generic Access Profile) [ETS 300 444] as it reduces the complexity associated to the general standard. In this way, all the advantages and disadvantages of the original methodology are shown and we will be able to determine the changes that will lead us to the final result: the M-SOMT (Modified SOMT) methodology.

In this process, the tool Tau 3.2 from Telelogic has been used. This paper includes comments on this tool, besides the ones corresponding to the methodology used and the model elaborated.

In Section 2, the DECT network level will be briefly shown. Section 3 presents the original SOMT method. In Sections 4 to 7, the models elaborated in each activity are shown. Section 8 presents the M-SOMT methodology, result of the changes made to the original SOMT. Finally, in Section 9, the conclusions of the study will be shown.

2 DECT network level

DECT architecture consists of several layers whose functions are commented here:

· Physical layer: specifies parameters such as frequencies, timing, power, bit/frame synchronisation and behaviour of transmitter and receiver.

· Medium Access Control: specifies the logical channels and how they are multiplexed and assigned to the physical channels.

· Data Link Control: defines, for the control plane, Plane C, a point to point service and a broadcast service. The point to point service is provided with two modes of operation: confirmed and not confirmed. It also offers addressing, frame delimiting, error control, segmentation, etc. The user plane, Plane U, on the other hand offers transparent transmission of frames and flow control.

· Network layer: contains the procedures, messages and information elements corresponding to each of the entities that form part of it and will be further presented.

· Interworking Unit: performs the necessary operations outside of the scope the standard to present the information to the final user.

Once presented the relative position of the network level among all the other layers defined in the standard, it is time to pay attention to it and describe its functions and the entities that are part of it. Here they are presented:

[image: image1.png]Interworking Urit (TWU)

MNCC SAP MM AP

Transaction Transaction
identifier identifier
T T

Protocol discritminator

Link
Conticl

Link Endpoirt and SAP Processing

Figure 1: DECT network level entities

· Link Control Entity: carries out the establishment and maintenance of the Plane C links between the fixed terminal and any portable terminal that may be active.

· Call Control: establishes, maintains and releases the circuit switched calls.

· Mobility Management: deals with the identification, authentication and location of terminals. In general terms, provides the necessary features to allow the secure provision of the DECT services and protection against fraudulent attacks.

These entities are the objective of the study shown in this paper. Many different models will be presented on it that represent various viewpoints of the system shown in Figure 1.

3 SOMT methodology

SOMT (SDL-oriented Object Modelling Technique) methodology [TELE97] is an adaptation of OMT to the requirements imposed for real-time distributed systems and for the use of SDL in design. The notation and other aspects have been taken directly from OMT. This makes this methodology be influenced by the unifying trend that affects the object orientation world: Unified Modelling Language [BOOC95(. Anyway, influences of other methods are also shown, like the Jacobsson method [JACO92(. From this method the concept of use cases has been taken.

SOMT methodology offers the frame that shows how to use object-oriented analysis in an SDL focused design. Such a frame is based on the description of the analysis and design of a system as the successive elaboration of activities. Each of these activities deals with some specific aspects of the development process. In order to do that, a number of models are built that documents the results of such activities. Therefore, the main information given by the methodology handles with how to make the transitions between different models. The main phases and models are shown in Figure 2.

[image: image2.png]

Figure 2: Main phases and models of SOMT

The SOMT method consists of these five mayor phases:

· Requirements Analysis: analyses the problem domain and the requirements on the system to be built. The system is considered as a black box that interacts with its environment.

· System Analysis: identifies the system architecture and its main elements so that the system meets its requirements.

· System Design: defines precisely the system architecture including detailed interfaces among its components. Considerations on the implementation strategies are also taken into account and the work is divided among the different development teams.

· Object design: gives detailed information on the group of functions offered by the system considering which of these functions are implemented for each of the objects.

