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Abstract
Control and data flow aspects of a distributed system can be identified through the analysis of
control and data dependencies that exist not only within processes, but also across process
boundaries. This paper proposes a non-interleaving model that exposes the intra-process as
well as inter-process control and data dependencies in a specification of a distributed system
given in SDL. The model facilitates the generation of tests through the application of control-
flow as well as data-flow oriented test selection criteria.

1 INTRODUCTION

In SDL [ITU92, Ell97], a distributed system is viewed as a collection of blocks and processes
communicating with each other by exchanging signals through channels and signal routes.
The externally observable behavior of a process is defined by an Extended Finite State
Machine (EFSM). A specification in SDL expresses the desired control flow and data flow
that must be established by a possible implementation of the specified system. The desired
control flow is expressed as sequences of signals exchanged between processes. The desired
data flow is expressed as relationships between the parameters associated with input signals,
the local variables of processes, and the parameters associated with output signals.

Test generation from specifications in SDL has been widely studied. The existing methods
for test generation can be roughly classified into methods with explicit test purposes and
methods with implicit test purposes: methods with explicit test purposes require information



about the test purpose or the fault model for the generated test cases as input in addition to the
specification; methods with implicit test purposes assume test purposes for the generated test
cases implicitly and usually do not require supplementary inputs in addition to the specifica-
tion.

The methods with explicit test purposes require the test designer to choose what to test and
ensure that test cases consistent with the specification and the test purposes are generated.
Most of the available test generation tools such as TGV [Fer96], SAMSTAG [Gra93],
TVEDA [Gro97], Verilog’s ObjectGeode [GEO96], Telelogic’s Tau [TAU98], that are appli-
cable to system specifications of a realistic size are based on methods with explicit test pur-
poses. These methods offer much flexibility, but on the other hand they require considerable
manual effort and do not guarantee a systematic test coverage.

For methods with implicit test purposes, the picture is reversed: While offering less flexi-
bility in choosing what faults to generate test cases for, they require less manual efforts and
guarantee a systematic test coverage. Some of these methods focus on the construction of test
sequences for testing the control flow aspects. These methods abstract the control dependen-
cies in the EFSM representation of a process as an FSM and apply FSM based test generation
methods [Dah90, Sid89]. Other methods focus on the construction of test sequences for test-
ing the data flow aspects [Sar87, Chun90, Ural91, Hen95, Ural00]. These methods identify
the data dependencies in the EFSM representation of a process by applying principles of
functional program testing [How87] or data flow analysis [Fos76]. Since these methods con-
sider only a single EFSM and a limited SDL syntax for the EFSM representation, their appli-
cability is restricted to a small subset of specifications in SDL. On the other hand, some meth-
ods with implicit test purposes have been proposed for systems of communicating EFSM’s.
As they need to explore the possible behavior of the system, these methods suffer from the
state-explosion problem. Different approaches to alleviate the state-explosion problem have
been proposed. [Lee93] pursues an approach similar to program slicing, pruning the given
communicating FSM’s to contain only a subset of actions, thus yielding a set of smaller, sim-
plified specifications. [Ara91, Hen97] aim at diminishing the state explosion by generating
noninterleaving models of the original specification by a reduced reachability analysis
approach. TestComposer [Ker99] makes use of a reduced reachability analysis approach and
implies as test purposes all transitions in the given SDL specification. Although this is a step
in the right direction, the implied test purposes do not represent the set of functionalities in the
given specification due to the fact that only an ordered set of individual transitions is a repre-
sentation of a specific functionality of the system.

This paper proposes a model, called extended message flow graph (EMFG), exposing con-
trol and data dependencies not only within processes (intra-process dependencies), but also
across process boundaries (inter-process dependencies) in a specification of a distributed sys-
tem given in SDL. This model is intended for the generation of tests through the application
of control-flow oriented as well as data-flow oriented test selection criteria [Mye79, Las83,
Nta84, How87, Fra88] proposed in the literature for software testing. As studied in [Fra88,
Har89] for block-structured programming languages such as Pascal, the application of each of
these criteria requires the identification of control and/or data dependencies in a given pro-
gram at intra-procedural or inter-procedural level. Analogously, for a system specification
given in SDL as a collection of communicating processes, the proposed model facilitates the
application of these criteria by exposing the intra-process dependencies within each process
and the inter-process dependencies among communicating processes. The proposed extended



message flow graph and its construction rules are in part based on the adaptation of some ear-
lier work for systems of asynchronously communicating state machines [Hen97] to specifica-
tions in SDL.

