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ABSTRACT
Modular programming enjoys many well-known advantages:
readability, maintainability, separate development and com-
pilation. However, the composition of modular units (com-
ponents) suffers efficiency problems. In this paper, we pro-
pose an invasive composition method which strives to rec-
oncile modularity and efficiency. Our technique, network
fusion, automatically merges networks of interacting com-
ponents into equivalent sequential programs. We provide
the user with an expressive language to specify scheduling
constraints which can be taken into account during network
fusion. Fusion allows to replace internal communications by
assignments and alleviates most time overhead. We present
our approach in a generic and unified framework based on
labeled transition systems, static analysis and transforma-
tion techniques.

1. INTRODUCTION
Modular programming enjoys many well-known advan-

tages: readability, maintainability, separate development and
compilation. However, the composition of modular units
(components) suffers efficiency problems. Sequential compo-
sition poses space problems: the producer delivers its com-
plete output before the consumer starts. Parallel composi-
tion relies on threads, synchronization and context switches
which introduce time overhead.

In this paper, we propose an invasive composition method,
network fusion, which strives to reconcile modularity and
efficiency. Our technique automatically merges networks of
interacting components into equivalent sequential programs.

Our approach takes two source inputs: a network of com-
ponents and user-defined scheduling constraints. Networks
are formalized as Kahn Process Networks (Kpns) a sim-
ple formal, yet expressive, model of parallelism [7]. Kpns
have straightforward and determinate operational and de-
notational semantics. Scheduling constraints allow the user
to make more precise the scheduling strategy by specify-
ing a set of desired executions. The operational semantics

of Kpns and scheduling constraints are both formalized as
guarded labeled transition systems (Lts).

Network fusion is an automatic process which takes a
Kpn and scheduling constraints and yields a sequential pro-
gram respecting the constraints. Note that constraints may
introduce artificial deadlocks, in which case the user will
be warned. The resulting program must be equivalent to
the Kpn modulo the possible deadlocks introduced by con-
straints. Fusion alleviates most time overhead by allowing
the suppression of context switches, the replacement of in-
ternal communications by assignments to local variables and
optimizations of the resulting sequential code using standard
compiling techniques.

The four main steps of the fusion process are represented
in Figure 1.

• The first step is the abstraction of the network into a fi-
nite model called an Abstract Execution Graph (Aeg).
An Aeg over-approximates the set of possible execu-
tions traces. We do not present this step in details
since it relies on very standard analysis techniques
(e.g., abstract interpretation) and many different ab-
stractions are possible depending on the desired level
of precision. Instead, we focus on the properties that
an Aeg must satisfy.

• The second step consists in enforcing constraints. This
is expressed as a synchronized product between guarded
Lts (the Aeg and the constraints). In general, this
step does not sequentialize completely the execution
and leaves scheduling choices.

• The third step completes the scheduling of the con-
strained Aeg. Several strategies can be used as long as
they are fair. Again, these strategies can be expressed
as guarded Lts and scheduling as a synchronized prod-
uct.

• The fourth step, concretization, maps the scheduled
(serialized) Aeg to a single sequential program. Fur-
ther transformations (e.g., standard optimizations) can
then be carried out on the resulting program.

The paper is organized as follows. Section 2 presents the
syntax and semantics of Kpns. Section 3 describes Aegs and
defines the abstraction and concretization steps which both
relate Aeg to concrete models (programs and Kpns). Sec-
tion 4 presents the language of constraints and the two main
transformation steps of fusion: constraints enforcement and



scheduling. We propose three extensions of the basic tech-
nique in Section 5 and, finally, we review related work and
conclude in Section 6.

We have chosen to present fusion in an intuitive and mostly
informal way. In particular, we do not provide any correct-
ness proofs. They would require a complete description of
the operational semantics of Kpn too long to fit the space
limits of this article. We are currently working on a com-
panion paper which will include a complete formalization
and proofs.
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Figure 1: Main steps of network fusion

2. NETWORKS
We start by providing the syntax of components and net-

works. We outline its semantics and provide some intuition
using an example. A complete structural operational se-
mantics for Kpns can be found in [6].