· Implementation: creates the executing applications that meet the requirements

Figure 2 shows the different models used by SOMT to describe various aspects of the system. In many cases there are relations between the components of several of these models. The most important of these relations is the one that consists of some element of one of the models being the implementation of a different element in another model. This kind of relation is called implink (implementation link) in the methodology and corresponds to decisions taken during the development process. The creation and maintenance of these implinks is a key aspect of the SOMT method.

In the next sections, the models elaborated in each of the phases of the modified methodology will be shown. Furthermore, the objectives followed with this elaboration will be presented. Sometimes these objectives will be the same as those followed in the original methodology, sometimes the same models proposed in SOMT will be elaborated but other objectives will be followed and some other times the models elaborated will not correspond to SOMT.

4 Requirements Analysis

M-SOMT (Modified SOMT) methodology does not follow the elaboration of all the models proposed by SOMT. What makes this development special compared to others is that now we deal with a development based upon a standard. Specifically we will model the network level defined in the DECT standard. Due to this fact most of the tasks proposed by the original methodology will have already been done by the members of the team in charge of developing such a standard. In our case this information can be found in ETS 300 175 [ETS 300 175(. This document is a series of nine parts, of which we will consider number five, regarding the network level. This fifth part of the standard contains the same information as the models defined by SOMT for this first phase [SOMT95] and thus, the incorporation of the standard itself to the development justifies not elaborating these models.

Besides the incorporation of the standard to the development process, in this phase a data dictionary will be constructed. This dictionary consists of a list of the concepts handled in this phase together with brief explanations. As it happened before, this information is already present in the standard, but in this case the presentation of the information is so important as the content itself. This reason justifies this elaboration. Furthermore, being this the first model built in the process, the terms defined in it will be used as the starting point for the implinks, which will connect all of the models elaborated from now on within this project.

The data dictionary contains sections corresponding to nouns and actions, but none corresponding to relationships as it was proposed in SOMT. The reason for that is that the former defines concepts such as protocol layers, network level entities, states, information grouping elements, etc. This section shows also the relations between these concepts. Whereas the actions section contains explanations associated with each of the procedures carried out by the network entities such as call establishment done by CC, identification done by MM or link release done by LCE.

5 System Analysis

M-SOMT will keep the same models proposed in the original version, but the objectives of some of them will be modified, as we will explain below.

First of all, the analysis use case model will be elaborated. It will show the interaction among all the elements present in the system making use of the MSC notation. During the elaboration of this model, the necessary information will be taken from the standard. Even though, as it happened with the data dictionary in the former phase, the main idea now is how this information is selected and how it is presented.

The use case model will not contain all the information available in the standard. That would be too complicated and resource consuming. Besides it would not bring any additional advantages. It only represents one viewpoint [OLSE89] of the system. Only the interactions among the objects of the system are shown in terms of message exchange, state change and handling of timers. The rest of the operations are not considered, resulting in an incomplete vision of the system, but still very useful to get familiar with its behaviour and acquire global ideas before proceeding to model it in depth.

Once completed the use case model, it will be connected by means of implinks to the data dictionary. Each of the diagrams in the use cases will be linked to the corresponding procedure definition in the data dictionary.

As a support to the use case model, the textual analysis documentation has been elaborated. It describes the rules concerning the MSC notation adopted outside of its scope. The reason why these rules have been followed is to provide the notation with enough expressiveness to cover all of the aspects of the system corresponding to the selected viewpoint. These rules concern most of all aspects such as handling of timers in subdiagrams, expression of actions associated to the expiry of a timer or reuse of diagrams.

Finally, the methodology proposes the elaboration of an object model [BOOC95]. In this model a static picture of the system functionality will be shown, while the use case model dealt with the dynamic side of it. The objective of this model is to analyse and define the internal architecture of the system. To successfully complete this task, it is necessary to have a deep understanding of the standard. During the elaboration of the use case model, this understanding has been reached. This sets us in the right position to carry out this final model in this phase, which will be the starting point for the next one.

