
��������������	��
��
	�����	
��
�	���	�������������������	������	�

J. M. Alvarez, M. Díaz, L. M. Llopis, E. Pimentel, J.M. Troya
{alvarezp,mdr,luisll,ernesto,troya}@lcc.uma.es
Dpto. Lenguajes y Ciencias de la Computación

Universidad de Málaga
Campus de Teatinos - 29071

Málaga - SPAIN

��������
The usage of formal description techniques (FDT) has arisen as a promising way of
dealing the increasing complexity of embedded real-time systems. However, FDT
do not take into account non-functional aspects, as the time requirements, that are
especially important in the context of this kind of systems. In this paper, a method
to predict the timing behaviour of real-time systems designed with SDL is
proposed. In addition, if the system does not meet the time requirements we
propose a set of heuristics to redesign the system in order to meet the time
constraints. These techniques will also help us to consider the real-time
requirements in the first stages in the design. To illustrate our proposal, an example
of a computerized numerical control (CNC) machine is presented.

������ �: SDL, real-time embedded systems, schedulability analysis, redesign

!"� ����#�����#�

Nowadays, real-time embedded computers or controllers can be found everywhere, both in
very simple devices as microwave ovens, washing machines and in professional environments
as medical life or nuclear power plant controllers. These real time systems are spreading to more
and more new fields and their scope, complexity and criticality have grown dramatically.

However a great part of the complexity of these real-time systems comes not from the
functional requirements but from the non-functional ones. These systems have to meet some
non-functional requirements (safety, robustness and timeliness) that make them more difficult to
develop than other systems. Most of these systems are controllers that have to respond in a
certain period of time. A lost deadline can mean a wrong computation and a system failure.

The usage of formal description techniques (FDT) has arisen as a promising way to deal with
the increasing complexity of real-time systems. These techniques were originally developed for
the design of telecommunications systems, and for this reason, they were designed to cope with
specific characteristics like concurrency, reactivity, etc that are common to real-time systems.
One of the most widely extended FDT is the Specification and Description Language (SDL),
which is an ITU standard [1] and it is currently well supported by commercial tools like SDT
[2]. SDL is based on Extended Finite State Communicating Machines and it can be used
through all the development cycle.

However, SDL presents difficulties, common to other message-based models, to express
real-time constraints and to prevent real-time anomalies. In [3][4] these problems were
addressed and some solutions were given, defining a predictable execution model for embedded

real-time systems designed with SDL. A complete object-oriented methodology for embedded
real-time systems is proposed in [5].

On the other hand, Rate-Monotonic Analysis (RMA) [6] provides a collection of quantitative
methods that enable the analysis and prediction of the timing behaviour of real-time systems.
This analysis can help us to organise processes and resources in our design to make possible to
predict the timing behaviour of the final system.

In this paper, we propose to integrate RMA in the SDL design of real-time applications. An
initial study for this integration was proposed in [7]. Based on these previous works and [13],
we propose a more complete analysis. However, the analysis must help not only to predict the
timing behaviour but, also, to think in redesign solutions in the system to get that it meets the
timing requirements. In order to achieve it and based on our experiences, we present a set of
techniques to redesign the system in order to meet the imposed deadlines.

This paper is organized as follows. In section 2 we survey the real-time execution model for
SDL to integrate schedulability analysis. In section 3 the real-time analysis for systems
specified in SDL is proposed. In section 4 a set of heuristics to redesign a SDL system in order
to meet the time requirements of the events in the system are proposed. To illustrate our
proposals, an example of a computerized numerical control (CNC) machine to produce
workpieces designed by the user is presented in section 5. Last section presents some
conclusions and future work.

!"!"���$��� ����%

 There exist several interesting proposals related to our work. For example, [9] designs real-
time systems with UML methodology including timing constraints in the different phases of the
development. It includes patterns and frameworks as help in the development of this kind of
systems but it does not allow any kind of timing analysis.