2.1 Basic Components
Components are made of commands c of the form:

l1 : g | a ; l2

where l1 and l2 denote labels, g a guard and a an action. An
action is either a read operation on an input channel f?x,
a write operation on an output channel f !x, or an internal
action i (left unspecified). A component (or process) p is a
set of commands {c1, . . . , cn}. If the current program point
of a component p is l1, if l1 : g | a ; l2 is a command of p
and the guard g is true, then the action a can be performed
and the program point becomes l2.

The components we consider in this paper represent valid,
sequential and deterministic programs. They have the fol-
lowing restrictions:

• A component has a unique entry point denoted by the
label l0.

• All the labels used in p are defined in the lhs of com-
mands.

• Two commands having the same label have also mu-
tually exclusive guards.

The program P in Figure 2 sends the set N in increasing
order on channel f . Program C assigns a with the value read
on channel f if a < b or assigns b with the value read on the
channel ι otherwise. Then, it sends a + b on the channel o
and loops. Note that we omit guards when they are true.

The semantics of a component p can be expressed as a
Lts (Σp, (l0, s0), Ep,−→p) where

• Σp is an (infinite) set of states (l, s) where l a label
and s a store mapping variables to their values.

• (l0, s0) is the initial state made of the initial label l0
and store s0. We assume that the initial label is al-
ways indexed by 0 and that the initial store initializes
integer variables by the value 0,

• Ep is the set of commands of p,

• −→p is the transition relation (actually, a function) on
states labeled with the current command.

The initial labels of program P and C (Figure 2) are p0

and c0 respectively and the variables x, a and b are initial-
ized to 0. To simplify the presentation, we consider only
programs which never terminate. Termination could always
be represented by a final looping command of the form

lend : skip ; lend

In the remaining, we use c|g and c|a to denote the guard and
the action of the command c respectively.

2.2 Networks of Components
A Kpn k is made of a set of processes {p1, . . . , pn} exe-

cuted concurrently. Networks are build by connecting out-
put channels to input channels of components. Such chan-
nels are called internal channels whereas the remaining (un-
connected) channels are the input and output channels of
the network. The communication on internal channels is
asynchronous (non blocking writes, blocking reads) and is
modeled using unbounded fifos. In order to guarantee a de-
terministic behavior, Kpns require the following conditions
[7]:

• An internal channel is written by exactly one process
and read from exactly one process.

• An input channel is read from exactly one component
(and written by none).

• An output channel is written by exactly one compo-
nent (and read from none).

• A component cannot test the absence of values on
channels.



Components

P =

{
p0 : x := x + 1 ; p1;
p1 : f !x ; p0

}

C =

 c0 : a < b | f?a ; c1;
c0 : a ≥ b | ι?b ; c1;
c1 : o!(a + b) ; c0
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Figure 2: A Simple Kpn and its trace semantics

In order to simplify technical developments, we assume that
networks have a single input and output channels denoted
by ι and o respectively and that the input channel never
remains empty.

The global execution state of a Kpn is called a configu-
ration. It is made of the local state of each component and
the internal channel states i.e., finite sequences of values
v1 : . . . : vn : ε.
The operational semantics of Kpn can be expressed as a Lts
(Σk, α0, Ek,−→k) where

• Σk is a (infinite) set of configurations,

• the initial configuration α0 is such that each compo-
nent is in its initial state and each internal channel is
empty,

• Ek is the union of the sets of commands of components;
these sets are supposed disjoint,

• the transition relation −→k is defined as performing
(non deterministically) any enabled command of any
process. A command is enabled when the current pro-
gram point is its lhs label, its guard is true in the cur-
rent configuration/state and it is not a blocking read
(i.e., a read on an empty channel).

The transition relation gives rise to an infinite graph rep-
resenting all the possible execution traces. A small part of
the transition relation −→p for our example is depicted in
Figure 2. Here, no global deadlock is possible and all traces
are infinite.

An infinite execution trace is said to be fair if any enabled
action at any point in the trace is eventually executed. The

denotational semantics of a Kpn is given by the function
from the input values (the input channel) to the output val-
ues (the output channel) generated by fair executions. We
will write Traces(k) and IO(k) to denote the set of traces
and the denotational semantics of the Kpn k respectively.

Kpns of deterministic components are deterministic [7].
Also, all fair executions with the same input yield the same
output [6]. An important corollary for us is that Kpns are
serializable: they can always be implemented sequentially.

3. ABSTRACT EXECUTION GRAPHS
Network fusion necessitates to find statically a safe and

sequential scheduling. This step relies upon an abstract ex-
ecution graph (Aeg), a finite model upper-approximating
all the possible executions of the Kpn. We present in this
section the key properties than an Aeg should satisfy and
present an example.

