Test generation based on
control and data dependencies within
multi-process SDL specifications

Olaf Henniger?, Hasan Ural®

% GMD — German National Research Center for Information Technology
Rheinstr. 75, 64295 Darmstadt, Ger many
e-mail: henniger @darmstadt.gmd.de

® School of Information Technol ogy and Engineering
University of Ottawa

Ottawa, Ontario, K1IN 6N5, Canada

e-mail: ural @site.uottawa.ca

Abstract
Control and data flow aspects of a distributed system can be identified through the analysis of
control and data dependencies that exist not only within processes, but also across process
boundaries. This paper proposes a non-interleaving model that exposes the intra-process as
well as inter-process control and data dependencies in a specification of a distributed system
given in SDL. The model facilitates the generation of tests through the application of control-
flow as well as data-flow oriented test selection criteria.

1 INTRODUCTION

In SDL [ITU92, EIl97], adistributed system is viewed as a collection of blocks and processes
communicating with each other by exchanging signals through channels and signal routes.
The externally observable behavior of a process is defined by an Extended Finite State
Machine (EFSM). A specification in SDL expresses the desired control flow and data flow
that must be established by a possible implementation of the specified system. The desired
control flow is expressed as sequences of signals exchanged between processes. The desired
data flow is expressed as relationships between the parameters associated with input signals,
the local variables of processes, and the parameters associated with output signals.

Test generation from specifications in SDL has been widely studied. The existing methods
for test generation can be roughly classified into methods with explicit test purposes and
methods with implicit test purposes. methods with explicit test purposes require information

about the test purpose or the fault model for the generated test cases as input in addition to the
specification; methods with implicit test purposes assume test purposes for the generated test
cases implicitly and usually do not require supplementary inputs in addition to the specifica-
tion.

The methods with explicit test purposes require the test designer to choose what to test and
ensure that test cases consistent with the specification and the test purposes are generated.
Most of the available test generation tools such as TGV [Fer96], SAMSTAG [Grad3],
TVEDA [Gro97], Verilog' s ObjectGeode [GEO96], Telelogic's Tau [TAU98], that are appli-
cable to system specifications of a realistic size are based on methods with explicit test pur-
poses. These methods offer much flexibility, but on the other hand they require considerable
manual effort and do not guarantee a systematic test coverage.

For methods with implicit test purposes, the picture is reversed: While offering less flexi-
bility in choosing what faults to generate test cases for, they require less manual efforts and
guarantee a systematic test coverage. Some of these methods focus on the construction of test
sequences for testing the control flow aspects. These methods abstract the control dependen-
ciesin the EFSM representation of a process as an FSM and apply FSM based test generation
methods [Dah90, Sid89]. Other methods focus on the construction of test sequences for test-
ing the data flow aspects [Sar87, Chun90, Ural91, Hen95, Ural00]. These methods identify
the data dependencies in the EFSM representation of a process by applying principles of
functional program testing [How87] or data flow analysis [Fos76]. Since these methods con-
sider only asingle EFSM and a limited SDL syntax for the EFSM representation, their appli-
cability is restricted to a small subset of specificationsin SDL. On the other hand, some meth-
ods with implicit test purposes have been proposed for systems of communicating EFSM’s.
As they need to explore the possible behavior of the system, these methods suffer from the
state-explosion problem. Different approaches to alleviate the state-explosion problem have
been proposed. [Lee93] pursues an approach similar to program dlicing, pruning the given
communicating FSM’s to contain only a subset of actions, thus yielding a set of smaller, sm-
plified specifications. [Ara9l, Hen97] aim at diminishing the state explosion by generating
noninterleaving models of the original specification by a reduced reachability analysis
approach. TestComposer [Ker99] makes use of a reduced reachability analysis approach and
implies as test purposes all transitions in the given SDL specification. Although this is a step
in the right direction, the implied test purposes do not represent the set of functionalities in the
given specification due to the fact that only an ordered set of individual transitions is a repre-
sentation of a specific functionality of the system.

This paper proposes a model, called extended message flow graph (EMFG), exposing con-
trol and data dependencies not only within processes (intra-process dependencies), but also
across process boundaries (inter-process dependencies) in a specification of a distributed sys-
tem given in SDL. This model is intended for the generation of tests through the application
of control-flow oriented as well as data-flow oriented test selection criteria [Mye79, Las33,
Nta84, How87, Fra88] proposed in the literature for software testing. As studied in [Fra88,
Har89] for block-structured programming languages such as Pascal, the application of each of
these criteria requires the identification of control and/or data dependencies in a given pro-
gram at intra-procedura or inter-procedural level. Analogoudly, for a system specification
given in SDL as a collection of communicating processes, the proposed model facilitates the
application of these criteria by exposing the intra-process dependencies within each process
and the inter-process dependencies among communicating processes. The proposed extended

message flow graph and its construction rules are in part based on the adaptation of some ear-
lier work for systems of asynchronously communicating state machines [Hen97] to specifica-
tionsin SDL.

Section 2 introduces the extended message flow graph representation of a specification. An
example is drawn from the Inres protocol specification [EII97]. Section 3 deals with the gen-
eration of data-flow oriented tests from the extended message flow graph representation of a
specification and adapts, as an example, the all-uses criterion to extended message flow
graphs. Section 4 concludes the paper.