The classes in this model will be also connected to the corresponding definitions in the data dictionary. In this way it is possible to check how a certain concept in the data dictionary is implemented in the object model or which definition corresponds to a certain class in this model. In Figure 3 the diagram corresponding to this object model is shown. The information on the operations done by each object has been left out so that it provides a clear picture of the objects present in the model and their relations.

[image: image3.png]AnalysisLogicalStructure

wu
P_IWU F_iwy
P_LLME F_LLME
LLME
P_cC _cc

cc

P_MM F_Mm
MM

P_LCE LCE F_LCE

pLC

Figure 3: Collapsed diagram corresponding to the analysis object model

6 System Design

This phase will start with some modifications to the original SOMT. These changes are due to the limited information presented in the object model elaborated during the system analysis. In Section 5 it was shown that this model took its information out of the use case model, but this model presented a partial viewpoint of the system considering just a few aspects. This view, very convenient to reach a general understanding of the system to be modelled, turns out not to be enough to face this new phase.

M-SOMT proposes the elaboration of a design object model. By going through the standard in more detail, it will include aspects that were not taken into account in the former model. The resultant model will show all the information present in the analysis object model, together with some classes not taken into account before and the attributes of all of these classes.

The association relations between objects will be also modified although they were already present in the first model because they did not adjust to the actual behaviour of the system. The former model showed direct communication (modelled as an association relation) between the peer entities of the system. A deeper study reveals that this communication is not real, but virtual. The real communication will take place as it always happens in layered protocols by means of primitives sent to the lower layers. Figure 4 shows the relations present in the new object model, but hides the rest of new features in it such as the attributes, in order to make it clearer.

[image: image4.png]DesignLogicalStructure

CARD

wu
MM
LLME
P_IWU F_wu
P_MM P_LLME _cc _cc F_LLME [| F_MM
P_LCE cc F_LCE
P_CARD LCE F_CARD
bLC

Figure 4: Collapsed diagram corresponding to the design object model

Once elaborated this model, its objects will be linked to their peer objects in the analysis model. This way the line of implinks started in the data dictionary continues up to the final description in SDL.

The elaboration of this design object model has provided the designer with the necessary knowledge to elaborate the design module structure, which will describe the different elements that are part of the design. For each of these modules it will be shown which other modules are used and which ones use it. This way, the reuse structure within the development is shown. The information needed to carry out the elaboration of this model is taken out of design object model.

Figure 5 shows the design module structure. These are the modules included:

· Comun: contains the common behaviours shared by the fixed part and the portable part.

· ParteFija: shows the specific behaviour of the fixed part and inherits the definitions in the Comun module.

· PartePortatil: shows the specific behaviour of the portable part and inherits those defined in the Comun module.

· F_NWK: contains the structure of the fixed part of the system. Its behaviour is defined in the ParteFija module.

· P_NWK: represents the structure of the portable part of the system. Its behaviour is defined in the PartePortatil module.

[image: image5.png]DesignModuleStructure

F_NWK ParteFija
usap

) Foe

Lime £

Card Flice
Flie
FlcarD

P_NWK PartePortat

) oo

Lime usab Jeoum

Card Pilce

i

PlcARD

usap

usap

Comun

oo
Wit
Lee
Line
carD

Figure 5: Design module structure

After completion of this activity, the modules identified will be connected with the rest of descriptions made during the development. Each of the modules in this model contains definitions corresponding to some of the objects present in the design object model. Consequently, these modules will be linked to those objects by means of implinks.

The following task in M-SOMT is the elaboration of the architecture definition. In this model a logical decomposition of the system functionality is shown using the language of the final model: SDL. Blocks will be used as the basic element in the definition of architectures and they will be placed and interconnected using block diagrams. The definition of the interfaces among these blocks will be a major key, mainly if the work is going to be divided into groups.