An Aeg k] is a finite Lts (Σk] , α
]
0, Ek] ,−→k]) with:

• Σk] a finite set of abstract configurations,

• α]
0 is the initial abstract configuration,

• Ek] a (finite) set of commands,

• −→k] a labeled transition relation.

The idea behind abstraction is to summarize in an ab-
stract configuration a (potentially infinite) set of concrete
configurations [9]. This set is given by the function conc :
Σk] → P(Σk) defined as:

conc(α]) = {α | α ≈ α]}



where ≈ is a safety relation relating k and k] (and we write
k ≈ k]).

There can be many possible abstractions according to
their size and accuracy. Network fusion is generic w.r.t.
abstraction as long as the Aeg respect two key properties:
safety and faithfulness. To be safe, the initial abstract con-
figuration of an Aeg must safely approximate the initial
concrete configuration. Furthermore, if a configuration α1

is safely approximated by α]
1 and the network evolves in the

configuration α2, then there exists a transition from α]
1 to

α]
2 in the Aeg such that α2 is safely approximated by α]

2.
These two points ensure that any execution trace of the Kpn
is safely simulated by one in the Aeg. Formally:

Definition 3.1. [Safety] Let k ≈ k], then k] is a safe
approximation of k iff

α0 ≈ α]
0

α1 ≈ α]
1 ∧ α1

c−→k α2 ⇒ ∃α]
2. α2 ≈ α]

2 ∧ α]
1

c−→k] α]
2

A key property of safe abstractions is that they preserve
fairness. Of course, since they are upper approximations
they include false paths (abstract traces whose concretiza-
tion is empty). However, for abstract traces representing
feasible concrete traces, fair abstract traces represent fair
concrete traces. Safety also implies that all fair concrete
traces are represented by fair abstract traces.

An Aeg is said to be faithful if each abstract transi-
tion corresponds to a concrete transition modulo the non-
satisfiability of guards or a blocking read. In other words,
faithfulness confines approximations to values. A false path
can only be an abstract trace with a transition whose con-
crete image would be a transition with a false guard or a
blocking read. Formally:

Definition 3.2. [Faithfulness] Let k ≈ k], then k] is
a faithful approximation of k iff

α]
1

c−→k] α]
2 ∧ α1 ≈ α]

1 ⇒ ∃α2.α2 ≈ α]
2 ∧ α1

c−→k α2

∨ ¬G[[c|g]]α1

∨ (c|a= f?x ∧ α1[f 7→ ε])

Faithfulness rules out, for instance, the (highly imprecise
but safe) abstraction made of a unique abstract state rep-
resenting all concrete states. In practice, the same abstract
state cannot represent different program points (label con-
figurations).

Example.
In order to provide some intuition we give here a crude

but straightforward abstraction:

• Each process state is abstracted into the program point
it is associated to. So, variables are not taken into
account and process stores are completely abstracted
away,

• Each internal channel state is represented by an inter-
val approximating the length of its file.

It is the control flow graph of the Kpn where each node holds
a collection of intervals approximating the lengths of internal
channels at the configuration of program points the node
represents. The Aeg for our running example is given in
Figure 3. In this particular example, the state of f is always
approximated by the interval [0, +∞[ (the most imprecise
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Figure 3: Example of an Aeg

information). More precise Aegs could be designed (see
Section 5.2). �

An Aeg bears enough information to be translated back
into a program. Commands (guards and actions) label edges
and nodes represent labels. The concretization of finite Lts
k] = (Σk] , α

]
0, Ek] ,−→k]) into a program is formalized by

the following straightforward translation:

Concretization(k]) = {l
α

]
1

: c ; l
α

]
2
| α]

1
c−→k] α]

2}

An important property of safe and faithful abstractions
is that their concretization has the same semantics as the
network they approximate.

Property 3.3. If k] is a safe and faithful approximation
of k then Traces(k) = Traces(Concretization(k]))

4. FUSION
The user can specify scheduling constraints defining a sub-

set of execution traces. Constraints impose implementation
choices; they serve to guide and to optimize the fusion pro-
cess. Constraints respect the black box nature of compo-
nents. They are expressed w.r.t. IO operations, liveness
properties or sizes of files. When constraints completely se-
quentialize the execution (no choice remains), they specify
a scheduler. In general, however, constraints are incomplete
and leave implementation choices.