In other interesting work, [10], it is shown how real-time scheduling theory may be applied
to ROOM [11] models and they provide certain guidelines for the efficient execution. These
works are very useful but the execution model is different and they do not study the systems to
meet the response times. Also [12] shows how schedulability analysis can be integrated with
object-oriented design developed using UML-RT[8] [9].

In [13] a schedulability analysis of tasks with precedence relations in distributed systems is
presented. This analysis is very useful but it is necessary to adapt it to the SDL characteristics in
order to get an accurate result in the calculation of the timing behaviour of the system.

Some important works have been developed in performance engineering with SDL. For
example, in [15] a new approach for early performance prediction based on MSC specified
systems in the context of SDL is presented. Also [16] presents a framework that demonstrates
the relationship between formally specified SDL systems and appropriate performance analysis.
In [17][18] extensions to describe timing constraints are proposed.

&"� ��������'�(�	�)	����#��
#�	�

In this section, the definition of the execution model for systems specified with SDL
presented in [5] is summarized. This model has to be considered in order to get the integration
of the schedulability analysis.

The execution model is based on fixed priority preemptive scheduling, however we do not
assign fixed priorities directly to processes but to process transitions. The process priorities can
vary from one state to another depending on the transitions that can be carried out in the current
state (taking into account the queued signals). Processes are scheduled according to these
dynamic priorities, although the schedulability analysis is based on the transition priorities,
which are fixed. Transitions can be preempted by higher priority ready transitions of other
processes, but never by a transition of the same process, i.e. if a process transition with higher
priority becomes ready while it is executing another transition, this transition is delayed until the
current one has finished. This may cause an increment of the response time of events, but this
constraint is necessary in order to maintain SDL process execution semantics. Assuming this,
processes are preemptively scheduled according to their dynamic priorities. In order to show
how the process priorities are calculated we first define the following sets and functions:

• Process, States and Signals: the set of system processes, process states and
signals.

• The function sig defined as

sig: Process x States →℘ (Signals x Ν)

that returns pairs (signal,priority) indicating the signals that can be received
and the priority assigned to the transition associated to that signal.

• The function received defined as

received: Process → Signals

received(P) returns the signals that are currently in process P queue.

Priorities are calculated as follows:
• Initially, every process has a default priority or the priority assigned to the its START

transition.

• Every time signal s is received in state e by process P, the priority changes according
with the following rule:

{ }{),(),(),(
)(:)(

��������������	
�
�
���������������

∈
=

The new priority is the maximum between the current priority and the priority of the
transition enabled by the signal reception, but only if that signal can be accepted in the
current state. If the process was inactive, it can become active interrupting the current
executing process, and if it was active it continues its execution with the new priority. In
this case, this priority change can be considered a kind of priority inheritance between
the transition currently under execution and the next transition to be achieved by that
process.

• When process P changes to state e:

{ })(),(),(::)(����������
����������	
����� ∈∈=

Every time a process finishes a transition, its priority is recalculated for being equal to
the priority of the higher priority enabled transition.

Assigning priorities in this way, we always execute the transition with the highest priority,
except when that transition belongs to the current executing process. In this case, we have to

consider the executing transition time as blocking time for the new high priority task. This
blocking source is called ����
�� ��	���
���� ��������. However, this effect can be minimized
during design time trying to avoid having a single process attending to possibly conflicting
concurrent events

*"� �	��
��
	���������

In this section we illustrate how the timing behavior analysis of a complete system can be
achieved. An initial study for the integration of the schedulability analysis in SDL was proposed
in [5] and [7]. Based on these previous works and [13] we propose a more complete analysis.

3.1.�Basic SDL Set

In this section we describe the characteristics that the systems specified in SDL have to
carry out to integrate the schedulability analysis. These characteristics do not reduce the
expressiveness of SDL but indicate the way to specify the system to be able to integrate the real
time analysis. The initial considered set is composed by n SDL processes where each process
state has one or more signal receptions and zero or more signal sendings, that is, a transition in a
SDL process can activate several transitions in the system. In figure 1 we can see two possible
examples of transitions to carry out the schedulability analysis. Every transition in the SDL
system is labelled with a transition priority and, in order to do the timing analysis, all the
transitions will have associated a worst case execution time (WCET).

