
Library PCC(FD) documentation

Matthieu Petit? and Arnaud Gotlieb

IRISA-INRIA, Campus de Beaulieu, 35042 Rennes cedex, France
{Matthieu.Petit,Arnaud.Gotlieb}@irisa.fr

Abstract. This documentation describes the PCC(FD) library v.0. that can be downloaded from
http://www.irisa.fr/lande/petit/index.en.html. The library has been built uponSICStus 3.11.0 [2].

1 Usage

To use the library PCC(FD),the filectr_proba_v0.pl should be loaded. The library adds three probabilistic
constraint combinators to the clp(FD) library of SICStus Prolog [1].

?- [ctr_proba_v0.pl].

For some technical reasons, each combinator uses a global variable Env. This variable must be intialized by
usinginit_env/1. This variable contains different common parameters to probabilistic contraint combinators. For
example, the following example simulates a dice drawing.

?- init_env(Env),choose(X,[1,2,3,4,5,6]-[1,1,1,1,1,1],[X=Dice],[],Env).

2 Probabilistic terminal configuration predicate

The predicateptc(Goal,Var List,Result) computes empirically the set of terminal configurations in PCC(FD)
[3]. Given alist of Prolog goalsGoal along with a list of variablesVar_List, theptc predicates launches a given
number ofGoal runs, records the resulting constraint store projection (i.e. projection of domains onVar_List)
after the constraint propagation step, and computes the occurrence rate of each constraint store projection. By using
this predicate, one can study the probabilistic behaviour of our constraint combinators in PCC(FD). The number of
iterations are fixed at5000 but can be modified by redifining the predicatenb_iteration/1.

3 Combinators

The library PCC(FD) is composed by three combinators:

- choose, where the domain and probability distribution of the probabilistic choice are a list of finite domain
variables;

- choose_range, where the domain of the probabilistic choice is a range represented with two distinct FD vari-
ablesMin andMax, and its probability distribution a list of finite domain variables;

- choose_decision, where the domain of the probabilistic choice is the booleandomain{0, 1} and its proba-
bility distribution is a couple of distinct finite domain variables.

Note thatchoose_range andchoose_decision can be rewritten by usingchoose. However, a dedicated
filtering algorithm has been implemented for a more efficientbehaviour of combinators.

? This work is part of the GENETTA project granted by the Brittany region: http://www.irisa.fr/lande/petit/genetta.

3.1 choose constraint combinator

The probabilistic constraint combinatorchoose models a random choice of a value for a random variableX given a
domain and a probability distribution.

choose(X,[V1,..Vn]-[W1,..,Wn],Goal,Options,Env)

whereX is a random variable,V1,..,Vn,W1,..,Wn are finite domain variables,Goal is a list of Prolog goal.
Options is used to parameterize the filtering capacities of the combinator into the constraint propagation mechanism.

- domain_unbound must be used when variables of[V1,..Vn] are instantiated;
- inconsistency_check can be used to check the consistency of all the possible valuesV of X with respect to
Goal. This option launchs a fix point computation which tries iteratively to prune the domain ofX,V1,..Vn,W1,
..,Wn. The fix point computation is based on a inconsistency test between the possible values ofX andGoal.
This option is useful to improve the deduction of the combinator but are more costly in computation time;

- lvar(L) can be used to enrich the list of variables on which the combinator is awaked. This option is useful to
parameterize the awaking conditions of the combinator;

- no_filtering can be employed to switch off the pruning capacities of the filtering algorithm. This option is
useful to estimate the effectiveness of the filtering algorithm;

- rv(U) can be used to obtain the value of the random variable which isused to simulate theX value. This options
is useful to verify the corectness of the probabilistic constraint combinator.

3.2 choose range constraint combinator

Thechoose range combinator implements a probabilistic choice operator fora range of values. The range is given
by [Xmin,Xmax], whereXmin andXmax are two finite domain variables.Xmin denotes the lower bound ofX
wherasXmax denotes its upper bound. The syntax of the combinatorchoose_range is as follows:

choose_range(X,[Xmin,Xmax]-Distribution,Goal,Options,Env)

whereX is a random variable,Xmin,Xmax are finite domain variables,Distribution is a atom’uniform’
which define a uniform probability distribution or a list of finite domain variables andGoal is a list of Prolog goal.
inconsistency_check, lvar(L), no_filtering andrv(U) options are available.

3.3 choose decision constraint combinator

Thechoose decision combinator implements a probabilistic boolean choice between two processes. This proba-
bilistic boolean choice is represented as a list[W1,W2] of two finite domain variables. The termneg(Constraint)
denotes the negation ofConstraint. Note thatneg is limited to simple arithmetic constraints composed of#=,
#\=, #>, #>=, #<, #=<, #/\ and#\/.

choose_decision(Constraint,[W1,W2],Goal1,Goal2,Options,Env)

whereX is a random variable,W1,W2 are two finite domain variables,Goal1 andGoal2 are a list of Prolog goal.
inconsistency_check, lvar(L), no_filtering andrv(U) options are available.