4.1 Scheduling Constraints
We specify constraints by finite state Lts labeled with

guarded actions. Of course, a more user-friendly language
for declaring constraints should be studied but this is not the
purpose of this article. The formalism used in Sections 2 and
3 is also well-suited to expressing constraints. We enrich the
language of guards with two additional constructs dedicated
to the expression of scheduling strategies:

gc ::= f 	 k | Bp | g where 	 is any comparison operator

The size of a channel can be compared against an integer.
For instance, f < 5 is true if the file f has less than 5 el-
ements. The guard Bp is true if the process p is blocked
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Figure 4: Examples of Scheduling Constraints

(by a read on an empty channel or by other scheduling con-
straints).

Constraints are more easily specified using sets of actions.
We use the following notations:

A ::= ? | [f ]? | [f ]! | ¬A | A1 ∩ A2 | Ap

where

• ? represents any action of the network,

• ? (resp. !) represents any read (resp. write) and f?
(resp. f !) any read (resp. write) on file f ,

• ¬A is the complementary set of A,

• A1 ∩ A2 is the intersection of the sets A1 and A2,

• Ap represents the projection of the set of actions A
onto the commands of the component p.

For instance, (¬?)p represents all non-read actions of com-
ponent p. Using sets is just more convenient; constraints
can be automatically translated into a standard Lts labeled
by standard commands afterward.

Figure 4 gathers a few examples of constraints for a net-
work with (at least) two components P (writing a file f)
and C (reading the file f).

• The constraint ΛFF summarizes in a small automaton
the strategy used by Filter Fusion [11]. The producer
P starts until it writes on f? The control is passed
to the consumer C until it reads f and so on. This
strategy bounds the size of the fifo f to be at most 1
and therefore it may introduce artificial deadlocks from
some networks. ΛFF sequentializes completely the ex-
ecution of P and C (no scheduling choice remains).

• The constraint ΛIS is similar to ΛFF except that both
P and C can be executed between writes and reads on
f . ΛIS leaves some scheduling choices.

• The constraint ΛFB is a generalization of ΛFF to a
file f with k places (i.e., P writes k times before the
control is passed to C). This is the formalization of
the extension of filter fusion proposed in [3]

• A demand driven strategy is specified by ΛDD . The
consumer C is executed until it blocks i.e., is about to
read the empty channel f . Then, P is executed until
it produces a value in f . The control is passed to C
which immediately reads f and continues.

These constraints can be applied to any network as long
as it has two components P and C connected at least with
a channel f . Of course, constraints can be specified for any
number of components and channels.

4.2 Enforcing Constraints
Enforcing a constraint Λ = (Σλ, λ0, Eλ,−→λ) to an Aeg

k] = (Σk] , α
]
0, Ek] ,−→k]) can be expressed as a parallel com-

position (k] ‖ Λ). This operation can be defined formally
as follows. We assume that all shorthands (like (¬?)p) used
in constraints are replaced by the actions of the Aeg they
represent.

k] ‖ Λ = (Σk] × Σλ, (α]
0, λ0), Ek] ,−→kλ)

with

α] g|a−→k] α]′ λ
g′|a−→λ′

(α], λ)
g∧g′|a−→kλ (α]′, λ′)

α] c−→k] α]′ a ∈ Σk]\Σλ

(α], λ)
c−→kλ (α]′, λ)

If an action a is taken into account by the constraints, the ex-
ecution can proceed only if both Lts can execute a (i.e., they
can both execute commands made of a and a true guard).
The actions not taken into account by the constraints can
be executed independently whenever possible. Constraints
do not introduce new actions (Eλ ⊆ Ek). To simplify the



presentation, we assumed in the above inference rules that
the guards did not use the condition Bp. We now present
the rule corresponding to this condition in isolation.