Process Transitions 1(1)

e

in1 with
priority x

in2 with
priority z

’task1’ ’task2’

out1 out2

e2 e3

Process transitions2 1(1)

e

in1 with
priority x

in2 with
priority z

in3 with
priority x

’task1’ ’task2’ ’task3’

out1 e2 −

e1

Figure 1. SDL Basic Set

We consider the response time of a external event in the system as the sum of the response
times of the transitions that take part in the response to the event. If we see the example of the
figure 2, there are two external events which response sequence is composed by the transitions
senv1, s1, s2 for the external event ev1 and senv2, s3, s4 for the external event ev2.

For instance, we obtain the response time of the event ev1 by summing up the response times
of the transitions activated by the signals senv1, s1 and s2.

Block Blksyst 1(1)
SIGNAL S4,S1,S2,S3;

ProcessH ProcessM

ProcessL

EnvBlk
EnvH

Senv1

RouHM
S1

RouMH
S4

RouML

S2

RouLM
S3

EnvBlk EnvL

Senv2

Process ProcessH 1(1)

Wait_For_Signal

Senv1 with
priority 1

S4 with
priority 2

’Task’ ’Task’

S1 −

−

Process ProcessM 1(1)

Wait_For_Signal

S1 with
priority 2

S3 with
priority 3

’Task’ ’Task’

S2 S4

− −

Process ProcessL 1(1)

Wait_For_Signal

Senv2 with
priority 3

S2 with
priority 1

’Task’ ’Task’

S3 −

−

Figure 2. Response to external events

3.2.�Response Time Calculation

To calculate the response time of a transition in a SDL system, we take into account the
interference of the higher priority transitions and the blocking time of the lower priority
transitions.

We can add the following aspects with respect to [13] to get more accurate results:

• There exist precedence relations between the transitions that respond to an external
event. It can reduce the number of transitions that participate in the interference
calculation.

• Also, the SDL semantics influences in the response time.

In the examples used to calculate the response times we have got improvements between
25% - 32% in the transitions that are affected by the above aspects.

In the following subsections we consider a set of external events S1,...,Sn and the sequence of
transitions ti1,...,tim that respond to every external event Si. All these transitions belong to the
SDL processes in the system.

3.2.1.�Precedence Relations.

Let us suppose an external event Si composed by the sequence of transitions ti1,...,tim that
respond to this event. If we want to calculate the interference of the tasks of the event Si over
transition tab that belongs to event Sa, we will take into account all the transitions with higher or
equal priority than transition tab that belongs to event Si. However, the execution of the
transitions in the event Si, has an order in the execution due to the precedence relations between
them. When the execution of transition ti1 finishes, then, transition ti2 begins and so with the rest
of the transitions in the event. Let us suppose that there exists a transition, tij, in event Si that has
a lower priority than task tab. In this situation tab can be interrupted only by sequence ti1,...,tij or
sequence tij+1,...,tin but never by tij. We will have to analyse the sequence of transitions that give
the worst case interference time.

Let us suppose now the situation shown in figure 3, where we want to calculate the
interference of the event Si with respect to transition tab that belongs to event Sa. The height of
the boxes indicates the priorities of the transitions and the horizontal line indicates the priority
of the transition to analyse. There exist two sequences of transitions that potentially can
interrupt task tab but at most one of them will really be able to do it. We will include the
sequence with the worst execution time in the interference of transition tab.

tab

ti1 ti2 ti3 ti4 ti5 ti6 ti7

ti3 ti4

ti6 ti7

tab

Figure 3. Interference for task tab

3.2.2.�Including SDL Semantics

The SDL semantics does not allow that two transitions that belong to the same SDL process
execute concurrently. Let us suppose that there exist two transitions, tij and tkj, that belong to
the same SDL process but that take part in different responses to external events, Si and Sk, and
the tij priority is greater than tkj. If we are calculating the response time of transition tkj, then
transition tij will be included in the interference expression. However, tij will never be able to
interrupt the execution of tkj and it should not be considered. It reduces the number transitions

that can interrupt to others transitions but, as a consequence of this, we have to consider an
additional blocking time called ����
����	���
�������������

In figure 4, we have an external event Si and the sequence of transitions ti1,ti2,...,ti5 that
respond to this event and we want to calculate the interference for tab. As we can see in the
figure every transition has its fixed priority. In figure 5 we can see the relationship between the
priorities of the transitions of event Si and transition tab. The dashed horizontal line indicates the
priority of tab.

Process P1 1(1)

e

ti1 with
priority 1

’task1’

ti2

−

Process P2 1(1)

e

ti2 with
priority 4

’task2’

ti3

−

Process P3 1(1)

e

ti3 with
priority 5

’task1’

ti4

−

tab with
priority 3

’taskab’

e2

Process P4 1(1)

e

ti4 with
priority 1

’task4’

ti5

−

Process P5 1(1)

e

ti5 with
priority 5

’task5’

−

Figure 4. Calculating tab interference in SDL

Transitions ti3 and tab belong to the same SDL process so ti3 cannot preempt tab. If we take
into account the precedence relations, then we will select the worst execution time between the
sequences {ti2,ti3} and {ti5}. However, if we take into account the SDL semantics we will select
between the sequences {ti2} and {ti5} because ti3 cannot interrupt tab due to they share the same
SDL process.

ti1 ti2 ti3 ti4 ti5

Figure 5. Relationship between tab priority and the task priorities of Si

Although the previous situation can reduce the number of transitions that can interrupt to
other transitions the blocking time can be increased adding the ����
����	���
������������. Let
us suppose that we are calculating the blocking time of transition tab and, as we can see in figure
6, ti1 and tab belong to the same SDL process and ti1 priority is less than tab priority. Initially, ti1

does not take part in the response time of tab but if we integrate this type of analysis in SDL, the
execution time of ti1 has to be considered like ����
����	���
������������ time of transition tab.

Process Blocking 1(1)

e

ti1 with
priority 1

tab with
priority 3

’task1’ ’taskab’

ti2 e2

−

Figure 6. Calculating tab blocking time.

In the following subsections we detail the steps to develop the worst case interference and
the blocking time.

3.2.3.�Worst case interference

Let us consider Transitions and Process as the set of transitions in the system and the
set of SDL processes. The function psdl is defined as

Psdl:Transitions →Process

and it returns the SDL process that this transition belongs to.

The set hp(t,S) is defined as:

 hp(t,S)={t’ :pri(t’)>=pri(t) and t’ takes part in the
response to S}

In order to calculate the worst case interference time of transition tab we do the following
steps:

• Select the consecutive transition sequences that belong to hp and do not share the
same SDL process than tab for each event in the system. Several sequences can
appear in every event.

• If there are several sequences per event we select the worst execution time sequence.

• Calculate the interference using the expression proposed in [13]. We call to this
expression Iab

3.2.4.�Blocking time

In order to include the blocking time in the schedulability analysis we have to consider two
possible blocking sources:

• The first blocking source is devoted to the access to shared resources. We
encapsulate these shared resources in passive processes accessed by means of

remote procedure calls (RPC). Using the highest locker protocol this blocking time
is bounded. It is explained in depth in [5]. We call Bsh to this blocking source.

• The second possible source is due to the ����
����	���
������������, Brtc.

The expression of Brtc for transition tab is the following:

Brtc=max{ct : psdl(t) =psdl(tab) and pri(t) < pri(tab) and t<>tab }

The blocking time is the maximum worst execution time (ct) among the transitions that
belong to the same SDL process and have a lower priority than the priority of the analysed
transition tab. We do not include transition tab if it is not shared by more than one event.