2 EXTENDED MESSAGE FLOW GRAPH OF A SPECIFICATION
2.1 Definitions

The proposed model for an SDL specification is an extended message flow graph (EMFG),
based on message flow graphs (MFG) [Lad94]. Both MFG and EMFG are graphs representing
concurrent processes exchanging messages. An MFG focuses on the communication behavior
and control dependencies between processes and ignores pure computation statements inside
processes, whereas an EMFG is capable of representing both control and data dependencies.
An extended message flow graph (EMFG) isatriple (N, <, #) where

e Nisafinite set of labeled nodes,
e < cNxNisanirreflexive flow relation, and
e #c Nx Nisasymmetric conflict relation.

We distinguish the following types of nodes:

¢ send nodes (depicted as dots) representing outputs in the SDL specification,

¢ receive nodes (also depicted as dots) representing inputs in the SDL specification, and

e computation nodes (depicted as boxes) representing tasks and procedure calls in the SDL
specification.

In the graphic representation of an EMFG, n < n’ is represented by a directed edge from
node n to node n’. We distinguish the following types of directed edges:

e next-event edges (depicted as vertical or sloping arrows directed downwards) connecting
nodes to their successors within the same process, and

e signa edges (depicted as horizontal or sloping arrows) connecting send nodes to receive
nodes in other processes.

Next-event edges may be associated with boolean expressions representing decision predi-
cates in the SDL specification. Parallel processes are represented with their next-event edges
in parallel. The conflict relation is implicitly given in the graphic representation: Here, any
two nodesn’ and n’’ within the same process that have the same predecessor node n, such that
n<nandn < n’, areinconflict to each other, " #n’’.

With respect to their graphic representation, EMFG’s are closely related to message
sequence charts (MSC) [ITU96]. The formal definition of EMFG’sis closely related to that of
flow event structures introduced in [Bou89]. Flow event structures are a generalization of
prime event structures [Nie81] where the conflict between two events is not handed down to
their successors, and the partial order relation of causality is replaced by an intransitive flow
relation on events. Thus, an event can have different aternative enablings and flow event
structures allow more compact descriptions of behavior.

We need the following definitions, which are closely related to the definitions for flow
event structures. For asubset C N, let <¢ be the restriction of the flow relation < to C, and

<c:= <*C be the reflexive and transitive closure (i.e. a preorder) generated by <c. A configu-
ration C of an EMFG (N, <, #) isafinite subset of N such that:

e Vn,n e C.—(n#n') (i.e, Cisconflict-free),

e N <nNnAnNegCaAaneC=3dn"eCn#n’ < n(.e, Cisleft-closed up to conflicts),

e therelation <¢ is an order relation (asymmetric, reflexive, and transitive relation) (i.e., C
has no causality cycles).

Informally, a configuration of an EMFG is a partially ordered set of nodes of the EMFG
that have been executed by some stage. The order of nodesis partial as only subsequent nodes
within the same process and corresponding send and receive nodes are ordered, other nodes in
different processes are concurrent and can be executed in more than one order. A configura-
tion of an EMFG is a concept similar to atrace of a single state machine (a trace, however, is
a totally ordered sequence) or to a configuration of an event structure (which is a partially
ordered set of events).

A path (nq,n,,...,n,) in an EMFG is a sequence of nodes, such that nj < njyq for al i,
1<i<m-1, m=z2. A path (ny,n,,...,n,) is covered by a configuration C if ny,n,,...,n,, € C. Let
ITbe aset of configurations of an EMFG. A path (n4,ns,...,n,) is covered by /7if I7contains a
configuration C covering (ny,Ny,...,Ny).

2.2 Example

The construction of the EMFG of a specification is similar to reduced reachability analysis.
We do not deal here with details of the construction algorithm, but present the EMFG for an
example SDL specification. As an example, consider the well-known specification of the
Inres protocol [EII97]. The Inres protocol is used as demonstration example for many FDT
based test generation methods [FMCT95]. It provides a smple data transfer service over an
unreliable medium.

Figure 1 shows the EMFG for the initiator side of the Inres protocol. Theinitiator side con-
sists of the block Station_Ini containing the two processes Initiator and Coder, which are here
abbreviated as | and C. For easier orientation in the graphic representation, state nodes
(depicted as ovals) have been added representing the states in the SDL specification. The
repetition of a pair of state nodes stands for a loop back to the first occurrence of the pair in
the graph. The labels of the nodes and the boolean expressions associated with edges of the
EMFG are given in the first two columns of the Tables 1 and 2, respectively.

r,

1]
<disconnec>_idle >

— *
11 r\z |'Cl
cdisconnec>_idle > o

¢

Lol [s) . oo >

< wait > mm»mcmbm <disconnecd idle >

16) == ‘\
. Cwait > Cidle ™
S,
cdisconnect>idle > <= :
scs c sn
15
% cdisconnect>idie >
—vait > Cidle __ Coonnech> Cidie >
rCS
r 113, o o
112 § ==~
r15 scm r16 5(:11
connect> idle > Cconnect> idle ><disconnec>_idie >
. - \0
Csending> idle > 7 P S
. Sa Csending> Cidle >
cdisconnect>idle > Csending> idie >+ Js
Sog . cdisconnect>idie >
< Cg4 .'
9 S,
117
cdisconnech idle > Cconnect> idle >
Scy
Csending> Cidle >

Figure 1 Extended message flow graph G.

Table 1 Nodes, statements, definitions, and c-usesin EMFG G.