The Bp construct serves to pass the control to another
component when one is blocked. The condition Bp is eas-
ily defined w.r.t. Kpns: p is blocked in configuration α if
there is no outgoing transition labeled with a command of p.
However, Aegs are approximations with false paths; a com-
ponent p can be blocked even if the corresponding abstract
state has outgoing transitions labeled with commands of p.
Actually, p is blocked in an abstract state if any outgoing p
transition has either a false guard or is a read on an empty
channel (i.e., is not enabled). Formally, let c1, . . . , cn all the

commands of p such that α] ci−→k] α]
i

and gi =

{
¬(ci|g) ∨ f = 0 if ci|a= f?x
¬(ci|g) otherwise

then the necessary and sufficient condition for p to be blocked
in α] is

bp(α]) =
∧

i=1,...,n

gi

The product of an Aeg with a transition guarded by Bp

is defined as follows:

α] g|a−→k] α]′ λ
Bp|a−→λ λ′

(α], λ)
g∧bp(α])|a
−→kλ (α]′, λ′)

Figure 5 represents the product of the Aeg of Figure 3 with
ΛFF . The component P is executed until it produces a value
on f then C is executed until it reads a value on f . Note that
if a ≥ b remains always true then P will never be executed.
So, the execution is not fair but it is nevertheless correct and
yields the same output as the network (P is never executed
only when its production is not needed). The strategy does
not use guards, so no new test appears in the constrained
Aeg. The result is completely sequentialized.

After the constrained Aeg is produced, the size of files is
reestimated using standard static analysis techniques. We
have indicated in Figure 5 the new approximations for f .
They show that the Aeg is now bounded (the size of f is at
most 1).

It is easy to check that the Aeg can be translated by
Concretization (see Sec. 3) into a sequential program. As
already mentioned, one goal of fusion is to suppress internal
communications. For unbounded Aeg, internal reads and
writes are replaced by assignments to lists or fifos. Here,
the channel f can be implemented by a single variable vf

and writes f !x and reads f?a by assignments vf := x and
x := vf . These assignments can then be suppressed us-
ing standard optimization techniques [1]. Finally, after a
renaming of labels, we get:

PC =


pc0 : x := x + 1 ; pc1;
pc1 : a < b | a := x ; pc2;
pc1 : a ≥ b | ι?b ; pc3;
pc2 : x := x + 1 ; pc3;
pc3 : o!a + b ; pc1;


In this section, we have presented the parallel composi-

tion as a fairly standard automata product. Depending on
the size of the Lts, this may cause an unacceptable state
explosion. We present a solution to this problem in Section
5.3.
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Figure 5: Fusion with ΛFF

4.3 Scheduling
In general, constraints enforcement leaves implementation

choices which must be taken to produce a sequential pro-
gram. The fusion process makes these choices automatically
by scheduling the execution of components. A valid sched-
ule must be fair (all enabled components must be eventually
executed) and sequential (the scheduled execution must cor-
respond to a sequential program).

We choose here a simple and fair policy: round-robin
scheduling. Components are ordered in a circular queue and
the scheduler activates them in turn. Either the current
active component is blocked (by a read or a user defined
constraint) either one of its command is executed. In both
cases, the control is passed to the next component. Figure
6 formalizes round-robin for networks with two components
P and C as a guarded Lts. It would be easy to generalize
such a round-robin Lts for any network with a fixed number
of processes.
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¬BP |?P

((
BP ∧ ¬BC |?C
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BC ∧ BP |deadlock

$$

?>=<89:;δ1

¬BC |?C

hh

BC ∧ ¬BP |?P





BC ∧ BP |deadlock

zz?>=<89:;δ2

Figure 6: Round-Robin Scheduling

The schedule is fair and ensures a complete serialization



of the execution. It starts by enforcing the execution of one
instruction of P , then one instruction of C and so on. If one
of the two processes is blocked at its turn, then an instruc-
tion of the other process is executed instead. When both
processes are blocked then it is a global deadlock denoted
by the special instruction deadlock.

Constrained Aegs are composed in parallel with the au-
tomaton of figure 6 to obtain sequential programs. The com-
position is the same as before except that the deadlock ac-
tion does not belong to the set of actions of components.
The product will therefore introduce a new deadlock tran-
sition along with a new state in the Aeg. This new transi-
tion, which detects a global deadlock, will be implemented
by printing an error message and terminating the program.
When such a transition appears in the result of fusion, the
user is warned of a possibility of deadlock.
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Figure 7: Sequentialization with Round-Robin

Let us consider the scheduling of the original Aeg of Fig-
ure 3. This situation would arise if the user does not provide
any constraint. The Aeg obtained after product (and sim-
plifications) is given in Fig. 7. Simplifications are needed
since the product of transitions guarded by BX produces
many dummy transitions (i.e., with false guards).

