
A Design for Adaptive Web Service Evolution

Piotr Kaminski
University of Victoria

Dept. of Computer Science

pkaminsk@cs.uvic.ca

Hausi Müller
University of Victoria

Dept. of Computer Science

hausi@cs.uvic.ca

Marin Litoiu
IBM Canada

IBM Toronto Laboratory CAS

marin@ca.ibm.com

ABSTRACT
In this paper, we define the problem of simultaneously deploying
multiple versions of a web service in the face of independently
developed unsupervised clients. We then propose a solution in
the form of a design technique called Chain of Adapters and argue
that this approach strikes a good balance between the various
requirements. The Chain of Adapters technique is particularly
suitable for self-managed systems since it makes many version-
related reconfiguration tasks safe, and thus subject to automation.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – Pat-
terns.

General Terms
Design

Keywords
Web services; software evolution; backwards compatibility; de-
sign patterns.

1. INTRODUCTION
Version management of deployed software has always been a
tricky business. In this age of foreshortened development cycles,
direct unsupervised links between independently developed appli-
cations, and increasingly self-managing systems, the complexity
of evolving “live” applications is becoming a critical issue. In
this paper, we explore the problem and propose a design tech-
nique that makes managing version evolution simpler—whether
for human administrators or self-managing systems.

Since easing version management is an overly broad target, we
focus specifically on versioning of web services—broadly under-
stood as applications whose functionality is exposed to third-party
clients over a network. Our goal is to permit the evolution of a
service’s interface and implementation while remaining back-
wards-compatible with clients written to comply with previous
versions. Section 2 lists all our requirements in detail and demon-
strates why a number of common versioning strategies are inap-
propriate in this context.

Our solution, which we call Chain of Adapters and present in
Section 3, is a design technique that can be applied by the service
developer and imposes no requirements on clients or server infra-
structure. While it is simple enough to be applied manually, we
also describe a prototype tool we have built to automate some of
its more repetitive aspects. It is well suited to deployment in self-
managing systems since it affords the manager a larger number of
safe configuration options.

Section 4 discusses related work, and Section 5 concludes with a
summary and future research directions.

2. REQUIREMENTS
In this section we lay out precisely our interpretation of the ver-
sion management problem in terms of the requirements that a
solution would have to fulfill. To make the discussion more con-
crete, we also showcase a few standard approaches to solving the
problem and explain how they satisfy (or fail to satisfy) the pos-
ited constraints. We illustrate the discussion with diagrams of
sample web service configurations such as the one in Figure 1,
which presents a basic single version arrangement that is the start-
ing point for all approaches.

The underlying scenario we assume is as follows. A developer
constructs a web service and makes it available at an advertised
endpoint, while publishing its interface (e.g., in Web Service De-
finition Language, WSDL [4]) and concomitant datatype defini-
tions (e.g., as XML Schema documents). One or more third party
clients start using the service, by binding the interface and data
schemas into their application and connecting to the publicized
endpoint (e.g., over SOAP [6]). The web service stores some
information between invocations, and may share that information
between clients (e.g., an auction once posted can be bid on by
everyone).

The question we explore in this section is: what are the desirable
properties of an evolving web service?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SEAMS’06, May 21–22, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

Figure 1. Single version of a simple web service

86

2.1 Backwards Compatibility
The fundamental requirement for evolution in cases where the
service developer has not control over the clients—such as in our
putative scenario—is to maintain strict backwards compatibility.
Clients written to work with earlier versions of the web service
must continue to function correctly even as the web service
evolves, at least until support for the older version is formally
withdrawn.

Trivial ways to satisfy this requirement (Figure 2) include (a)
supporting only the most recent release of the web service—a
tactic unlikely to please current customers—or (b) freezing its
external interface at the first published version, which would ef-
fectively cause the feature set to stagnate and thus fail to attract
new customers. Neither solution is particularly realistic unless
exceptional circumstances prevail.