Node Statement Definitions and c-uses C1o humber = ¢(I.number), d(I.number)
Cci sdulid:=CR d(C.sdulid) succ(number)
Ccy sdulid:=CR d(C.sdulid) C11 counter := counter+1 c(l.counter), d(l.counter)
Ccz sdulid:=DT, d(C.sdulid), Cp Set(now +5,T)
sdu!num:=num, ¢(C.num), d(C.sdu!num), rep input MDATInd(sdu) d(C.sdu!id),d(C.sdu!num)
sduldata:=data c(C.data), d(C.sduldata) fe input CR
Ccq sdulid:=DT, d(C.sdutid), res input MDATind(sdu) d(C.sdutid),d(C.sdu!num)
sdu!num:=num, ¢(C.num), d(C.sdu!'num), fes input CR
| = |
. zﬂ;?j‘tf"_‘ g?‘a g(((c:'ﬁ;a')i a;j(C'Sd“'data) fes input MDATind(sdu) d(C.sdutid),d(C.sdulnum)
5 H - y . H y A
sdu! num:=num, c(C.num), d(C.sdutnum), ~ Tcs input DT(num, data) ggg$ggtr2)) g((gggtr;'))
sduldata:=data c(C.data), d(C.sduldata) . . o 4 :
¢, counter:=1 d(I.counter) rcr !nput MDATIind(sdu) d(C.sdutid),d(C.sdulnum)
c, Set(now+5,T) rcg input DT(num, data) ¢(DT.num), d(C.num),
: DT.data), d(C.dat
C3 counter := counter+1 c(l.counter), d(l.counter) fee input DT(num, data) ggDT.nug)) d((C.nur?1))
Ca set(now +5,T) c(DT.data), d(C.data)
Cs humber:=1 d(l.number) r, input IDATreq
Cg counter:=1 d(l.counter) r, input|ICONreq
G7 set(now +5,T) ns input CC
Cg counter := counter+1 c(l.counter), d(l.counter) s input AK(num) c(AK.num), d(1.num)
Co Set(now +5,T) ns input DR
re input IDATreq

r; input ICONreq Sciz output CC
rng timeoutT Scia output AK(sdu!'num) ¢(C.sdu!num),d(AK.num)
rg input CC Scis output DR
Ny input AK(num) c(AK.num), d(I.num) Scig output c(C.sdulid),
riy input DR MDATreq(sdu) ¢(C.sdulnum),
rni, input ICONreq c(C.sdu: Qata)
M1s input IDATreqg(data) c(IDATreq.data),d(l.data) Sew OMuItDpKEI'req (sdl) ggg:gﬂ' In?J)m)
faa input CC o(C.sdu! data)
s input AK(num) C(AK.num), d(l.num) s, output CR
M6 ?nput DR s, output IDISind
M1z |r1put ICONreq s3 output CR
fig timeout T S. output IDISInd
i input CC ss reset(T)
Ny input AK(num) C(AK.num), d(l.num) se reset(T)
1 input DR s7 output IDISind
Sc1 output CC sg output ICONconf
Scz output AK(sdu!num) c(C.sdu!num),d(AK.num) So output DT(number, c(l.number), d(DT.num),
Sz output DR data) c(l.data), d(DT.data)
Sca output c(C.sdutid) S0 output IDISind

MDATreq(sdu) S1; output DT(number, c(l.number), d(DT.num),
Scs output CC data) c(l.data), d(DT .data)
Sce output AK(sdulnum) c(C.sdulnum),d(AK.num) s;, output IDISind
Scy output DR S13 reset(T)
Scg output c(C.sdutid) S1a reset(T)

MDATreq(sdu) S5 output IDISind
Sco output CC Sis output DT(number, c(l.number), d(DT.num),
Scio output AK(sdu'num) ¢(C.sdu!num),d(AK.num) data) c(l.data), d(DT.data)
Sci1 output DR s17 output IDISind
Sciz output c(C.sdutid),

MDATreq(sdu) ¢(C.sdunum),

¢(C.sdu'data)

Table 2 Edges, boolean expressions, and p-uses in EMFG G.

(rc5, &;10) sdulid = AK p(CSdu'Id)
(res, Sci1) sdulid =DR p(C.sdulid)
(re7, idle) not (sdulid = CC or p(C.sdulid)
sdulid = AK or
sdulid = DR)
(rc7, &;13) sdulid = CC p(CSjU”d)
(re7, Sc1a) SdUlid = AK p(C.sdulid)
(rc7, &;15) sdulid = DR p(CSjU”d)
(e, S§3) counter <4 p(l.counter)
(rsy S4) counter >=4 p(l.counter)
(ri18, S17) counter < 4 p(l.counter)
(ri1g, Si12) counter >=4 p(l.counter)

(Si13 Ci10) NUM = number

p(l.num), p(I.number)

(S113; S16) Not (num = number) p(I.num), p(l.number),

and counter < 4 p(l.counter)

Edge Boolean expression P-uses
(rcp, idle) not (sdulid = CC or p(C.sdulid)
sdulid = AK or
sdulid = DR)
(re1, Sc) sdulid=CC p(C.sdulid)
(rers Scp) sdulid = AK p(C.sdulid)
(rc1, Sc3) sdulid=DR p(C.sdulid)
(rcs, idle) not (sdulid = CC or p(C.sdulid)
sdulid = AK or
sdulid = DR)
(res Scs) sdulid=CC p(C.sdulid)
(rca, Scg) Sdulid = AK p(C.sdulid)
(rcs, Sc7) sdulid=DR p(C.sdulid)
(rcs, idle) not (sdulid = CC or p(C.sdulid)
sdulid = AK or
sdulid = DR)
(rcs: Sco) Sdulid=CC p(C.sdulid)

(S113, S17) hot (num = number) p(I.num), p(l.number),

and counter >=4 p(l.counter)

3 DATA FLOW ORIENTED TEST SELECTION
3.1 Introduction

Data flow oriented test selection criteria allow the selective generation of test cases from a
specification of the system under test. These criteria establish associations between definitions
and uses of variables. Such associations are identified by tracking variables through the
specification of the system, following them as they are modified, until they are ultimately used
in outputs or to compute values for other variables. The criteria require that each of these
associations is examined at least once during testing. The intuition behind the selection of
tests based on the coverage of data flow associations is that faults in a system may lead to
incorrect values and, as aresult of propagation through computations, an error may show up at
the system’ s outpu.