Section 2 introduces the extended message flow graph representation of a specification. An
example is drawn from the Inres protocol specification [Ell97]. Section 3 deals with the gen-
eration of data-flow oriented tests from the extended message flow graph representation of a
specification and adapts, as an example, the all-uses criterion to extended message flow
graphs. Section 4 concludes the paper.

2 EXTENDED MESSAGE FLOW GRAPH OF A SPECIFICATION

2.1 Definitions

The proposed model for an SDL specification is an extended message flow graph (EMFG),
based on message flow graphs (MFG) [Lad94]. Both MFG and EMFG are graphs representing
concurrent processes exchanging messages. An MFG focuses on the communication behavior
and control dependencies between processes and ignores pure computation statements inside
processes, whereas an EMFG is capable of representing both control and data dependencies.
An extended message flow graph (EMFG) is a triple (N, � , #) where

• N is a finite set of labeled nodes,
• �  ⊆ N × N is an irreflexive flow relation, and
• # ⊆ N × N is a symmetric conflict relation.

We distinguish the following types of nodes:

• send nodes (depicted as dots) representing outputs in the SDL specification,
• receive nodes (also depicted as dots) representing inputs in the SDL specification, and
• computation nodes (depicted as boxes) representing tasks and procedure calls in the SDL

specification.

In the graphic representation of an EMFG, n �  n’ is represented by a directed edge from
node n to node n’. We distinguish the following types of directed edges:

• next-event edges (depicted as vertical or sloping arrows directed downwards) connecting
nodes to their successors within the same process, and

• signal edges (depicted as horizontal or sloping arrows) connecting send nodes to receive
nodes in other processes.

Next-event edges may be associated with boolean expressions representing decision predi-
cates in the SDL specification. Parallel processes are represented with their next-event edges
in parallel. The conflict relation is implicitly given in the graphic representation: Here, any
two nodes n’ and n’’ within the same process that have the same predecessor node n, such that
n �  n’ and n �  n’’, are in conflict to each other, n’ # n’’.



With respect to their graphic representation, EMFG’s are closely related to message
sequence charts (MSC) [ITU96]. The formal definition of EMFG’s is closely related to that of
flow event structures introduced in [Bou89]. Flow event structures are a generalization of
prime event structures [Nie81] where the conflict between two events is not handed down to
their successors, and the partial order relation of causality is replaced by an intransitive flow
relation on events. Thus, an event can have different alternative enablings and flow event
structures allow more compact descriptions of behavior.

We need the following definitions, which are closely related to the definitions for flow
event structures. For a subset C ⊆ N, let C�  be the restriction of the flow relation �  to C, and

≤C := *
C�  be the reflexive and transitive closure (i.e. a preorder) generated by C� . A configu-

ration C of an EMFG (N, � , #) is a finite subset of N such that:

• ∀n, n’ ∈ C: ¬(n # n’) (i.e., C is conflict-free),
• n’ �  n ∧  n’ ∉ C ∧  n ∈ C ⇒ ∃ n’’ ∈ C: n’ # n’’ �  n (i.e., C is left-closed up to conflicts),
• the relation ≤C is an order relation (asymmetric, reflexive, and transitive relation) (i.e., C

has no causality cycles).

Informally, a configuration of an EMFG is a partially ordered set of nodes of the EMFG
that have been executed by some stage. The order of nodes is partial as only subsequent nodes
within the same process and corresponding send and receive nodes are ordered, other nodes in
different processes are concurrent and can be executed in more than one order. A configura-
tion of an EMFG is a concept similar to a trace of a single state machine (a trace, however, is
a totally ordered sequence) or to a configuration of an event structure (which is a partially
ordered set of events).

A path (n1,n2,...,nm) in an EMFG is a sequence of nodes, such that ni �  ni+1 for all i,

1 ≤ i ≤ m−1, m ≥ 2. A path (n1,n2,...,nm) is covered by a configuration C if n1,n2,...,nm ∈ C. Let

Π be a set of configurations of an EMFG. A path (n1,n2,...,nm) is covered by Π if Π contains a
configuration C covering (n1,n2,...,nm).

2.2 Example

The construction of the EMFG of a specification is similar to reduced reachability analysis.
We do not deal here with details of the construction algorithm, but present the EMFG for an
example SDL specification. As an example, consider the well-known specification of the
Inres protocol [Ell97]. The Inres protocol is used as demonstration example for many FDT
based test generation methods [FMCT95]. It provides a simple data transfer service over an
unreliable medium.