Note that we do not worry about forwards compatibility—that is,
the ability of clients developed against a newer interface to work
with older versions of the service. This only becomes a problem
if the service’s interfaces are implemented independently at mul-
tiple endpoints, in which case a client written against v2 might
find itself faced with a v1 interface after switching service provid-
ers. We believe that in this kind of scenario it is reasonable to
devolve the burden of interacting with older versions of the ser-
vice onto the clients’ developers.

2.2 Common Data Store
Another critical requirement is that a consistent, common service
state must be exposed to all clients, from the oldest to the newest.
For example, in an on-line banking web service, changes to an
account balance made by a new v2 client deployed at the bank’s
branches must be visible to an older v1 client deployed on the
customer’s home computer. Naturally, data related only to newly
introduced features is exempt from this rule, since older clients
would be unable to process it anyway.

This constraint immediately invalidates one of the simplest evolu-
tionary strategies: keep each version of a service running as-is in
isolation (Figure 3). This architecture is of interest only for state-
less services, and even so suffers from other defects explored in
the following section.

In practice the most common approach is to arrange for all ver-
sions of a service to refer to a single database. This can introduce
its own problems since—depending on the exact architecture
adopted—it might become necessary to maintain a database
schema that remains compatible with all versions of the service
(Figure 4). Other acceptable solutions include periodic data syn-
chronization between versions and other database-level tricks.

2.3 No Code Duplication
Beyond the functional requirements listed above, we also impose
some software engineering requirements. A generally (though not
universally) accepted principle is to avoid code duplication in
software. While typically expressed within the bounds of an ap-
plication, we hold that this tenet should also be applied across the
versions of a service. Wherever possible, common code must be
factored out to ease understanding and maintenance. This way, a
bug detected and fixed in one version will be automatically fixed
in all other versions (as applicable), helping to keep maintenance
costs under control.

Note that both of the solutions proposed in Section 2.2 (figures 3
and 4) break this rule by duplicating the entire codebase of the
web service for each version.

2.4 Untangled Versions
Another important software engineering principle is that of encap-
sulation, which we adapt in this case to require that each piece of
code be assigned to one or more versions of the service. Such a
partitioning will permit the removal of dead code as versions of a

Figure 2. Trivial approaches to backwards compatibility:

(a) only support the latest version, or
(b) freeze the first published interface forever

Figure 3. Multiple isolated versions of a web service

Figure 4. Multiple versions of a web service

sharing a single database

87

service are withdrawn, reducing its complexity and avoiding the
Lava Flow anti-pattern [3]. It is particularly valuable for self-
managing systems, since it allows independent control over each
version of the service without costly and complicated human in-
tervention.

A typical design often observed in the wild that fails the tangling
test is exhibited in Figure 5. The interface of each version incre-
mentally extends that of the preceding one, and a single service
progressively accumulates the implementation of all these inter-
faces. This approach requires developer intervention to deprecate
interface members and excise the corresponding implementation
pieces from the codebase.

2.5 Unconstrained Evolution
Another important consideration is that the evolution of the ser-
vice should be unconstrained by past versions, as much as possi-
ble. The developer should be allowed to refactor, redesign, and
otherwise rethink both the service’s interface and implementation
without being shackled by previous decisions. This gives the
service the best chance of avoiding a slide into design debt and
becoming legacy software.

It is likely that this requirement is unachievable in practice, since
the absolute need for backwards compatibility will almost always
constrain the shape of the service. Nonetheless, it is a worthwhile
ideal to strive for.

2.6 Visible Mechanism
Finally, we feel that it is important to expose the mechanism by
which backwards compatible evolution is achieved to the service
developers. After all, backwards compatibility is an inherently
tricky business with lots of special cases and exceptions, and
sooner or later the developer will need to dig into the guts of the
framework. The framework should be kept simple and unobtru-
sively visible, rather than try to anticipate all possible scenarios
with behind the scenes “magic”.