We will first define the data flow associations and the test selection criterion we are inter-
ested in, i.e. the all-uses criterion, and then present the application of the criterion to EMFG’s
representing specificationsin SDL.

3.2 Classification of variable occurrences

Each variable occurrence in an EMFG is classified as being a definition, a computational use,
or apredicate use which are referred to as def, c-use, and p-use, respectively. A def of variable

X a node n (denoted by dX) is an occurrence of x by which x getsavalue. A c-use of variable

x at node n (denoted by cX) is an occurrence of x that directly affects the computation being
performed (e.g., an occurrence of x on the right-hand side of an assignment statement) or
allows one to see the result of some earlier defs (e.g., an occurrence of X in an output). A p-use
of x on edge (n,m) (denoted by p(xn,m)) is an occurrence of x which directly affects the control

flow (e.g., an occurrence of x in a boolean expression of a decision).
The following convention is used to classify each variable occurrence in an EMFG G as a
def, c-use, or p-use:

a) input s(X4,...,Xn) in areceive node contains c-uses of the actual signal parameters followed
by defs of the variables Xj,...,Xp; in the specia case of an input from the environment, it
contains only the defs of the variables Xy,..., Xp;

b) output S(X,...,Xn) in a send node contains c-uses of the variables Xy,...,X, followed by defs
of the actual signal parameters; in the special case of an output to the environment, it con-
tains only the c-uses of the variables Xy,...,Xn;

c) an assignment statement Y := expression” in a computation node contains c-uses of all vari-
ables occurring in the expression followed by a def of the variable Y;

d) a boolean expression on a next-event edge contains p-uses of all variables occurring in the
expression;

! An expression is either a constant or an n-ary function f(Yy,...,Yn), N> 1, where Y1,..., Y are variables.

e) aprocedure call? pi(Xy,...,Xm,Ems1,-.-,€n) CONtains a c-use of each variable X; (1< i < m) and
ac-use of each variable Y; occurring in an expression g, (m+1 < k < n), followed by a def of
each X;.

The classification of the variables occurring in the parameter list of a procedure call is
based on the required accuracy of data flow representation in the specification. For the pur-
poses of this paper we follow the classification of [Fra88] which is sufficient for criteria based
on individual du-pairs.

For the example in Figure 1, the classification of variable occurrences as definitions, com-
putational uses, or predicate uses is shown in the third column of Table 1 and 2.

3.3 Data flow associations

The identification of defs, c-uses, and p-uses of variables in an EMFG facilitates tracing the
flow of data and establishing data flow associations among occurrences of variables.

A path (nq,ny,...,n;_1,n;) inan EMFG G is said to be a def-clear path with respect to a vari-
able x from node n; to node n, or from node n; to edge (n,_1,n;) if either r =2, or r > 2 and
there are no definitions of x at nodes ny to n,_;. A definition dX and a c-use c}‘ form a du-
pair (represented by the tuple(dix,c}()) If there is adef-clear path with respect to x from node
i to nodej. Similarly, dX and p(xj,k) form a du-pair (represented by the tuple (dX, p(xj’k)) if
there is adef-clear path with respect to x from nodei to nodej.

Table 3 du-Pairsin the EMFG G.

No. Def Use ggfortleSt A 10 d! -counter p(l .counte)r Ci1 S Ci2s Mgy Si3
-Clear pat Ci1 rg,si3
1 dC.Sdu!id CC.Sdu!id Cc1 Sca 11 d!.counter l.counter Ciz, St Ci2, Mg:S3,Cis
Cc1 Sca Ci1 Ci3
2 dC.Sdu!id CC.Sdu!id Cc2) Scs 12 d | .counter pl counter Ci1, S1, Ci2, g, Sia
Cc2 Scs Ci1 (rs,sia)
3 d C.sdu'id CC.Sdu!id Ccsr Sc12 13 d | .number I.number Ci10s N13: S9y Cier Ci7
Ccs Sc12 c p(S Ci10)
2 ' 110 113,€110) 1150, Si13, Ci10
I
dCCé.sdu.num cC.sdutnum - Ces, Scr 14 | .number pl .number Ci10, f113: Sio Cier Ci7»
8 SC12 Ci10 (S113,5116) 150, S13: S1s
5 dC.Sdu!data CC.Sdu!data Ccas Sc12
Cos Sor 15 | .number pl .number Ci10s M113: Sy Cigr Ci7s
_ _ Ci10 (S113,5117) 1,50, Si13, Sz
6 gCsdulid ~C.sdulid Cea Scis T | |
Cca Sci6 .counter counter Ci11, Ciazs Mags Sia
7 gCsdunum C.sdulnum Ces Scis o e, 510
Cca Scis 17 | .counter pl counter Ci11, Ci1o, M18) S12
8 gCsdudata C.sduldata Ces Scis cu (15, 5112)
Cca Sci6 18 d! -counter pl counter Ci11, Ciazr M120,S113:.S16
9 JCsiid Cosduid Cos Scrr s (S113,S116)
Ccs Sc17 19 d | .counter p(l .counter) Ci11: G2, N20:S13:S17
Cli1 Si13,S117

2 A procedure call isin the form pj(X1,....Xm,em+ 1.---.€n) Where pj is the procedure identifier, X1,...,.Xm are vari-
ables representing actual infout parameters, and em+1,...,€n are EXPressions representing actual in parameters
[Ural91].