The process P is never blocked (it never reads), so the
execution can start by x := x + 1. The execution must
proceed by C if it is not blocked (¬BC). There are two
cases: either a ≥ b and C is not blocked and its action (ι?b)
can be executed, either a < b and C is blocked by a read of
the empty file f . In the latter case, round-robin scheduling
passes the control to P and executes the action f !x. The
transition a < b | f !x corresponds to “if C is blocked then
execute the next P ’s command”. We do not describe any
further the product which proceeds similarly. Contrary to
the product with ΛFF , the result is fair but unbounded:
the data produced by P may accumulate in the channel f
without bounds.

The correctness of the scheduling process comes from the
fact that the product with ∆RR yields a sequential, fair and
faithful Aeg. Note that network fusion is generic w.r.t. the

scheduling strategy. More sophisticated policies (e.g., using
several queues, based on static or dynamic priorities, etc.)
could be considered as well. As in Section 4.2, we have
presented scheduling as an Lts product; scheduling could
also be implemented by the technique outlined in Section
5.3.

4.4 Semantic Issues
User-defined constraints can change the semantics of the

Kpn. For example, a constraint which bounds communi-
cation channels would cause an artificial deadlock into an
unbounded Kpn. The user may want to enforce properties
even at the price of deadlocks. We consider that a change
of semantics is acceptable as long as it depends on the user
and remains under her or his control. However, this requires
to restrict the class of acceptable constraints. Considet the
following constraint:
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BB
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~~||
||
|

Λ1 Λ2

where a and b are two non-mutually exclusive commands
and Λ1 and Λ2 represents distinct constraints. Since a and
b can be executed indifferently, a choice will be made by
scheduling. However, depending on this choice, the con-
straints that are enforced afterwards (Λ1 or Λ2) are dif-
ferent. For example, Λ1 may imply an artificial deadlock
in some (non statically determined) cases and Λ2 in some
other cases. In other words, the semantics of the resulting
program will depend on a blind choice made by fusion. This
semantic change is not acceptable since it would be out of
the control of the user.

Our solution is to restrict the class of acceptable con-
straints. Namely, if a constraint leaves a non deterministic
choice such as a or b above then the constraints must en-
sure that all processes can still evolve in the same way (an
artificial deadlock in one side implies that we have the same
artificial deadlock on the other side). Each choice a or b cor-
respond to set (language) of acceptable traces (a.L(Λ1) and
b.L(Λ2)). A constraint is acceptable if for each choice, the
projection of the corresponding languages to the commands
of any process are equivalent. For the above example we
must enforce that

∀p. a.L(Λ1) ↓ p = b.L(Λ2) ↓ p

With this condition, the choices made by the scheduling step
do not have any semantic impact.

All the constraints of Figure 4 are acceptable. It is ob-
vious for ΛFF , ΛFB , ΛDD since they do not leave any non
deterministic choice. In ΛIS , the two transitions labeled
by ¬f ! ∩ ¬f? leave the choice between executing P or C.
However, in both states, they lead to the same state (and
therefore accept the same language).

5. EXTENSIONS
The preceding sections have presented the main ideas of

network fusion. We hint here at three ways of extending the
basic technique: providing more linguistic support to the



user, working on more precise abstractions, avoiding prod-
ucts between Lts. These three extensions all aim at getting
more efficient fused programs.

5.1 Linguistic support
Scheduling constraints allow users to control network fu-

sion. Other linguistic support could be provided to users as
well. We focus here on special commands allowing to allevi-
ate the false path problem. False paths arise when data de-
pending controls are abstracted by non deterministic choices
[2]. This standard approximation makes fusion consider in-
feasible paths and spurious deadlocks.

The left part of figure 8 shows a simple but characteristic
example of the problem. The process P begins by sending
on channel ct the number of items it will produce on channel
dt. Then, P and C respectively writes and reads the same
number of items on dt (M = N). However, this information
is lost in the Aeg which abstracts away values. The fusion
process must therefore consider the case where P produces
not enough values and C is blocked and also the case where
P produces unconsumed values and the size of dt cannot be
bounded.

This problem can be alleviated using commands making
synchronization or termination explicit. The languages of
actions and guards are extended with the following con-
structs:

a ::= wait(f) | proceed(f) | . . .
g ::= waiting?(f) | . . .