We are thus opposed to backwards-compatibility frameworks that
reside in the web service engine (e.g., as handlers in the Axis
architecture), or that require automated generation of large
amounts of opaque code. Another approach that doesn’t pass
muster is to extend the XML Schema used by WSDL interfaces;
not only are such extensions limited by the existing contents of
the schema (breaking the requirement of Section 2.5), but the

details of the extension mechanism have proven very difficult to
understand correctly [13].

3. CHAIN OF ADAPTERS
In this section, we first explain how to apply our proposed Chain
of Adapters approach to web service evolution, and then evaluate
it against the requirements of the previous section.

3.1 A Simple Design Technique
The Chain of Adapters is a design technique that is most easily
explained by illustrating its application to a web service under
development. Suppose that a first version of the service has just
been completed; to enable the evolution of the service through the
Chain of Adapters, the developer should then:

1. Duplicate the interface of the web service into a differ-
ent namespace. The resulting copy will then have the
same members and data structures as the original, while
having no formal relationship to its parent. Call this the
v1 interface.

2. Create an implementation of the v1 interface that for-
wards all calls to the original endpoint and interface,
translating the namespace of any data structures as nec-
essary.

3. Publish and advertise the v1 interface endpoint as the
stable first version of the web service.

The result (depicted in Figure 6) corresponds to the classical web
service architecture with an additional delegation layer in the
form of a pass-through adapter. The structure shown is both de-
ployed externally and used internally for further development.1

Once v1 is deployed and in use and development of the service
turns towards a new version v2, the v1↔v2 adapter comes into its
own. Whenever the web service is modified, a compensating
modification is made in the adapter to maintain the contract of the
v1 interface. For example:

1 Why not deploy a snapshot of the web service just before creat-

ing the v1 interface and v1↔v2 adapter? While these compo-
nents seem to serve no useful function in the deployed version,
publishing the current interface directly as v1 would force it to
change namespaces with each version, inconveniencing the ser-
vice’s developers.

Interface v2

Web Service
v1+v2+v3

Interface v1 Interface v3

Figure 5. Incrementally extended interface

with a single tangled implementation

Figure 6. Chain of Adapters structure

after the first version is published

88

 If the current interface is changed through the addition
of a parameter to an existing operation, the adapter must
be modified to provide a default value for this parame-
ter when forwarding the call.

 If the definition of a data structure is changed, the
adapter must translate from the old one to the new one
(for in parameters) or from the new one to the old one
(for out parameters and return values).

 If an operation is removed from the interface, it must be
re-implemented in the adapter, in terms of the other op-
erations available in the current interface.

 If the contract of an operation is changed, the adapter
must either compensate for the difference or re-
implement the operation according to its v1 contract as
if though it had been removed.

Note that the adapter does not need to be modified when a new
operation is added to the interface, nor when new optional mem-
bers are added to a data structure—both will be ignored by the
default delegation and translation processes.

In this way, the adapter accumulates a record of the differences
between v1 and (the upcoming) v2, expressed as compensating
code fragments. When v2 is ready for release, the developer must:

1. Duplicate the current interface into a separate name-
space; the copy will be v2 of the interface.

2. Create an adapter for the v2 interface that delegates to
the current endpoint and interface.

3. Retarget the v1↔v2 adapter to delegate to the v2 end-
point.

4. Publish and advertise the v2 interface endpoint as the
stable second version of the web service.

Figure 7 shows the resulting structure, with a new pass-through
v2↔v3 adapter, and a slightly fatter v1↔v2 adapter.

Development of the web service can now continue towards v3,
with compensating code placed into the v2↔v3 adapter. The
v1↔v2 adapter need never be touched again, since all future in-
compatibilities will be compensated for by the v2↔v3 and further
downstream adapters. In fact, as the service grows older and the
versions mount up, the only code that needs to be edited is the
service’s current codebase and the most recent adapter.

By following the “freeze, adapt and delegate” technique estab-
lished above, the web service forms a Chain of Adapters support-
ing an arbitrary number of versions as shown in Figure 8.