20 | .counter | counter Ci3, Cig, Mg Si3 44 C.sdulid C.sdulid rcs, idle
d p d P

Ci3 (rie,siz3) fcs (rcs,idle)
21 d ! -counter pI counter Gz, Cias Ng: Si4 45 g C-sdutid pC.sdu!id I'cs: Scio
Ci3 (rig,sia) Ics (rcs,Sc1o)
22 d!-number l.number Cis, S8 M13s So 46 g C-sdulid p(C.Sdu!id) l'es S
Cis Si9 fcs fcs,Sc11
23 d!-number l.number Cis, Sig, M13 S, Cie 47 g C-sdulid pC.Sdu!id I'cs: Sco
Cis Si11 Ci7: Mg S11 fcs (res,Sco)
24 yl.number l.number Cis, S 13, Si9: Cies 48 gC.num cC.num fcer Ces
Cis Ci1o Ci7 Ni20, Si13» Cino fce ccs
25 4 l.number pI .number Cis, Sig, M13 S9 Cies 49 gC.data cC.data fee Ces
Cis (S113,€110) ¢, 120, Si13 Cizo 55 réesd i CéSSd id e idie
26 ! .number pl.number Cis Sigs M113: Sios Cies drc'7 o p(r(.;7 lijdl|e) <
Cis (8113,8116) 7, 120, S13, Sit6 51 C.sdulid Csdulid fen S
27 ! .number pI .number s, S8, N13, S, Cie: drc'7 ' p(r(';7 ,Sc13) cnen
“s (8113,8117). 7, Tizo, S13, S17 52 4Csdlid Csiulid ren Sci
28 4 !.counter pI counter Cig: Ci7, M18, Sin1 drc} ' p(r<'37 ,éc14)
Cié (nizs,Siz1) 53 qCsdiid pCsduid fer Scis
29 d(l:.counter C(I:.counter Cies Ci7: 118 S0 Cig re7 p(rc1,sc15)
16 18
54 lcs
30 !.counter pI.Counter Cie» Ci7, N18s S22 drCé.;um C((:ZC.Qum oo G
cie (118, 8112) 55 g C-data cC.data I'ce: Cca
31 d ! -counter pI .counter Cig, Ci7, 20, Si13: S16 rcs Cca
Cis (s113,Si16)
56 | .data c!-data MN13 So
32 d!-counter l.counter Cig Ci7: Mi20, Stass ris Sig
Cis Ciu Si1er Ci11 57 4!.data ¢! data 13, Sio Cies Ci7: M18s
33 d! -counter pI .counter Cig, Ci7, 20, Si13y Si17 ris S S
Cie (S113,8117) 58 JAK.num AK.num Scio fiss
34 d ! -counter pI .counter Cig, Cig; M18, S11 Sc10 ri1s
Cig (ri1s,Sim1) 59 JAK.num AK.Um - Scia fizo
35 d! -counter pI counter Cig, Cjg, 18, Si12 Sci4 I 20
Cis (riss,si12) . 60 JAK.num AK.num Sco Mg
36 gCsdulid pCsdulid rcy idle Sc2 Mia
re1 (rcy,idle) 61 gAK.num LAK.num Sce Mo
37 4C.sdulid C.sdulid Tep, S Sce M0
rer p(r(:1,301) 62 dPT.num -DT.num S, fes
38 4Csdwlid nCsdulid Fey Sz Si1 fcs
dr01 p(l’c1,Sc2) 63 d DT .data CDT.data S11: 'es
39 Csdulid nCasdulid rew Scs Sl fes
drc1 p(rCl,scg) 64 DT.num DT.num Sie feo
40 4Csduid Csduid res idle Si16 feo
fog P(res,idle) 65 4DTdaa DT.data S co
: . Si16 fco
41 C.sdulid C.sdulid rc3: Scs
drc3 p(rc3'SC5) 66 dET.num CrDT.num S I'cs
42 Csduid Csiulid res Scs 2 <
43 g C-sdulid C.sdulid rca Sc7
res p(rc3.Sc7)

3.4 All-usescriterion

Based on the definition of a du-pair, a variety of data-flow oriented test generation criteria
have been proposed [Las83, Nta84, Fra88]. In this paper we consider the all-uses criterion
[Fra88] for illustrating the use of the EMFG model.

The all-uses criterion requires that every du-pair in a given EMFG be covered at least once
during testing. In terms of the EMFG model this means that a set 77 of configurations of an
EMFG G isto be selected covering each du-pair in G at least once. A set /7 of configurations
of an EMFG G is said to cover a du-pair in G if 7 covers a def-clear path for that du-pair.
Formally, a set 77 of configurations satisfies the all-uses criterion for an EMFG G if and only
if every du-pair in G is covered at least once by /1.

The result of the application of the all-uses criterion to the EMFG G in Figure 1 is shown
in Table 4. The smallest set of configurations that covers the shortest def-clear paths of al du-
pairs has been selected. To improve readability, subsets of related nodes are enclosed in

parentheses.

Table 4 Set of configurations satisfying the all-uses criterion for EMFG G.