Figure 1 shows the EMFG for the initiator side of the Inres protocol. The initiator side con-
sists of the block Station_Ini containing the two processes Initiator and Coder, which are here
abbreviated as I and C. For easier orientation in the graphic representation, state nodes
(depicted as ovals) have been added representing the states in the SDL specification. The
repetition of a pair of state nodes stands for a loop back to the first occurrence of the pair in
the graph. The labels of the nodes and the boolean expressions associated with edges of the
EMFG are given in the first two columns of the Tables 1 and 2, respectively.



Table 1 Nodes, statements, definitions, and c-uses in EMFG G.

Node Statement Definitions and c-uses
cC1 sdu!id := CR d(C.sdu!id)
cC2 sdu!id := CR d(C.sdu!id)
cC3 sdu!id := DT,

sdu!num:=num,
sdu!data:=data

d(C.sdu!id),
c(C.num), d(C.sdu!num),
c(C.data), d(C.sdu!data)

cC4 sdu!id := DT,
sdu!num:=num,
sdu!data:=data

d(C.sdu!id),
c(C.num), d(C.sdu!num),
c(C.data), d(C.sdu!data)

cC5 sdu!id := DT,
sdu!num:=num,
sdu!data:=data

d(C.sdu!id),
c(C.num), d(C.sdu!num),
c(C.data), d(C.sdu!data)

cI1 counter := 1 d(I.counter)
cI2 set(now + 5, T)
cI3 counter := counter+1 c(I.counter), d(I.counter)
cI4 set(now + 5, T)
cI5 number := 1 d(I.number)
cI6 counter := 1 d(I.counter)
cI7 set(now + 5, T)
cI8 counter := counter+1 c(I.counter), d(I.counter)
cI9 set(now + 5, T)

cI10 number :=
succ(number)

c(I.number), d(I.number)

cI11 counter := counter+1 c(I.counter), d(I.counter)
cI12 set(now + 5, T)
rC1 input MDATind(sdu) d(C.sdu!id),d(C.sdu!num)
rC2 input CR
rC3 input MDATind(sdu) d(C.sdu!id),d(C.sdu!num)
rC4 input CR
rC5 input MDATind(sdu) d(C.sdu!id),d(C.sdu!num)
rC6 input DT(num, data) c(DT.num), d(C.num),

c(DT.data), d(C.data)
rC7 input MDATind(sdu) d(C.sdu!id),d(C.sdu!num)
rC8 input DT(num, data) c(DT.num), d(C.num),

c(DT.data), d(C.data)
rC9 input DT(num, data) c(DT.num), d(C.num),

c(DT.data), d(C.data)
rI1 input IDATreq
rI2 input ICONreq
rI3 input CC
rI4 input AK(num) c(AK.num), d(I.num)
rI5 input DR
rI6 input IDATreq

I C

rI2

cI1

rC1

sI1 rC2

cC1
sC4

idle idle idle

idle
rI3 sC1 rI4 sC2 rI5 sC3
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idle

idle
rI9 sC5 rI10 sC6 rI11 sC7
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Figure 1 Extended message flow graph G.



rI7 input ICONreq
rI8 timeout T
rI9 input CC
rI10 input AK(num) c(AK.num), d(I.num)
rI11 input DR
rI12 input ICONreq
rI13 input IDATreq(data) c(IDATreq.data),d(I.data)
rI14 input CC
rI15 input AK(num) c(AK.num), d(I.num)
rI16 input DR
rI17 input ICONreq
rI18 timeout T
rI19 input CC
rI20 input AK(num) c(AK.num), d(I.num)
rI21 input DR
sC1 output CC
sC2 output AK(sdu!num) c(C.sdu!num),d(AK.num)
sC3 output DR
sC4 output

MDATreq(sdu)
c(C.sdu!id)

sC5 output CC
sC6 output AK(sdu!num) c(C.sdu!num),d(AK.num)
sC7 output DR
sC8 output

MDATreq(sdu)
c(C.sdu!id)

sC9 output CC
sC10 output AK(sdu!num) c(C.sdu!num),d(AK.num)
sC11 output DR
sC12 output

MDATreq(sdu)
c(C.sdu!id),
c(C.sdu!num),
c(C.sdu!data)

sC13 output CC
sC14 output AK(sdu!num) c(C.sdu!num),d(AK.num)
sC15 output DR
sC16 output

MDATreq(sdu)
c(C.sdu!id),
c(C.sdu!num),
c(C.sdu!data)

sC17 output
MDATreq(sdu)

c(C.sdu!id),
c(C.sdu!num),
c(C.sdu!data)

sI1 output CR
sI2 output IDISind
sI3 output CR
sI4 output IDISind
sI5 reset(T)
sI6 reset(T)
sI7 output IDISind
sI8 output ICONconf
sI9 output DT(number,

data)
c(I.number), d(DT.num),
c(I.data), d(DT.data)

sI10 output IDISind
sI11 output DT(number,

data)
c(I.number), d(DT.num),
c(I.data), d(DT.data)

sI12 output IDISind
sI13 reset(T)
sI14 reset(T)
sI15 output IDISind
sI16 output DT(number,

data)
c(I.number), d(DT.num),
c(I.data), d(DT.data)

sI17 output IDISind

Table 2 Edges, boolean expressions, and p-uses in EMFG G.