If transition tab takes part in the response to two external events, e1 and e2, the same transition
cannot execute concurrently answering both events. In this case the transition itself has to be
considered like a possible blocking. In this case the blocking expression is:

Brtc=max{ct : psdl(t) =psdl((tab) and pri(t) < pri(tab)}

The expression of the response time of transition tab , Rab, that participates in the response of
a external event Sa is the sum of worst case execution time of transition t, the interference of
higher priority transitions and the maximum between the blocking sources:

�DE��DE����DE���	
���VK �U
UU W
WWF
FF!

We do not include more details in the previous equation because it in out of the scope of this
paper.

+"� �	�	����������	�����	

With this execution model we can analyse if a system meets their real-time constraints.
However, this analysis cannot be achieved until late in the design process, since we need to
know time characteristics as the worst case execution time and the blocking time of all the
transitions in the system. In addition if the system does not meet its time requirements it has to
be redesigned. We propose a set of heuristics that allow us:

• To redesign the system if it does not meet the deadlines. The changes in the design will
be affect to the parameters in the response time equation (see section 3) like blocking
and interference.

• To take into account the real-time requirements from the first stages of the design.

We propose four heuristics:

• Task transference. It reduces the interference with others transitions.

• Process creation. It reduces the blocking time.

• Transition replication. It also reduces the blocking time.

• Intermediate transition elimination. It eliminates transitions in the SDL design.

Process pr_new 1(1)

Process 1 Process 2

state

s
with priority
high
xx t.u.

’task’

s1

−

state

s1
with priority
low
yy t.u.

’task1’

s2

−

Process Pr_New2 1(1)

Process 1 Process 2

state

s
with priority
high
zz t.u.

’task’

’task1’
Read and
write
data
with RPC

s1

−

state

s1
with priority
low
yy t.u.

s2

−

Figure 7. Task transference in SDL processes

+"!"����%����,�-���,��

This heuristic modifies the design in two phases:

• It looks for consecutive transitions that take part in the response to an event that does not
meet its deadlines where the priority of the first one is higher than the priority of the second
one or vice versa.

• It transfers the task from the lower priority transition to the higher priority. The response
time will decrease in most of the cases since the lower priority transition will execute with
higher priority.

This way we reduce the interference of the lower priority transition since there will be less
computation time where this transition could be preempted. Although this heuristic can increase
the response time of others events it can do possible that all the events in the system meet the
deadlines.

If we take into account the SDL design, it is not an easy solution because two consecutive
transitions do not belong to the same SDL process. If we have two consecutive transitions, t and
t’, that belong to SDL processes p and p’ respectively and priority of t is higher than t’, then we
transfer the t’ computation to t. Due to the SDL semantics, a SDL process cannot access to the
variables of other processes, so, t’ computation cannot access to its variables. We consider these
variables like shared resources and they have to be accessed by means of RPC [5]. It can
increase the response time since the blocking time (Bsh) of both processes can be affected.
However, due to we use the priority ceiling protocol, the blocking time is bounded and we have
to select the maximum possible blocking time between Brtc and Bsh for all the transitions. In the
most of the cases Brtc is higher than Bsh and then the last blocking source does not affect to the
response time.

As we can see in the figure 7, process 2 maintains the signal reception and sending but these
operations are atomic. This transition will disappear by applying ��
��	���

�� "�
���
���
#��	��

����

+"&"������.,/�����0��������

Many processes in a design of a system with SDL can be designed as in figure 8 where there
exists a state in a process with more than one signal reception and we consider that both
transitions would be able to execute concurrently. If we see the figure, the process activation
can occurs due to reception of ������� or ����. However, we have to take into account this
situation if we want to design real-time systems in SDL because it increases the blocking time
in the applications and reduces the concurrency that is very important in this kind of systems. In
the figure it is not possible to execute transition ���� until the completion of transition �������
and vice versa. As commented in section 3 it produces a ���$
�$��	���
���� ��������. The
solution is to create two different processes to send and receive data concurrently.