[image: image6.png][E] ArchitectureDefinition
= ParteFija
& Fece
O Foam
O FLce
HE) F_LLME
L& F_carp
™ PartePortatil
& rece
O pom
HE) pLCE
HE) P_LLME
L& p_carD
F=y Comun
rg cc
LS
HO) Lce
O Lime
LE carp
] Fonwk

[] LLME
7) elLLME : F_LLME

elLCE :F_LCE
eCC F_CC
MM | F_MM

[] cand
laTatjeta : F_CARD

] pNwk

] LLME
eILLME : P_LLME

eCCP_CC
elLCE : P_LCE
MM | P_MM

laTatjeta : P_CARD

332 3233334333332 332323

3

33

Fija sun
F_CCspt
F_MM.spt
F_LCE.spt
F_LLME spt
F_CARD spt
Portatil sun
P_CC.spt
P_MM.spt
P_LCE.spt
P_LLME spt
P_CARD spt
Tipos.sun
CC spt
MM.spt
LCE spt
LLME spt
CARD spt

DECT2.557
LLME2 stk

Nwk2.sbk

Cardl.shk

DECTI 55y
LLME sbk

Nwk.sbk

Card.sbk

Figure 6: Architecture definition

In the definition of the interfaces, two aspects can be considered. On one hand, the static aspect, that defines the operations and services offered by a block. On the other hand, the dynamic aspect, that shows how different blocks work together to meet their common objectives. This model considers only the static definition of the interfaces. It will show not only which blocks are part of the final system, but also which operations of the ones identified in the former phase are performed by each of them. The dynamic aspect will be handled in the next phase.

The architecture definition is one of the key tasks of the methodology. It will provide the starting point for the next phase in which the formal description will be elaborated. How much advantage we take of the object orientation mechanisms provided by SDL’92 will depend on this definition. It shows the high importance of this model in the development.

The definition of the architecture proposed in M-SOMT involves a wider task than the one considered in the original methodology. It has been done by including in this definition some of the tasks originally set to the object design. The objective of this change is to make the architecture definition contain all the information included in the object model. This way, the next phase will consist only in the definition of the behaviour of each element present in the architecture, but not introducing any newer elements.

Each of the elements showed in the architecture definition models one of the modules in the design module structure. It means that the connection by implinks between these two models is elemental. By doing it, this model will be linked to the former ones. Besides, the fact that one of the elements of this model corresponds to a functional module or to a structural one will have its consequences. The formers will be modelled as definition packets, while the other ones will be shown as systems. It can be seen in Figure 6.

7 Object Design

The objective of this phase is to create a complete formal description of the system behaviour. It will consist of several SDL diagrams, mainly procedures, used to define the behaviour of the active objects.

It is clear that the architecture definition provides not only the information needed for this phase, but also the frame on which this last model will be built.

The design object model provides also some important information as it contains the list of operations that each class must implement. Being these classes implemented in the architecture definition as definition packets, the lists of operations can be seen as the enumeration of behaviours that must be modelled in each of these packets. At this point, the information from the object model has been taken by means of the Paste As concept provided by the tool. It enables the designer to copy elements of one of the models and to paste them as a different element in another model.

The operations presented in those lists were already defined in terms of message exchange, state changes and handling of timers in the use case model elaborated in the requirements analysis. So this model will contain important information for modelling the objects in SDL, at least for the primary definition.

The standards DECT and GAP will provide the rest of the information needed both in the behaviour of objects and in the interface definition. With those standards, the set of documents needed to elaborate the design object model will be completed. Anyway, the whole development has been aimed at this goal. It implies that, in a wide sense, all of the models elaborated so far have provided direct or indirect information to this task.

8 M-SOMT methodology

Now we will briefly go through the modifications that have been made over the original methodology in order to adapt it to the specific needs of our case. It will be done by comparing the phases and activities done in each of them between both versions of the methodology. The changes made will be justified.

The first of the phases proposed by SOMT has been deeply modified in M-SOMT as the study of the problem domain and the requirements imposed by it on the system has already been done by the team elaborating the standard. So, a document that contains the important information in this phase is already available. It makes the incorporation of the DECT standard the main task within this requirement analysis phase in M-SOMT.