No. Configuration 14 (2, G1, Si1s Gi2), (Fea Cets Sca)s (Feas Ses)s (Ngs Siss
1 (rcy idle) Ci5 Sg)» (N13: So Cis Ci7)s (Fess Cear Sc12):(TeriScaa)s
2 (rew sen) (na) (N20 S113, Si6s Ci11s Ci12)s (Feos Cess Sca7)s (Fer Scua)s
3 (rew Sc2)s (14) (200 S13» S16 Ci11s Ci12)s (Fecws Cess Sc7)
4 (rcw Sca), (s, Si2) 15 (2, Gi1, Sy Gi2), (Fea Cets Sca)s (Feas Ses)s (Nigs Siss
5 (N2 G, S1 G2, (Teas Ceas Sca)s (Fea, idl€) Ci5» Sg)» (N13: Soy Cis Ci7)s (Fees Cear Sc12):(TeriScaa)s
6 (N2 Ci1, S1 C2), (feas Cenr Sca)s (Fea Ses)y (NgsSiss (N20 S113, Si6s Ci11s Ci12)s (Feos Cess Sca7)s (Fer Scia)s
Ci5» Sg)» (N13: Soy Cies Ci7)s (Fess Ceas Sc2)s (N1ss S (20 S13» S17)
Cig» Cig)s (s Cear Scae)s (18 Si1ws Ciss Cig), (s 16 (ri2, Gi1, Si1s Gi2)s (Fez Cets Sca)s (Feas Ses)s (Nigs Siss
Ccar Scie) Ci5» Sg)» (N13: So Cis Ci7)s (Fees Cear Sc12):(TeriScaa)s
7 (N2 Ci1, S1, C2), (ear Ces Sca)s (Fea Ses)y (Mg s (20 S13, S117)
Ci5, Sig)s (13, Soy Cies Ci7)s (Fess Ceas Sc12)s (M1 S11 17 (M2, Ciay S Gi2)s (Feas Cens Sca)s (s Scs)s (Nigs Siss
Cig» Cig)s (s, Cear Scae)s (N1sy Sin2) Cis» Sg)s (N13, Sor Cies Ci7)s (ces Ceay Scn2)s (Ternidl€)
8 (N2 Ci1, S1, G2, (Teas Cens Sca)s (Feas Ses)s (Mo, Sis 18 (r2, i1, Sy Gi2)y (fea Cens Sca)s (Feas Ses)s (Nigy Siss
Ci5 S8), (N13: So, Cie Ci7)s (Fcer Cear Sc12)s (MN1sr S112) Cis, Sig)s (N13, Sty Cigs C17)s (Fcer Ceas Sc12)(Te7:Sc13):
9 (N2 Gi1, S1 G2, (Teas Ceas Sca)s (Fea Ses)s (Mo, Sis ()
Cis Sig)s (N13: Soy Cies Ci7)s (Fess Cear Sc12)(lenSea)s 19 (M2, Gty S Ci2)s (Feas Ceas Sca)s (Teas Ses)s (Nigs Siss
(20 113, Ci10)s (M113, Sios Ciss €i7), (Teer Ceas Sci2)s Ci5» Sg)» (N13: So Cis Ci7)s (Fees Cear Sc12)o(TeriSeas)s
(rers Scaa)s (N20, Siass Ciao) (21, Si14s Si5)
10 (2, Gi1, Sy Gi2), (Feas Cets Sca)s (Feas Ses)s (Nigs Siss 20 (N2 Ci1, S, Ci2), (Teas Ces Sca)s (Feas Ses)y (Ngs Sis
Ci5 Sg)» (N13: So Cis Ci7)s (Fees Cear Sc12):(TeriSeaa)s Cis» S), (Tes, idl€)
(20 S113, Ci10)s (M113, Sios Cigs €i7), (Teer Ceas Sci2)s 21 (N2 i1, S, C2), (Teas Ceas Sca)s (Fea Ses)s (Mg Sis
(rers Scaa)s (Ni20, Siaas Siaer Gy Ci12)s (Feor Cosy Scar) Cis» Sig)s (e Sco)s (M114)
11 (r2, G1, Si1s Gi2)s (Fea Cets Sca)s (Feas Ses)s (s Siss 22 (N2, C11, S, C12), (Tear Ceas Sca)s (Feas Ses)y (Mg s
Ci5» Sg)» (N13: Se, Cis Ci7)s (Fees Cear Sc12)s (Fer Cis» Si8)s (s Sco) (Mi1s)
Sc14)s (N20 Siaz» Ci10)» (M13: Sio» Cies C€i7), (Fees Ceas 23 (N2, C1, Si1y Co)s (Feos Cety Sca)s (Fess Ses)y (fios Sise
Sc12)s (fer Scua), (N20 Sz S17) Cis» Sig)s (Fess Sc1a) (Niass Si10)
12 (N2, €1, S G2, (fea, Ceas Sea), (Fess Ses), (Mo Sis, 24 (N2, Gi1, S Ci2), (eas Cens Sca)s (Feas See)y (M10)
Cis, Sig), (13, St: Cies Ci7), (e Cear Sc12), (e, 25 (N2, Gi1, S, Ci2), (Teas Cens Sea)s (Feas Se)s (N1 Ses
Sc14)s (N2 Si13: 160 Cia1s €i12)s (Feor Cess Scar)s (s S7)
Si11 Cigs Cig)s (Fcsr Ceas Scie) 26 (N2, Ci1, S, Ci2), (Teas Ceas Sca)s (Mg Si3s Cias Cia)s
13 (2, Gi1, Si1s Gi2)s (Fea Cets Sca)s (Feas Ses)s (Nigs Siss (rcas Ccor Sca)s (Mg Si3: Ci3 Cia)s (feas Cooy Sce)

Cis, Sig)s (N13, Sios Cier C17), (Feer Cear Sc12)(ferScia)s
(20 Si13» Si16» Ci11s Ci12)s (Fews Cess Scar)s (Nass S12)