Block example 1(1)

Ctrl_Send_Rec

ToCtrl send,
receive

EnvCtrl

Process Ctrl_Send_Rec 1(1)

Wait

Receive with
priority x

Send with
priority y

’do
something’

’do
something’

−

Figure 8. Initial design

Block solution 1(1)

To access
 to shared
resources

ShRes

Ctrl_send Ctrl_rec

EnvRec

ToCtrlR

receive

EnvSend

ToCtrlS

send

Process Ctrl_send 1(1)

wait

send with
priority y

’do
something’

−

Process Ctrl_rec 1(1)

wait

receive with
priority x

’do
something’

−

Figure 9. Final design

+"*"����,�.�.�,���1$.���.�,

This heuristic looks for more situations in the SDL system to reduce the blocking time of the
transitions. Transitions of different events can execute common tasks so the designers will join
these transitions to get a more efficient code. However, it can increase the blocking time. We
will consider figure 10, where if the option is true the transition executes

��% and

��&
belonging to event � and the transition executes

��% and

��' belonging to event �(if the
option is false. The WCET is 25 time units (t.u.) and Brtc is 25 t.u (see section 3). The technique

proposes to create two transitions: the first one is composed by

��% and

��& and the WCET
is 25 t.u. but the Brtc is 18 t.u. The second one is composed by

��% and

��' with WCET of 18
t.u. and Brtc of 25 t.u.

+"+"��,���2� .�������,�.�.�,�	$.2.,��.�,

This design technique allows reducing the concurrency in the systems because it can
eliminate processes in the design without affecting system responsiveness. It can be seen in
figure 11. It basically consists of eliminating intermediate transitions that has not real
computation to achieve. It is necessary to take the signal sendings of the eliminated transition to
the predecessor one. This way, there are less transition participating in the schedulability
analysis but the responsiveness in the system is maintained. If the transition that is going to be
eliminated is shared for more than one event then this transition will have to be replicated to be
able to apply this heuristic.

Process trans 1(1)

state

signal with priority
nn

’task1’ 15 t.u.

option

’task2’ 10 t.u.

signal2

−

’task3’ 3 t.u.

signal3

true

false

Figure 10. Shared Transitions

Process p1 1(1)

Process P1 Process P2 Solution
Process P1

state state1 state

s s1 s

’task’ s2 ’task’

s1 s3 s2

− − s3

−

Figure 11. Intermediate Transition elimination

3"�)�
0�	

In this section we discuss an application example in order to clarify the utility of our
proposals. The example is devoted to the design of computerized numerical control (CNC)
machines[14]. A CNC machine is an automatic machining tool that is used to produce
workpieces designed by user. It is equipped with a computer-based digital control system. We
have designed this controller that should be able to position the cutter precisely and
automatically along the reference trajectory of the machined workpiece. As we can see in figure
12, there are three periodic events in the controller, two of them to calculate the new position of
the cutter and the third to estimate the disturbance and to monitor the plant. All of these events
are periodic. A previous step to the SDL design is to describe the events in the system be means
of MSC. Figure 13 is the block diagram of the system and figure 14 gives a high level
description of the system processes. We have designed a passive process to encapsulate the
position as a shared resource. The access to the shared variables will be by means of RPC as we
proposed in [5]. The time requirements of each event in the system can be seen in table 1.

	4�,� 0��.� ��� $.,�

��$�5$�����5�����)�1��.�.�, 2400 4000

��$�5$�����5�������1��.�.�, 2400 4000

��$�5$���� .��5���,�� 2400 6000

Table 1. Time requirements in the system.

Shared_resourceControlller

calculate

MSC Deal_x

Read_x

x

Final_x

Controlller Shared_resource

calculate

MSC deal_y

Read_y

y

Final_y

Shared_resourceMonitor

compute

MSC monitor

Read_x

x

Read_y

y

Figure 12. MSC event description

When timer "� expires, process)�
�*��� reads the � position and does a computation, then a
transition �*��� is activated in process +��
���. It updates the new � position and reports the new
position in the monitor system with the signal sending �*�
��*	��. The same action occurs with
the timer ", but for , position. The third periodic event activates the transitions of the processes
)�
�*��� �+
��*��� �-���
�� �-��*�

�*��
�
 when timer "��� expires.