By incorporating the standard to the development process, the elaboration of all of the other models proposed by SOMT can be left out, as none of them will provide additional information. In spite of it, a data dictionary will be elaborated with the objective of providing a list of concepts and its definitions integrated in the tool. In this way a starting point for the implinks connection is provided as well as a quick path to look up within the tool the definition of any concept used in the development process.

The system analysis phase will be carried out as it is proposed in the original methodology. The same models are elaborated and the same objectives are followed due to the fact that in this phase the study of the documentation provided by the former one is carried out. This is the reason why this phase is of high importance in order to set the basics for the rest of the models in the process, including the final formal description.

The way to study the information provided by the former phase is to elaborate another model based on it. This will be called the use case model and its elaboration will be a key step in the development of the methodology. The main thing is that the objectives of this model are limited. It will not represent all the information provided by the standard, but will choose a viewpoint and represent only the aspects of the standard having to do with it. It helps us to acquire a global view of the system.

Elaborating the analysis object-model implies an alternative way of representing the information included in the use case model. It leaves out the functional information of the entities and makes a first approach to the system structure. This is done by means of the object-oriented design and its notation that, in this way, is incorporated to the development process.

After the system analysis phase, the system design will take place. Many changes have been made at this point in M-SOMT. These changes consist not only in the elimination of some of the activities, not relevant in our case, but also in the addition of a new model not proposed in the original methodology: the design object model.

The design object model takes the information provided by the former object model and completes it with information from the standard. The result will be a new object model that will act as the backbone for the rest of tasks in this phase.

The next step will be the elaboration of the design module structure, which contains the structure of the final application. This step will consider the information supplied by the object model, together with the special features of the implementation language: SDL’92. The result will be expressed using the object analysis notation.

Finally, SDL’92 will be used in the definition of the architecture. It formalizes the division in modules proposed in the former model. But rather than a model, the definition of the architecture is an intermediate step towards the elaboration of a definitive model that will be built in the next phase starting with the result obtained at this point. However, the border between this phase and the next one has been changed in M-SOMT. In this modified version a greater number of activities have been incorporated to the system design instead of being part of the object design.

The criteria followed in SOMT are such that the architecture definition should contain all the elements related with the design structure that will appear in the SDL description. It would be done by means of using so many hierarchical block levels, as it may be necessary. These criteria leave out consequently the processes and process types.

However, in M-SOMT it has been decided to consider in the architecture definition all the elements derived from the design object model, which is the main entrance to this task. This way the definition will not only contain blocks as before, but it will also consider processes and types of processes derived from the classes present in the object model.

The methodology sets a series of guidelines that guide the evolution from the design object model to the architecture definition. Basically those guidelines identify several possible structures in the object model and several types of objects. For each of these possibilities a different SDL model is proposed. Even though this is only a reference and does not make it possible the automation of such a step as this one, in which many engineering decisions are involved. At the end, it will be a creative step guided by those guidelines and assisted by such mechanisms as Paste As, but not an automatic task.

The object design phase will consist of the description of the elements present in the architecture using SDL’92. It will be done by adding elements to the structure defined in the system design and completing each of the process types that appeared in it with the corresponding definitions of states and transitions. This way we meet the aim of the methodology: the application of SDL’92 to the modelling of systems based upon a standard.

Through this paper, every time that a model has been presented, its connection by means of implinks with the former models has been also introduced. At this point, it is necessary to explain that these connections do not correspond to the initial plan of development. Initially, it was decided to carry out a much tighter link among the models. Those links would have, for instance, attached each of the states present in the use case model to their peer states in the SDL description, each message sent or received to its definition, etc. However, Tau 3.2 is not able to handle the big amount of implinks that involves this approach. It has made necessary the reduction of its number and the planning of the connections among the models as it has been shown here.