Edge Boolean expression P-uses
(rC1, idle) not (sdu!id = CC or

sdu!id = AK or
sdu!id = DR)

p(C.sdu!id)

(rC1, sC1) sdu!id = CC p(C.sdu!id)
(rC1, sC2) sdu!id = AK p(C.sdu!id)
(rC1, sC3) sdu!id = DR p(C.sdu!id)
(rC3, idle) not (sdu!id = CC or

sdu!id = AK or
sdu!id = DR)

p(C.sdu!id)

(rC3, sC5) sdu!id = CC p(C.sdu!id)
(rC3, sC6) sdu!id = AK p(C.sdu!id)
(rC3, sC7) sdu!id = DR p(C.sdu!id)
(rC5, idle) not (sdu!id = CC or

sdu!id = AK or
sdu!id = DR)

p(C.sdu!id)

(rC5, sC9) sdu!id = CC p(C.sdu!id)

(rC5, sC10) sdu!id = AK p(C.sdu!id)
(rC5, sC11) sdu!id = DR p(C.sdu!id)
(rC7, idle) not (sdu!id = CC or

sdu!id = AK or
sdu!id = DR)

p(C.sdu!id)

(rC7, sC13) sdu!id = CC p(C.sdu!id)
(rC7, sC14) sdu!id = AK p(C.sdu!id)
(rC7, sC15) sdu!id = DR p(C.sdu!id)
(rI8, sI3) counter < 4 p(I.counter)
(rI8, sI4) counter >= 4 p(I.counter)
(rI18, sI11) counter < 4 p(I.counter)
(rI18, sI12) counter >= 4 p(I.counter)
(sI13, cI10) num = number p(I.num), p(I.number)
(sI13, sI16) not (num = number)

and counter < 4
p(I.num), p(I.number),
p(I.counter)

(sI13, sI17) not (num = number)
and counter >= 4

p(I.num), p(I.number),
p(I.counter)



3 DATA FLOW ORIENTED TEST SELECTION

3.1 Introduction

Data flow oriented test selection criteria allow the selective generation of test cases from a
specification of the system under test. These criteria establish associations between definitions
and uses of variables. Such associations are identified by tracking variables through the
specification of the system, following them as they are modified, until they are ultimately used
in outputs or to compute values for other variables. The criteria require that each of these
associations is examined at least once during testing. The intuition behind the selection of
tests based on the coverage of data flow associations is that faults in a system may lead to
incorrect values and, as a result of propagation through computations, an error may show up at
the system’s output.

We will first define the data flow associations and the test selection criterion we are inter-
ested in, i.e. the all-uses criterion, and then present the application of the criterion to EMFG’s
representing specifications in SDL.

3.2 Classification of variable occurrences

Each variable occurrence in an EMFG is classified as being a definition, a computational use,
or a predicate use which are referred to as def, c-use, and p-use, respectively. A def of variable

x at node n (denoted by x
nd ) is an occurrence of x by which x gets a value. A c-use of variable

x at node n (denoted by x
nc ) is an occurrence of x that directly affects the computation being

performed (e.g., an occurrence of x on the right-hand side of an assignment statement) or
allows one to see the result of some earlier defs (e.g., an occurrence of x in an output). A p-use

of x on edge (n,m) (denoted by x
mnp ),( ) is an occurrence of x which directly affects the control

flow (e.g., an occurrence of x in a boolean expression of a decision).
The following convention is used to classify each variable occurrence in an EMFG G as a

def, c-use, or p-use:

a) input s(X1,...,Xn) in a receive node contains c-uses of the actual signal parameters followed
by defs of the variables X1,...,Xn; in the special case of an input from the environment, it
contains only the defs of the variables X1,...,Xn;

b) output s(X1,...,Xn) in a send node contains c-uses of the variables X1,...,Xn followed by defs

of the actual signal parameters; in the special case of an output to the environment, it con-
tains only the c-uses of the variables X1,...,Xn;

c) an assignment statement Y := expression1 in a computation node contains c-uses of all vari-
ables occurring in the expression followed by a def of the variable Y;

d) a boolean expression on a next-event edge contains p-uses of all variables occurring in the
expression;

                                                
1 An expression is either a constant or an n-ary function f(Y1,...,Yn), n ≥ 1, where Y1,...,Yn are variables.



e) a procedure call2 pi(X1,...,Xm,em+1,...,en) contains a c-use of each variable Xi (1 ≤ i ≤ m) and
a c-use of each variable Yj occurring in an expression ek (m+1 ≤ k ≤ n), followed by a def of
each Xi.