3.2 Tradeoff Evaluation
We now proceed to evaluate our proposed design with respect to
the requirements stated in Section 2.

Backwards compatibility is preserved—at least in theory—by
publishing only frozen versions of the service’s interface, each at
its own endpoint address. In practice, it is up to the developer
backed by the full power of the programming language to ensure
that the adapters compensate appropriately for changes that are
not backwards-compatible. While the compiler will pick up any
trivial signature mismatches, semantic incompatibilities will be
harder to catch. Chances of success can be increased by having
the adapter developed concurrently with the mainline code, and
by judicious application of test suites frozen along with previous
service versions. Nonetheless, the risk that changes to the web
service will impact past versions is intrinsic to our approach, and
may make it unsuitable in certain contexts.

The requirements for a common data store and no code duplica-
tion are both fulfilled by the Chain of Adapters design, since there
is only one central web service implementation for all the ver-
sions. At the same time, the code specific to the peculiarities of
each version is encapsulated within a separate adapter, thus pre-
venting version tangling. The resulting structure allows versions
(and their code) to be withdrawn from service cleanly, as long as
it is done in strict oldest-to-newest order.

The evolution of services under this design is also mostly uncon-
strained. The interface and implementation can be changed in
arbitrary ways, provided that there exists a way to implement the
contract of the previous interface in terms of the new one. Al-
though on its face this is not a very onerous limitation, since obso-
lete operations can simply be moved into the adapter, there is one
important caveat: any functionality that requires access to the
data store must remain in the main web service implementation,
or the obsolete data must be split off into a new adapter-specific
database. We need more experience with the technique before we
can determine if this will become a real problem in practice.

Finally, the delegation mechanism espoused by this design tech-
nique is both simple and fully exposed to the developer. While
the initial pass-through adapter is amenable to code generation,

Interface v1

Adapter v1↔v2 Web Service

Current InterfaceInterface v2

Adapter v2↔v3

Figure 7. Chain of Adapters structure
after the second version is published

Figure 8. Chain of Adapters structure
after n versions have been published

89

the resultant code is straightforward (if repetitive) and easily un-
derstood and modified by the developer.

In summary, the Chain of Adapters design technique achieves a
clear win on four out of the six requirements, and delivers a man-
ageable compromise on the other two.

3.3 Tips and Tricks
The proposed design technique raises some additional concerns
that we address here. For example, there arises the question of
what to do when a bug is discovered in the service implementa-
tion code. If it is fixed in the current release, the fix will affect all
versions and may break clients that have come to (unknowingly)
rely on or implemented workarounds for the bug. Unfortunately,
there is no straightforward answer to this question, but the Chain
of Adapters supports three options:

1. If it is preferable to fix the bug in all versions, a single
fix in the current version will suffice.

2. If it is decided to let the bug stand in older versions,
then the bug must be fixed in the current version and
compensating code that replicates the buggy behavior
must be added to the vn↔vn+1 adapter.

3. If it is decided to let the bug stand in older versions by
default but to offer a bug-fixed release under the older
interface, it is possible to proceed as in option 2 but to

also make a copy of the original adapter chain and offer
it at a new set of endpoints (see Figure 9), effectively
implementing options 1 and 2 simultaneously. This ap-
proach is useful for clients that want to take advantage
of the bug fix without upgrading to the latest version’s
interface.

The last option must be exercised carefully to prevent a prolifera-
tion of adapter chains and endpoints; it would be best to limit
deployment to one stable chain and one “bug-fixed” chain. None-
theless, as development progresses over the years, the chains will
grow in length and complexity thus impeding manageability and
performance. The issue is offset by taking advantage of one of
the strengths of the proposed design and limiting the number of
supported versions.