• The commands wait(f) and proceed(f) permit to
express a rendez-vous between the producer and the
consumer of a file f . The producer blocks on wait(f)
until the consumer emits proceed(f).

• The predicate waiting?(f) evaluates to true if the pro-
ducer is waiting on wait(f) and all data has been con-
sumed on f . It evaluates to false if there is some avail-
able data. It blocks if there is no available data and
the producer is not waiting.

These instructions are just syntactic sugar and waiting?(f)
do not affect the determinism of Kpns. They could be imple-
mented by writing/reading a special value on an additional
channel. On the other hand, they do provide more informa-
tion to the fusion process and permit to avoid false paths.

The right part of Figure 8 shows how to take profit of these
instructions on the previous example. Instead of communi-
cating via ct the number of items written on dt, P finishes
its emission by waiting to C. The consumer reads until it
has consumed all data produced by P ; it then releases P
and both processes may proceed. Such explicit rendez-vous
can be taken into account by the abstraction step to avoid
the problematic false paths mentioned above.

Others instructions could be considered as well. For ex-
ample, an instruction close(f), indicating that a process
will not write or read on f anymore, would also be useful.

5.2 More precise abstractions
In section 2, we presented an abstraction representing the

control flow graph of the Kpn. This abstraction gives a very
imprecise approximation for the size of file f at each state
([0;+∞[). As long as they respect the safety and faithful-
ness properties, many other abstractions could be used. We
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Figure 9: Aeg with irrelevance criterion (excerpt)

present here a new abstraction aimed at finding bounded
schedules when they exist. A bounded schedule ensures that
the size of fifo files remain bounded throughout the execu-
tion. In this case, fifo can implemented (after fusion) by
local variables (instead of dynamically allocated data struc-
tures). Furthermore, when the precise size of a channel is
known there is no need to test for its emptiness before read-
ing it.

In some contexts, such as embedded systems, it is crucial
to find bounded schedules and lot of work has been devoted
to this issue ([10], [5], [12]). In the context of Petri Nets,
Cortadella et al. presented a new criterion which limits the
search state for schedules [5] . They conjectured that if a
bounded schedule exists then it will be found in the delim-
ited search space. We can adapt the criterion to our context
to produce abstractions suited to the discovery of bounded
schedule.

The idea is to have precise abstract states associating an
integer to each size (not an interval anymore). The same set
of control points (e.g., (p0, c1)) may appear several times in
the Aeg with different sizes of files. The finiteness of the
Aeg is ensured by the irrelevance criterion. A state s2 is
said irrelevant if the Aeg contains another state s1 such
that:

• s2 is reachable from s1.

• all fifo have their size in s2 greater or equal than their
size in s1

• each fifo whose size is greater in s2 than in s1, has a
non-zero size in s1.

The idea behind this criterion is that a irrelevant state
cannot enable any new action (e.g., it does not enable a
blocked read). It is no use to continue unfolding the graph.
It can be closed using a state where the size of channels are
approximated by [0;+∞[. A small part of the Aeg obtained
using the irrelevance criterion on our running example is
shown on figure 9. A bounded schedule can be found in the



Synchronization using data values

P =



l0 : ι?N ; l1;
l1 : ct!N ; l2;
l2 : i := 0 ; l3;
l3 : i < N | i = i + 1 ; l4;
l3 : i ≥ N | skip ; l0;
l4 : dt!x ; l3



C =



l0 : o!0 ; l1;
l1 : ct?M ; l2;
l2 : j := 0 ; l3;
l3 : j < M | j = j + 1 ; l4;
l3 : j ≥ M | skip ; l0;
l4 : dt?y ; l5;
l5 : o!y ; l3



Synchronisation using linguistic extensions

P =



l0 : ι?N ; l1;
l1 : ct!N ; l2;
l2 : i := 0 ; l3;
l3 : i < N | i = i + 1 ; l4;
l3 : i ≥ N | wait(dt) ; l0;
l4 : dt!x ; l3



C =


l0 : o!0 ; l1;
l1 : ¬waiting?(dt) | dt?y ; l3;
l1 : waiting?(dt) | proceed(dt) ; l0;
l2 : o!y ; l1



Figure 8: A false path problem (left) and its solution (right)

part shown. This improved precision allows to find bounded
schedules automatically; it also involves larger Aegs.