The classification of the variables occurring in the parameter list of a procedure call is
based on the required accuracy of data flow representation in the specification. For the pur-
poses of this paper we follow the classification of [Fra88] which is sufficient for criteria based
on individual du-pairs.

For the example in Figure 1, the classification of variable occurrences as definitions, com-
putational uses, or predicate uses is shown in the third column of Table 1 and 2.

3.3 Data flow associations

The identification of defs, c-uses, and p-uses of variables in an EMFG facilitates tracing the
flow of data and establishing data flow associations among occurrences of variables.

A path (n1,n2,...,nr-1,nr) in an EMFG G is said to be a def-clear path with respect to a vari-

able x from node n1 to node nr or from node n1 to edge (nr-1,nr) if either r = 2, or r > 2 and

there are no definitions of x at nodes n2 to nr-1. A definition x
id  and a c-use x

jc  form a du-

pair (represented by the tuple ( x
id , x

jc )) if there is a def-clear path with respect to x from node

i to node j. Similarly, x
id  and x

kjp ),(  form a du-pair (represented by the tuple ( x
id , x

kjp ),( )) if

there is a def-clear path with respect to x from node i to node j.

Table 3 du-Pairs in the EMFG G.

                                                
2 A procedure call is in the form pi(X1,...,Xm,em+1,...,en) where pi is the procedure identifier, X1,...,Xm are vari-
ables representing actual in/out parameters, and em+1,...,en are expressions representing actual in parameters
[Ural91].