All the transitions in the system have associated a priority and a worst execution time to be
able to do the schedulability analysis proposed in section 3.

Block CNC 1(1)SIGNAL x_ref, y_ref, mon,
sal_mon,x_y_pos_n(real,real);

Deal_Pos Deal_Ref

Calc_vel Control

Monitor
Shared_x_y

Mon_state_Plant

Pos_vel x_y_pos_n Ref_Con x_ref,
y_ref

Vel_Monmon A_Env2

y_ctrl_mon,
x_ctrl_mon

Env_CNC

Mon_Pla sal_mon

A_Env
mon_stss

Env_CNC

Figure 13. Block diagram

Process Deal_Ref 1(1)

TIMER Tx:=4000;
TIMER Ty:=4000;

DCL x,y real;

set(Tx)

set(Ty)

Recep_ref

Tx with priority 4
time 185
period 2400

set(Tx)

x:=call readX
to shared_x_y

’computeX’

x_ref

−

Ty with priority 5
time 182
period 2400

set(Ty)

y:=call readY
to shared_x_y

’computeY’

y_ref

−

Process Control 1(1)
DCL x,y real;

Recep_pos

x_ref with priority 4
time 691

’computeX’

update_x(x)

x_ctrl_mon

−

y_ref

with priority 5
time 676

’computeY’

update_y(y)

y_ctrl_mon

−

Process Calc_vel 1(1)

Recep_xy

x_y_pos_n with priority 3
time 62

’Compute’

mon

−

Process Deal_Pos 1(1)
TIMER Tpos:=6000;

set(Tpos)

Recep_Pos

Tpos with priority 3
time 58
Period 2400

set(Tpos)

x:=call readx;
y:=call ready;

x_y_pos_n(x,y)

’Compute’ Recep_Pos

Process Monitor 1(1)

Recep_Vel

mon with priority 1
time 231

’compute’

sal_mon

−

Process Mon_state_Plant 1(1)

Recep_mon

sal_mon with prority 1
time 707

’compute’

mon_stss

−

Figure 14. CNC controller design

As we can see in figure 14 transitions �*��� and ,*��� belong to the same SDL process. In
table 2 we have applied the proposals of the section 3 and we have not included transition ,*���
in the interference of transition �*��� although the former has a higher priority. Also, we have
included the run-to-completion blocking in the calculations of the response time.

���1�,����.2� ��� $.,�

��$�5$�����5�����6�1��.�.�, 1734 µs 4000 µs

��$�5$�����5�������1��.�.�, 1734 µs 4000 µs

��$�5$��� .��5���,�� 7994 µs 6000 µs

Table 2. Event Response Times

The event that calculates the disturbance in the system does not meet the deadlines. We can
apply some of the redesign heuristics presented in the previous section to try that the system
meets the deadlines. For example, using the

���
�
��������� heuristic we can take the task of
the transition of process -���
�� to the transition of process +
��*��� to execute it with higher
priority and reduce the interference. Also, we apply the ��
��	���

��
�
���
���� ���	��

���
heuristic to eliminate the transition of process -���
�� once it only has the signal reception and
the signal sending. With these changes, we reduce the number of process in the system. The

new response times can be seen in the table 3. In figure 15 we can see the final block diagram
and the new SDL process +
��*.��.

���1�,����.2� ��� $.,�

��$�5$�����5�����6�1��.�.�, 1734 µs 4000 µs

��$�5$�����5�������1��.�.�, 1734 µs 4000 µs

��$�5$���� .��5���,�� 5860 µs 6000 µs

Table 3. Event Response Times after redesigning

Block Final_System 1(1)
SIGNAL x_ref, y_ref,
sal_mon,x_y_pos_n(real,real);