5.3 Instrumented Product
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Figure 10: Instrumented product with ΛFF

Two steps of network fusion are described as a synchro-
nized product between guarded Lts. Obviously, in some
cases, this could cause a state explosion and produce too
large programs. A solution to avoid this space problem is
to implement the product by instrumenting the Aeg. The
Lts representing the constraints or the schedule is taken into
account by the Aeg by introducing a variable (to represent
the state of the Lts) and new instructions (to represent state
transitions).

We have used such a technique in [4] to enforce safety
properties (expressed as finite state automata) on programs.
We have shown that the instrumentation can be made very
efficient using simple techniques (specialization, minimiza-
tion and reachability analysis). This instrumented product
introduces at worst an assignment (a state transition) at

each if and while command.
This technique is easily extended to guarded Lts. Fig-

ure 10 represents the result of the instrumented product
between the Aeg of Figure 3 and ΛFF . It has the same
number of states as the original Aeg. On the other hand,
instructions (l := {0, 1}) and tests (l = {0, 1}) have been in-
serted to encode the state transitions of ΛFF . Compared to
the Lts of Figure 5 which represents the standard synchro-
nized product, some states like (λ0, p0, c0) and (λ1, p0, c0)
are now merged into a single state (p0, c0). Transitions from
this state must now test whether underlying Lts ΛFF is in
the state λ0 or λ1.

On this example, the smaller number of states is certainly
not worth the overhead. In general, however, instrumented
product is at most linear in size whereas synchronized prod-
uct may entail a quadratic blowup. A small time overhead
is preferable to a space explosion. In any case, the user
should be given the opportunity to specify on which Lts (or
on which parts of a Lts) using standard or instrumented
product.

6. CONCLUSION
One of our starting points was Filter Fusion [11], a sim-

ple algorithm to merge a producer connected by a single
channel to a consumer. Filter Fusion is restricted to very
specific networks (pipelines) and to a fixed strategy. Our
work can be seen as a formalization of filter fusion using
synchronized product and as well as a generalization to ar-
bitrary networks and user-defined strategies. The applica-
tion of our technique on pipelined filters with the constraint
ΛFF (Figure 4) is equivalent to filter fusion. The extension
of filter fusion with a more sophisticated scheduling strat-
egy proposed in [3] is formalized in our framework by the
scheduling constraints ΛFB (Figure 4).

Some functional program transformations bear similari-
ties with fusion. As fusion aims at removing values produced
on channels by the composition of components, Listlessness
[14] and deforestation [15] aim at removing the intermediate
data structures produced by the composition of functions.
As filter fusion, these transformations consider producer-
consumer pairs and have a fixed fusion strategy.



The area of embedded/reactive systems has produced a
large body of work on static scheduling. Lin [8] studies the
static scheduling of synchronously communicating processes.
Cortadella et al. [5] and Strehl et al. [12] consider schedul-
ing of asynchronous process networks. They all use petri
nets as their underlying formalism. Like Parks [10], they fo-
cus on bounded scheduling and do not consider user-defined
constraints even if some integrate a form of fusion. Strehl et
al. [13] propose a design model that permits the specifica-
tion of components and scheduling constraints. They derive
a scheduler but do not consider fusion.

We have presented a generic and flexible framework for
merging networks of interacting components. It is based on
guarded labeled transition systems, synchronized product,
static analysis and transformation techniques. Fusion can be
applied to a large class of networks (Kpns) and can take into
account user-defined scheduling constraints. The technique
can be parameterized by different abstractions, constraints
and scheduling strategies. Still, a lot of work remains to be
done.

We are currently working on an extended version includ-
ing a complete formalization and correctness proofs. A pro-
totype needs to be implemented in order to validate the
approach experimentally. We expect that large programs
can be abstracted into small automata since fusion focuses
on I/O instructions (blocks of internal instructions can be
represented by a single action). Along with the use of instru-
mented product in problematic cases, we are confident that
efficient and reasonable sized programs can be produced.

More generally we see network fusion as part of a more
general framework to assemble and fuse components. A first
feature of such a framework would consist in an architecture
description language to specify the assembly (i.e., the ports
and their connections). Another useful feature would be the
ability to specify the synchronization instructions. They do
not have to be IO instructions as supposed previously. By
considering some actions of two components as IO opera-
tions on a (conceptual) channel f (i.e., f !x and f?x), it
becomes possible to impose constraints on their interleav-
ing.
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