27

(N2, €11 Sy €12)s (Feos Cets Sca)s (Nigs Si3s Cias Cia),
(rC41 CCZ! SCS)! (r|8! S|4)

28

(N2, G2, Sy C12)s (Feos Cets Sca)s (Nigs Sia)

Each configuration ina set 77of configurations is associated with a boolean expression
called feasibility predicate which is a conjunction of all the boolean expressions occurring on

the next-event edges within the configuration. A feasibility predicate for a configuration can
be represented as a system of equalities and inequalities. If this system has a solution, then the
corresponding configuration is called feasible. Otherwise, the configuration is called infeasi-
ble. It can be shown, by using decidability theory, that the selection of infeasible configura-
tions cannot always be avoided. Thus, in the general case, one has to determine the feasibility
of a selected configuration manually, i.e., the corresponding feasibility predicate must be
formed by using symbolic execution [Mye79] and a solution to the system of inequalities rep-
resenting the feasibility predicate must be sought.

For the particular case of this example, not all configurations in Table 4 are feasible. The
configurations 7, 8, 11, 13, 15, 16, 27, and 28 are infeasible as the predicate counter > 4
occurring on next-event edges is not satisfied within these configurations. The remaining,
feasible configurations in Table 4 do not cover the du-pairs 12, 15, 17, 19, 21, 27, 30, 33, and
35. Some of these du-pairs, namely 15, 17, 19, 21, 27, and 35, can be covered by feasible con-
figurations that are, however, not in the set of smallest configurations given in Table 4. For

instance, the du-pair 21 (d (';I-‘;O“”tef , p('r-fé"gl‘ae)r), covered by the infeasible configuration 27,

can be covered by the feasible configuration {(r|2, |1, Si1, €12), (rc2, cc1, Sca), (N8, Si3, Ci3,

C4), (rca, €c2, scs), (N8, SI3, Ci3, C14), (Ica, Cc2, Scg), (18, Si3, Ci3, C14), (rca, Cc2, Sca)s (ns,
S14)}, which traverses the loop until counter = 4. For the remaining du-pairs, namely 12, 30,

and 33, there is no feasible configuration. For instance, the du-pair 12 (d (':I-founter : p('r-f;)‘fsrrae)r)

covered by the infeasible configuration 28, cannot be covered by any feasible configuration:
Covering this du-pair requires to cover a def-clear path with respect to counter from the def of
counter in counter := 1 to its p-use in counter > 4. Therefore, in any configuration covering
this du-pair the predicate counter > 4 is not satisfied.

3.5 Mapping of selected configurationsto test cases

We assume that the tester is, in general, distributed into a main test component and several
parallel test components and that each process of the distributed system is observed by a sepa-
rate test component. Then, each configuration inthe set of configurations satisfying the all-
uses criterion for an EMFG can easily be mapped to a test case description: Following the
next-event edges between the nodes within a configuration, the externaly visible signals are
inverted (i.e. inputs of the specified system are mapped to outputs of the tester and vice-versa)
and recorded in separate behavior trees for each test component. In the specia case that one
wants signals from different concurrent processes to be observed by the same test component,
the interleavings (i.e. al possible sequences) of these signals have to be computed. The values
of signal parameters are determined by symbolic execution along the selected configuration.
At the beginning of the behavior description of the main test component, CREATE con-
structs are inserted for activating the parallel test components. If asignal of a test component
TC; isimmediately succeeded by a signal of another test component TCy, then a coordination
message from TC; to TCy is inserted into the test case description to inform TC, about the
occurrence of the signal in TC;. Conflicting inputs to the tester that are permitted by the speci-

fication, but are outside the selected configuration have to be taken into account in the test
case description as alternatives leading to INCONCLUSIVE verdicts. At the end of the
selected configuration, a PASS verdict is assigned. Finally, OTHERWISE events, leading to

FAIL verdicts, have to be added to each level of indentation containing receive events to deal
with any unexpected behavior.

The test architecture for the example, the initiator side of the Inres protocol, includes two
test components, a main test component at the upper interface of the process | (Initiator) and
aparalle test component at the lower interface of the process C (Coder). Table 5 sketches the
test case corresponding to configuration 9 in Table 4 in (relaxed) Concurrent TTCN notation
[Bau94].

Table 5 Test case corresponding to configuration 9 in Table 5.

CREATE(Medium : MediumTree)

U!ICONreq
START T(5)
U?ICONconf
CANCEL T
U!IDATreq(datal)
START T(5)
CP1?CM1
CANCEL T
U!IDATreq(data?)
START T(5)
CP1?CM1 PASS
CANCEL T
?TIMEOUT T INCONC
?TIMEOUT T INCONC
?TIMEOUT T INCONC
MediumTree

M?MDATreg((.CR, *, *.))
MIMDATind((.CC, *, *.))
M?MDATreq((.DT, 1, datal.))
MIMDATind((AK, 1, *.))
CP1!CM1
M?MDATreq((.DT, 0, data2.))
MIMDATind((AK, 0, *.))
CP1!CM1 (PASS)

4 CONCLUSIONS

We have presented extended message flow graphs as a non-interleaving model that exposes
control and data dependencies not only within processes, but also across process boundariesin
a SDL specification of a distributed system. The EMFG model is intended for the generation
of tests through the application of control-flow oriented as well as data-flow oriented test
selection criteria.

As an example, the data-flow oriented all-uses criterion has been adapted to the EMFG
model. Its application has been successfully demonstrated for an example specification of a
distributed system.