Deal_Pos Deal_Ref

Calc_vel Control

Shared_x_y

Mon_state_Plant

Pos_vel x_y_pos_n Ref_Con x_ref,
y_ref

Mon_stt

sal_mon

A_Env2

y_ctrl_mon,
x_ctrl_mon

Env_CNC

A_Env

mon_stss
Env_CNC

Process Calc_vel 1(1)
DCL x,y real;

Recep_xy

x_y_pos_n(x,y) with priority 3
time 62 + 231

’Compute
Vel’

’Compute
Mon’

sal_mon

−

Figure 15. Final block diagram and process Calc_Vel

6.� CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method to integrate the schedulability analysis in systems
specified in SDL. In addition, we have introduced a set of techniques to redesign the SDL
system in order to all the events in the system meet their deadlines. Also, these heuristics will
help us to take into account the time requirements in the first stages of the design.

As future work, we are developing applications and the necessary interfaces to integrate our
proposals in the commercial tools. We are implementing a microkernel similar to Cmicro[2]
that executes our real-time model of SDL joined to monitoring tools to calculate worst case
execution times and time failures detection in the execution of SDL systems.

7.� REFERENCES

[1] ITU recommendation Z. 100. “Specification and Description Language (SDL)”. 1994.
[2] Telelogic “SDT 3.5 Manuals”. 1999.
[3] Alvarez J..M., Diaz M., Llopis L., Pimentel E., Troya J.M. “An Analyzable Execution

Model for SDL for Embedded Real-Time Systems”. Workshop on Real-Time
Programming. Elsevier. 1999.

[4] Alvarez J..M., Diaz M., Llopis L., Pimentel E., Troya J.M. “Embedded Real-Time
Systems Development Using SDL”. IEEE Real-Time System Symposium . 1999.

[5] Alvarez J..M., Diaz M., Llopis L., Pimentel E., Troya J.M. “Integrating Schedulability
Analysis and SDL in an Object Oriented Methodology for Embedded Real-Time
Systems”. SDL Forum. 1999.

[6] Klein, M.H. et al. “A Practitioner’s Handbook for Real-time Analysis”. Kluwer
Academic Publishers. 1993.

[7] Alvarez J..M., Diaz M., Llopis L., Pimentel E., Troya J.M. “Integrating Schedulability
Analysis in Real-Time Systems Specified in SDL”. To appear in Workshop on Real-
Time Programming. 2000.

[8] Douglass Powel. "Real-Time UML. Developing Efficient Objects for Embedded
Systems". Addison-Wesley. 1998

[9] Douglas Powel. "Doing Hard Time. Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns". Addison -Wesley. 1999

[10] Saksena M, Ptak A., Rodziewicz P. "Schedulability Analysis for Automated
Implementations of Real-Time Object-Oriented Models". IEEE Real-Time System
Symposium. 1998.

[11] Sellic B. et al. “Real-Time Object-Oriented Modeling”. John Wiley Publisher. 1994.
[12] Saksena M., Karvelas P. "Designing for Schedulability Integrating Schedulability

Analysis with Object-Oriented Design". To appear in Euromicro on Real-Time
Systems. 2000

[13] Palencia J.C., Gonzalez M, "Exploiting Precedence Relations in the Schedulability
Analysis of Distributed Real-Time Systems". IEEE Real-Time Systems Symposium.
1999.

[14] Kim N., Ryu M. et al. "Experimental Assessment of the Period Calibration Method: A
Case Study" Real-Time Systems Journal. Kluwer Academic Publishers. 1999

[15] Dulz W. , Grughl S., Kerber L., Söllner M. “Early Performance Prediciton of SDL/MSC
Specified Systems by Automatic Synthetic Code Generation”. 9th SDL FORUM.
Elsevier. 1999.

[16] Dulz W. “Performance Evaluation of SDL/MSC-Specified System”.ESM96 European
Simulation Multiconference. 1996

[17] Spitz S. Et al. “SDL*- An annotated Specification Language for Engineering
Multimedia Communications Systems”. 6th Open Workshop on High Speed Networks.
1997.

[18] Faltin N. et al. "An annotational Extension of MSC to support Performance Enginnering
" 7th SDL FORUM 1997