After the object design, SOMT proposes a fifth phase called implementation in which the executing code corresponding to the description elaborated should be generated. This phase has not been taken into account in the present study due to the fact that our objective was the evaluation of each of the steps followed towards the elaboration of the SDL model. This evaluation has taken us to the proposal of the modifications over the original methodology that have been shown in this paper.

The models and phases corresponding to M-SOMT are shown in Figure 7. Its content can be compared to the one in Figure 2 were the models and phases of SOMT were shown. This offers a graphical idea of the modifications done on the original methodology.

[image: image7.png]

Figure 7: Main phases and models of M-SOMT

The resulting methodology has the advantages associated to the use of the object-oriented approach as well as the ones provided by the use of formal languages. It is also particularly adapted to the development of systems based upon a standard.

9 Conclusions

One of the major advantages of SOMT as well as one of the reasons why it was selected as the starting point of this study is the organization of the work that proposes. This work will be structured in a group of models elaborated in each phase. But this structured work would not imply any advantage if the different models were not closely related to each other and if we did not take advantage of the information shown by one of them in the elaboration of the next one.

Therefore, the key advantage lies not in the elaboration of several models, but in the use of their information in the elaboration of the next model and, above it, in the traceability provided by the implementation links or implinks.

In M-SOMT, we have tried to strengthen the use of the previous models in the elaboration of the next ones. The result is a more sequential structure of the methodology, as can be seen by comparing Figures 2 and 7. Besides, the viewpoint modelling has also been applied so that none of the models but the last one contain a complete description of the system. This is shown in Figure 7 by means of taking information out of the standard in several steps of the development in order to complete the first partial models. This focus enables us to proceed on a top-down basis going into a deeper detail level of the modelled system as the process evolves.

10 Acknowledgements

This work has been partially supported by the Comisión Interministerial de Ciencia y Tecnología under Grant 1FD97-0650.

11 References

 [BAGN83] Bagnoli-P; Cerchio-L; Saracco-R. A system design methodology based on SDL. CSELT-Rapporti-Tecnici. vol.11, no. 5. 1983.

[BOOC95(G. Booch, J. Rumbaugh. Unified Method for Object-oriented Development. Documentation Set Version 0.8. Rational Software Corporation. 1995.

 [ELLS97(J. Ellsberger, D. Hogrefe, A. Sarma. SDL: Formal Object-oriented Language for communicating Systems. Prentice Hall. 1997.

[ETS 300 175(ETS 300 175: Radio Equipment and Systems (RES); Digital European Cordless Telecommunications (DECT) Common Interface. 1996.

[ETS 300 444(ETS 300 444: Radio Equipment and Systems (RES); Digital European Cordless Telecommunications (DECT) Generic Access Profile (GAP).

[INOC96] Inocencio-E; Ricardo-M; Sato-H; Kashima-T. Combined application of SDL-92, OMT, MSC and TTCN. Formal Description Techniques IX. Theory, Application and Tools. p. 451-466. 1996.

[ITU Z.100(ITU. Recommendation Z.100 - Specification and Description Language. 1994.

[JACO92(I. Jacobsson et al. Object-oriented Software Engineering. Addison-Wesley. 1992.

[LIND91] Lindqvist-M; Kettunen-E; Rushtula-E; Tuominen-H. A seamless software development progress based on TNSDL (for telecommunication). 6th World Telecommunication Forum, vol. 1. 135-139. 1991.

[OLSE89(A. Olsen, O. Faergemand, B. Moller-Pedersen, R. Reed, J. R. W. Smith. Systems Engineering using SDL-92. North Holland. 1989.

[SOMT95] Anders Ek. http://www.telelogic.com/pdf/techpaper/SOMT.pdf. 1995

[TELE97(Telelogic SDT 3.2. Methodology Guidelines. Part 1: The SOMT Method. 1997.

� Now in Nokia Networks

Adaptation of SOMT to the development of systems based upon a standard
1
2