4 Examples

Three examples of the combinator usage is presented in this section

2

4.1 Dice playing

The following example extracted from [5] illustrates the use ofchoose. Thedice/1 goal modelizes a biased dice
drawing. The bias of the dice is partially unknown. Bias knowledge is represented by constraints on the variables of
the probability distribution. In the example, the probability to draw6 is two times bigger than the probability to draw
1.

dice(Dice) :-
init_env(Env),
P1 in 1..4,
P2 #= 2,
P3 #= 2,
P4 #= 2,
P5 #= 2,
P6 in 1..4,
2*P1 #= P6,
choose(X,[1,2,3,4,5,6]-[P1,P2,P3,P4,P5,P6],[Dice=X],[],Env).

? - ptc([dice(Dice)],[Dice],Result).

Result=[(Dice=1,0.07735),(Dice in 1..2,0.09065),
(Dice=2,0.06285),(Dice in 2..3,0.10175),
(Dice=3,0.05135),(Dice in 3..4,0.11795),
(Dice=4,0.03860),(Dice in 4..5,0.12775),
(Dice=5,0.02575),(Dice in 5..6,0.1401),
(Dice=6,0.16590)]

The results show the different constraint store projections onX obtained after the constraint propagation step. For
example,(Dice=1,0.07735) means thatDice is equal to1 with a probability0.07735.

4.2 Primal Testing

The following example extracted from [6] illustrates the use of choose_range. The goal modelizes a weakest
version of the Miller-Rabin primal testing.

primal_testing(N,K) :-
init_env(Env),
N in 3..4000000,
Xmax#=N-1,
itere(N,Xmax,K,Env).

itere(_N,_Xmax,0,_Env) :-
!.

itere(N,Xmax,K,Env) :-
choose_range(X,[2,Xmax],’uniform’,[fermat_test(X,N)],[lvar([N])],Env),
K1 is K-1,
itere(N,Xmax,K1,Env).

4.3 Structural statiscal testing

The following example extracted from [7] illustrates the use ofchoose_decision. The goal modelizes the trans-
formation of a problem structural statiscal testing [8] forthefoo program (FIG. 1) into a stochastic constraint problem.

3

int foo(int x, int y) {
1. if (x =< 100 && y =< 100)

{
2. if (y > x + 50)
3. . . .
4. if (x ∗ y < 100)
5. . . .
6. }

Fig. 1.Program foo

foo(X,Y, [W1,W2,W3,W4,W5,W6]) :-
init_env(Env),
X in 0..1000,Y in 0..1000,
choose_decision(X#=<100#/\Y#=<100,[W1,W2],
[choose_decision(Y#>X+50,[W3,W4],[],[],Env),
choose_decision(Y*X#<100,[W5,W6],[],[],Env)],[],[],Env),

N1*W1#=N2*W2,
N3*W3#=N4*W4,
N5*W5#=N6*W6.

5 Referencing this library

When referring to this implementation, please use [4]. The constraint combinators behaviour and the filtering algorithm
associated to it is more precisely described in [4].

References

1. M. Carlsson, G. Ottosson, and B. Carlson. An Open–Ended Finite Domain Constraint Solver. InProceedings of Programming
Languages: Implementations, Logics, and Programs, 1997.

2. Mats Carlsson.SICStus Prolog User’s Manual. Swedish Institute in Computer Science, 1997.
3. P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and evaluation of the constraint language cc(fd).

Technical Report CS-93-02, Brown University, 1993.
4. M. Petit and A. Gotlieb. Boosting probabilistic choice operators. InProceedings of Principles and Practices of Constraint

Programming, Springer Verlag, LNCS 4741, pages 559–573, Providence, USA, September 2007.
5. M. Petit and A. Gotlieb. Constraint-based reasoning on probabilistic choice operators. Research Report 6165, INRIA, 04 2007.
6. M. Petit and A. Gotlieb. Probabilistic choice operators as constraint combinators: Application to the statistical structural testing

problem. Research Report 6223, INRIA, 06 2007.
7. M. Petit and A. Gotlieb. Uniform selection of feasible paths as a stochasticconstraint problem (short paper). InProceedings of

the International Conference on Quality Software, IEEE, pages 280–285, Portland, USA, October 2007.
8. P. Th́evenod-Fosse and H. Waeselynck. An investigation of statistical software testing.Journal of Sotware Testing, Verification

and Reliability, 1(2):5–25, July 1991.

4