REFERENCES

[Aragl]
[Bau94]

[Bousg]

[Chun90]
[Dah90]
[EI197]

[Fero6]

[FMCT95]
[Fos76]
[Fra88]

[GEO96]
[Grag3]

[Gro97]
[Har89]
[Hen9s]
[Hen97]
[How87]
[ITU92]
[ITU96]
[Ker99]
[Kor87]
[Lad94]

[Las83]

N. Arakawa and T. Soneoka, “A test case generation method for concurrent programs”’, in
Proc. of IWPTS 91, Leidschendam, The Netherlands, 1991.

B. Baumgarten and A. Giessler, OS conformance testing methodology and TTCN, North-
Holland, 1994.

G. Boudol and I. Castellani, “Permutation of transitions: An event structure semantics for
CCSand SCCS’, in JW. de Bakker, W.-P. de Roever, G. Rozenberg (eds.), Linear time,
branching time, and partial order inlogics and models for concurrency, Lecture Notes in
Computer Science, vol. 354, Springer, 1989, pp. 411-427.

W. Chun and P.D. Amer, “Test case generation for protocols specified in Estelle”, in
Proc. of FORTE' 90, Madrid, Spain, 1990, pp. 197-210.

A.T. Dahbura, K.K. Sabnani, and M.U. Uyar, “Formal methods for generating protocol
conformance test sequences’, Proceedings of the |EEE, 78, 8, 1990, pp. 1317-1325.

J. Ellsberger, D. Hogrefe, and A. Sarma, SDL — formal object-oriented language for
communicating systems, Prentice Hall, 1997.

J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho, “Using on-the-fly verification techniques
for the generation of test suites’, in Proc. of CAV’96, New Brunswick, NJ, USA, 1996,
pp. 348-359.

FMCT guidelines on test generation methods from formal descriptions, ITU-T Q.8/10 and
ISO/JTC1/SC21/Project 54.2, 1995.

L.D. Fosdick and L.J. Osterweil, “Data flow analysis in software reliability”, ACM Com-
puting Surveys, 8, 3, 1976, pp. 305-330.

P.G. Frankl and E.J. Weyuker, “An applicable family of data flow testing criteria’, IEEE
Trans. Software Eng., 14, 10, 1988, pp. 1483-1498.

ObjectGeode, Verilog, Toulouse, France, 1996.

J. Grabowski, D. Hogrefe, and R. Nahm, “Test case generation with test purpose specifi-
cation by MSCs’, in Proc. of the 6th SDL Forum, Darmstadt, Germany, 1993.

R. Groz and N. Risser, “Eight years of experience in test generation from FDTs using
TVEDA”, in Proc. of FORTE/PSTV'’ 97, Chapman and Hall, 1997.

M.J. Harrold and M.L. Soffa, “Interprocedural data flow testing”, in Proc. of 3rd Sympo-
sium on Testing, Analysis, and Verification, Key West, Florida, 1989, pp. 158-167.

O. Henniger, A. Ulrich, and H. Konig, “ Transformation of Estelle modules aiming at test
case generation”, in Proc. of IWPTS 95, Evry, France, 1995.

O. Henniger, “On test case generation from asynchronously communicating state
machines’, in Proc. of IWTCS 97, Cheju Island, South Korea, 1997.

W.E. Howden, Functional program testing and analysis, McGraw Hill, New Y ork, 1987.
Specification and Description Language (SDL), ITU-T Recommendation Z.100, 1992.
Message Sequence Chart (MSC), ITU-T Recommendation Z.120, 1996.

A. Kerbrat, T. Jeron, and R. Groz, “ Automated test generation from SDL specifications”,
in Proc. of SDL Forum’99, Montreal, Canada, 1999, pp. 135-151.

B. Korel, “The program dependence graph in static program testing”, Info. Processing
Letters. 24, 1987, pp. 103-108.

P.B. Ladkin and S. Leue, “Interpreting message flow graphs’, Formal Aspects of Com
puting, 1994.

JW. Laski and B. Korel, “A data-flow oriented program testing strategy”, |EEE Trans.
Software Eng., vol. SE-9, no. 5, 1983, pp. 347-354.

[Lee93]
[Mye79]
[Nie81]
[Nta84]
[Sar87]
[Sid89]

[TAU9S]
[Ural91]

[Ural00]

D. Lee, K.K. Sabnani, D.M. Kristol, S. Paul, “Conformance testing of protocols specified
as communicating FSMs”, in Proc. of IEEE INFOCOM’93, San Francisco, CA, USA,
1993.

G.J. Myers, The art of software testing. New Y ork: John Wiley & Sons, 1979.

M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets, event structures and domains, part 1”,
Theoretical Computer Science, vol. 13, 1985, pp. 85-108.

S.C. Ntafos, “On required element testing”, |IEEE Trans. Software Eng., vol. SE-10,
no. 11, 1984, pp. 795-803.

B. Sarikaya, G.v. Bochmann, and E. Cerny, “A test design methodology for protocol test-
ing”, IEEE Trans. Software Eng., vol. SE-13, no. 5, 1987, pp. 518-531.

D.P. Sidhu and T.K. Leung, “Formal methods for protocol testing: A detailed study”,
|EEE Trans. Software Eng., vol. SE-15, no. 4, 1989, pp. 413-426.

Telelogic Tau 3.4, Telelogic AB, Mamo, Sweden, 1998.

H. Ural and B. Yang, “A test sequence generation method for protocol testing”, |EEE
Trans. Commun., 39, 4, 1991, pp. 514-523.

H. Ural, K. Saleh, A. Williams, “Test generation based on control and data dependencies
within system specifications in SDL”, Computer Communications, 23, 2000,
pp. 609-627.