No. Def Use Shortest
def-clear path

1 idsduC
cC

d !.
1

idsduC
sC

c !.
4

cC1, sC4

2 idsduC
cC

d !.
2

idsduC
sC

c !.
8

cC2, sC8

3 idsduC
cC

d !.
3

idsduC
sC

c !.
12

cC3, sC12

4 numsduC
cC

d !.
3

numsduC
sC

c !.
12

cC3, sC12

5 datasduC
cC

d !.
3

datasduC
sC

c !.
12

cC3, sC12

6 idsduC
cC

d !.
4

idsduC
sC

c !.
16

cC4, sC16

7 numsduC
cC

d !.
4

numsduC
sC

c !.
16

cC4, sC16

8 datasduC
cC

d !.
4

datasduC
sC

c !.
16

cC4, sC16

9 idsduC
cC

d !.
5

idsduC
sC

c !.
17

cC5, sC17

10 counterI
cI

d .
1

counterI
sr II

p .
),( 38

cI1, sI1, cI2, rI8, sI3

11 counterI
cI

d .
1

counterI
cI

c .
3

cI1, sI1, cI2, rI8,sI3,cI3

12 counterI
cI

d .
1

counterI
sr II

p .
),( 48

cI1, sI1, cI2, rI8, sI4

13 numberI
cI

d .
10

numberI
cs II

p .
),( 1013

cI10, rI13, sI9, cI6, cI7,
rI20, sI13, cI10

14 numberI
cI

d .
10

numberI
ss II

p .
),( 1613

cI10, rI13, sI9, cI6, cI7,
rI20, sI13, sI16

15 numberI
cI

d .
10

numberI
ss II

p .
),( 1713

cI10, rI13, sI9, cI6, cI7,
rI20, sI13, sI17

16 counterI
cI

d .
11

counterI
sr II

p .
),( 1118

cI11, cI12, rI18, sI11

17 counterI
cI

d .
11

counterI
sr II

p .
),( 1218

cI11, cI12, rI18, sI12

18 counterI
cI

d .
11

counterI
ss II

p .
),( 1613

cI11, cI12, rI20,sI13,sI16

19 counterI
cI

d .
11

counterI
ss II

p .
),( 1713

cI11, cI12, rI20,sI13,sI17



20 counterI
cI

d .
3

counterI
sr II

p .
),( 38

cI3, cI4, rI8, sI3

21 counterI
cI

d .
3

counterI
sr II

p .
),( 48

cI3, cI4, rI8, sI4

22 numberI
cI

d .
5

numberI
sI

c .
9

cI5, sI8, rI13, sI9

23 numberI
cI

d .
5

numberI
sI

c .
11

cI5, sI8, rI13, sI9, cI6,
cI7, rI18, sI11

24 numberI
cI

d .
5

numberI
cI

c .
10

cI5, sI8, rI13, sI9, cI6,
cI7, rI20, sI13, cI10

25 numberI
cI

d .
5

numberI
cs II

p .
),( 1013

cI5, sI8, rI13, sI9, cI6,
cI7, rI20, sI13, cI10

26 numberI
cI

d .
5

numberI
ss II

p .
),( 1613

cI5, sI8, rI13, sI9, cI6,
cI7, rI20, sI13, sI16

27 numberI
cI

d .
5

numberI
ss II

p .
),( 1713

cI5, sI8, rI13, sI9, cI6,
cI7, rI20, sI13, sI17

28 counterI
cI

d .
6

counterI
sr II

p .
),( 1118

cI6, cI7, rI18, sI11

29 counterI
cI

d .
6

counterI
cI

c .
8

cI6, cI7, rI18, sI11, cI8

30 counterI
cI

d .
6

counterI
sr II

p .
),( 1218

cI6, cI7, rI18, sI12

31 counterI
cI

d .
6

counterI
ss II

p .
),( 1613

cI6, cI7, rI20, sI13, sI16

32 counterI
cI

d .
6

counterI
cI

c .
11

cI6, cI7, rI20, sI13,
sI16, cI11

33 counterI
cI

d .
6

counterI
ss II

p .
),( 1713

cI6, cI7, rI20, sI13, sI17

34 counterI
cI

d .
8

counterI
sr II

p .
),( 1118

cI8, cI9, rI18, sI11

35 counterI
cI

d .
8

counterI
sr II

p .
),( 1218

cI8, cI9, rI18, sI12

36 idsduC
rC

d !.
1

idsduC
idlerC

p !.
),( 1

rC1, idle

37 idsduC
rC

d !.
1

idsduC
sr CC

p !.
),( 11

rC1, sC1

38 idsduC
rC

d !.
1

idsduC
sr CC

p !.
),( 21

rC1, sC2

39 idsduC
rC

d !.
1

idsduC
sr CC

p !.
),( 31

rC1, sC3

40 idsduC
rC

d !.
3

idsduC
idlerC

p !.
),( 3

rC3, idle

41 idsduC
rC

d !.
3

idsduC
sr CC

p !.
),( 53

rC3, sC5

42 idsduC
rC

d !.
3

idsduC
sr CC

p !.
),( 63

rC3, sC6

43 idsduC
rC

d !.
3

idsduC
sr CC

p !.
),( 73

rC3, sC7

44 idsduC
rC

d !.
5

idsduC
idlerC

p !.
),( 5

rC5, idle

45 idsduC
rC

d !.
5

idsduC
sr CC

p !.
),( 105

rC5, sC10

46 idsduC
rC

d !.
5

idsduC
sr CC

p !.
),( 115

rC5, sC11

47 idsduC
rC

d !.
5

idsduC
sr CC

p !.
),( 95

rC5, sC9

48 numC
rC

d .
6

numC
cC

c .
3

rC6, cC3

49 dataC
rC

d .
6

dataC
cC

c .
3

rC6, cC3

50 idsduC
rC

d !.
7

idsduC
idlerC

p !.
),( 7

rC7, idle

51 idsduC
rC

d !.
7

idsduC
sr CC

p !.
),( 137

rC7, sC13

52 idsduC
rC

d !.
7

idsduC
sr CC

p !.
),( 147

rC7, sC14

53 idsduC
rC

d !.
7

idsduC
sr CC

p !.
),( 151

rC7, sC15

54 numC
rC

d .
8

numC
cC

c .
4

rC8, cC4

55 dataC
rC

d .
8

dataC
cC

c .
4

rC8, cC4

56 dataI
rI

d .
13

dataI
sI

c .
9

rI13, sI9

57 dataI
rI

d .
13

dataI
sI

c .
11

rI13, sI9, cI6, cI7, rI18,
sI11

58 numAK
sC

d .
10

numAK
rI

c .
15

sC10, rI15

59 numAK
sC

d .
14

numAK
rI

c .
20

sC14, rI20

60 numAK
sC

d .
2

numAK
rI

c .
4

sC2, rI4

61 numAK
sC

d .
6

numAK
rI

c .
10

sC6, rI10

62 numDT
sI

d .
11

numDT
rC

c .
8

sI11, rC8

63 dataDT
sI

d .
11

dataDT
rC

c .
8

sI11, rC8

64 numDT
sI

d .
16

numDT
rC

c .
9

sI16, rC9

65 dataDT
sI

d .
16

dataDT
rC

c .
9

sI16, rC9

66 numDT
sI

d .
9

numDT
rC

c .
6

sI9, rC6

67 dataDT
sI

d .
9

dataDT
rC

c .
6

sI9, rC6

3.4 All-uses criterion

Based on the definition of a du-pair, a variety of data-flow oriented test generation criteria
have been proposed [Las83, Nta84, Fra88]. In this paper we consider the all-uses criterion
[Fra88] for illustrating the use of the EMFG model.



The all-uses criterion requires that every du-pair in a given EMFG be covered at least once
during testing. In terms of the EMFG model this means that a set Π of configurations of an
EMFG G is to be selected covering each du-pair in G at least once. A set Π of configurations
of an EMFG G is said to cover a du-pair in G if Π covers a def-clear path for that du-pair.
Formally, a set Π of configurations satisfies the all-uses criterion for an EMFG G if and only
if every du-pair in G is covered at least once by Π.

The result of the application of the all-uses criterion to the EMFG G in Figure 1 is shown
in Table 4. The smallest set of configurations that covers the shortest def-clear paths of all du-
pairs has been selected. To improve readability, subsets of related nodes are enclosed in
parentheses.

Table 4 Set of configurations satisfying the all-uses criterion for EMFG G.

No. Configuration
1 (rC1, idle)
2 (rC1, sC1), (rI3)
3 (rC1, sC2), (rI4)
4 (rC1, sC3), (rI5, sI2)
5 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, idle)
6 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9,sI5,

cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12), (rI18, sI11,
cI8, cI9), (rC8, cC4, sC16), (rI18, sI11, cI8, cI9), (rC8,
cC4, sC16)

7 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12), (rI18, sI11,
cI8, cI9), (rC8, cC4, sC16), (rI18, sI12)

8 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12), (rI18, sI12)

9 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),(rC7,sC14),
(rI20, sI13, cI10), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),
(rC7, sC14), (rI20, sI13, cI10)

10 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),(rC7,sC14),
(rI20, sI13, cI10), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),
(rC7, sC14), (rI20, sI13, sI16, cI11, cI12), (rC9, cC5, sC17)

11 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12), (rC7,
sC14), (rI20, sI13, cI10), (rI13, sI9, cI6, cI7), (rC6, cC3,
sC12), (rC7, sC14), (rI20, sI13, sI17)

12 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12), (rC7,
sC14), (rI20, sI13, sI16, cI11, cI12), (rC9, cC5, sC17), (rI18,
sI11, cI8, cI9), (rC8, cC4, sC16)

13 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),(rC7,sC14),
(rI20, sI13, sI16, cI11, cI12), (rC9, cC5, sC17), (rI18, sI12)

14 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),(rC7,sC14),
(rI20, sI13, sI16, cI11, cI12), (rC9, cC5, sC17), (rC7, sC14),
(rI20, sI13, sI16, cI11, cI12), (rC9, cC5, sC17)

15 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),(rC7,sC14),
(rI20, sI13, sI16, cI11, cI12), (rC9, cC5, sC17), (rC7, sC14),
(rI20, sI13, sI17)

16 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),(rC7,sC14),
(rI20, sI13, sI17)

17 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12), (rC7,idle)

18 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),(rC7,sC13),
(rI19)

19 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rI13, sI9, cI6, cI7), (rC6, cC3, sC12),(rC7,sC15),
(rI21, sI14, sI15)

20 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rC5, idle)

21 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rC5, sC9), (rI14)

22 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rC5, sC10), (rI15)

23 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC5), (rI9, sI5,
cI5, sI8), (rC5, sC11), (rI16, sI10)

24 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC6), (rI10)
25 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rC3, sC7), (rI11, sI6,

sI7)
26 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rI8, sI3, cI3, cI4),

(rC4, cC2, sC8), (rI8, sI3, cI3, cI4), (rC4, cC2, sC8)
27 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rI8, sI3, cI3, cI4),

(rC4, cC2, sC8), (rI8, sI4)
28 (rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rI8, sI4)

Each configuration in a set Π of configurations is associated with a boolean expression
called feasibility predicate which is a conjunction of all the boolean expressions occurring on



the next-event edges within the configuration. A feasibility predicate for a configuration can
be represented as a system of equalities and inequalities. If this system has a solution, then the
corresponding configuration is called feasible. Otherwise, the configuration is called infeasi-
ble. It can be shown, by using decidability theory, that the selection of infeasible configura-
tions cannot always be avoided. Thus, in the general case, one has to determine the feasibility
of a selected configuration manually, i.e., the corresponding feasibility predicate must be
formed by using symbolic execution [Mye79] and a solution to the system of inequalities rep-
resenting the feasibility predicate must be sought.

For the particular case of this example, not all configurations in Table 4 are feasible. The
configurations 7, 8, 11, 13, 15, 16, 27, and 28 are infeasible as the predicate counter ≥ 4
occurring on next-event edges is not satisfied within these configurations. The remaining,
feasible configurations in Table 4 do not cover the du-pairs 12, 15, 17, 19, 21, 27, 30, 33, and
35. Some of these du-pairs, namely 15, 17, 19, 21, 27, and 35, can be covered by feasible con-
figurations that are, however, not in the set of smallest configurations given in Table 4. For

instance, the du-pair 21 ( counterI
cI

d .
3

, counterI
sr II

p .
),( 48

), covered by the infeasible configuration 27,

can be covered by the feasible configuration {(rI2, cI1, sI1, cI2), (rC2, cC1, sC4), (rI8, sI3, cI3,
cI4), (rC4, cC2, sC8), (rI8, sI3, cI3, cI4), (rC4, cC2, sC8), (rI8, sI3, cI3, cI4), (rC4, cC2, sC8), (rI8,
sI4)}, which traverses the loop until counter = 4. For the remaining du-pairs, namely 12, 30,

and 33, there is no feasible configuration. For instance, the du-pair 12 ( counterI
cI

d .
1

, counterI
sr II

p .
),( 48

),

covered by the infeasible configuration 28, cannot be covered by any feasible configuration:
Covering this du-pair requires to cover a def-clear path with respect to counter from the def of
counter in counter := 1 to its p-use in counter ≥ 4. Therefore, in any configuration covering
this du-pair the predicate counter ≥ 4 is not satisfied.

3.5 Mapping of selected configurations to test cases

We assume that the tester is, in general, distributed into a main test component and several
parallel test components and that each process of the distributed system is observed by a sepa-
rate test component. Then, each configuration in the set of configurations satisfying the all-
uses criterion for an EMFG can easily be mapped to a test case description: Following the
next-event edges between the nodes within a configuration, the externally visible signals are
inverted (i.e. inputs of the specified system are mapped to outputs of the tester and vice-versa)
and recorded in separate behavior trees for each test component. In the special case that one
wants signals from different concurrent processes to be observed by the same test component,
the interleavings (i.e. all possible sequences) of these signals have to be computed. The values
of signal parameters are determined by symbolic execution along the selected configuration.

At the beginning of the behavior description of the main test component, CREATE con-
structs are inserted for activating the parallel test components. If a signal of a test component
TCi is immediately succeeded by a signal of another test component TCk, then a coordination
message from TCi to TCk is inserted into the test case description to inform TCk about the
occurrence of the signal in TCi. Conflicting inputs to the tester that are permitted by the speci-

fication, but are outside the selected configuration have to be taken into account in the test
case description as alternatives leading to INCONCLUSIVE verdicts. At the end of the
selected configuration, a PASS verdict is assigned. Finally, OTHERWISE events, leading to



FAIL verdicts, have to be added to each level of indentation containing receive events to deal
with any unexpected behavior.

The test architecture for the example, the initiator side of the Inres protocol, includes two
test components, a main test component at the upper interface of the process I (Initiator ) and
a parallel test component at the lower interface of the process C (Coder). Table 5 sketches the
test case corresponding to configuration 9 in Table 4 in (relaxed) Concurrent TTCN notation
[Bau94].

Table 5 Test case corresponding to configuration 9 in Table 5.

CREATE(Medium : MediumTree)
U!ICONreq

START T(5)
U?ICONconf

CANCEL T
U!IDATreq(data1)

START T(5)
CP1?CM1

CANCEL T
U!IDATreq(data2)

START T(5)
CP1?CM1 PASS

CANCEL T
?TIMEOUT T INCONC

?TIMEOUT T INCONC
?TIMEOUT T INCONC

MediumTree
M?MDATreq((.CR, *, *.))

M!MDATind((.CC, *, *.))
M?MDATreq((.DT, 1, data1.))

M!MDATind((.AK, 1, *.))
CP1!CM1

M?MDATreq((.DT, 0, data2.))
M!MDATind((.AK, 0, *.))

CP1!CM1 (PASS)

4 CONCLUSIONS

We have presented extended message flow graphs as a non-interleaving model that exposes
control and data dependencies not only within processes, but also across process boundaries in
a SDL specification of a distributed system. The EMFG model is intended for the generation
of tests through the application of control-flow oriented as well as data-flow oriented test
selection criteria.

As an example, the data-flow oriented all-uses criterion has been adapted to the EMFG
model. Its application has been successfully demonstrated for an example specification of a
distributed system.
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