If withdrawing older versions from service is not desirable and
their performance starts to suffer due to a surfeit of delegations, it
is possible to employ another trick. To demonstrate by example,
consider a web service with five deployed versions where the
performance of v1 and v2 has become unacceptable due to the
overhead of forwarding calls through the rest of the chain. We
can rewrite the v2↔v3 adapter to instead target the newest v5 in-
terface, folding in the compensations introduced in the v3↔v4 and
v4↔v5 adapters. The new v2↔v5 adapter now skips two links in
the chain, reducing the overhead and improving performance
(Figure 10). In general, it is possible to skip any number of links
and introduce any number of jumps into the chain, but coalescing
a bunch of old adapters is not an easy job and is best left for ex-
ceptional circumstances.

3.4 Self-configuration Scenarios
Though the Chain of Adapters technique is applied at the level of
individual web services, its effects on self-configuration are
mainly felt at the level of an entire multi-service application.
Whether the self-reconfiguration is triggered by a fault healing
mechanism or by the availability of updated components that add
functionality or improve the quality of service of the application,
having the application’s component services implemented as
Chains of Adapters can help ensure a seamless transition.

A basic requirement when reconfiguring applications is that the
transition should take place with no visible discontinuity in the
services offered. One way [10] to fulfill this requirement is to (i)
buffer all incoming requests, (ii) wait until all requests in progress
are completed, (iii) replace the application with a new version,
and (iv) resume the buffered requests by forwarding them to the
new version of the application. Step (iii) has to be done within

Figure 9. Maintaining both buggy and fixed interfaces to a

web service to satisfy all clients

Figure 10. Skipping over links in the chain to reduce forwarding overhead

90

the boundaries of an ACID transaction [1], which offers the abil-
ity to roll back the change if the update is not successful. The
disadvantage of this approach is that draining requests out of a
whole application and synchronizing a transaction across its dis-
tributed web service components can take a long time, and lead to
a service interruption that is glaringly obvious to the users.

The advantage of using an approach such as the Chain of Adapt-
ers that preserves backwards compatibility for each web service—
even within an application—becomes apparent in these circum-
stances. Instead of upgrading the whole application (i.e., all its
web services) simultaneously, we can upgrade the services one-
by-one using the method described above, in many localized
transactions that introduce much smaller discontinuities and are
easier to roll back in case of failure. Consider Figure 11a, which
shows version 1 of a deployed application made up version 1 of
web services A, B, C and D; each box represents an entire web
service, including its database and its whole chain of adapters.
Figure 11b shows the reconfiguration in progress after two steps,
where web services A and B have been replaced with newer ver-
sions in two small upgrade transactions. Note that service C and
D remain at version 1, and still invoke the version 1 interfaces of
A’ and B’; furthermore, the operation of service D is unimpeded
during the replacement of services B and C. The reconfiguration
process continues replacing web services in small, inconspicuous
steps until the entire application has been brought up-to-date. In
case of transaction failure, the upgrades can be rolled back indi-
vidually in reverse order.

3.5 Tool Prototype
We have built a prototype plug-in for the Eclipse Web Tools Plat-
form (WTP v0.7) that automates the process of freezing and pub-
lishing a version of a WSDL/SOAP web service. It has proven
invaluable for testing and refining the design’s concepts due to

the bulky, work-intensive syntaxes of WSDL and XML Schema.
Although the plug-in lacks support for all XML Schema features,
it has successfully demonstrated that it is possible to reduce the
developer’s workload while keeping the version management
mechanisms visible.

The functionality of the tool was not difficult to develop in prin-
ciple, though some unexpected corner cases provided a few sur-
prises—much like when attempting to automate apparently simple
refactoring techniques. The main challenges in building the plug-
in, though, came from integrating it deeply with the largely un-
documented WTP v0.7 framework. WTP has since moved on to
v1.0 and, while the documentation is now much improved, the
internal models have shifted sufficiently to require a nearly com-
plete rewrite of our plug-in.

In summary, the prototype has served us well in proving the fun-
damental viability of the Chain of Adapters design technique, and
we anticipate that it should be fairly easy to implement similar
tools for WTP v1.0 or other platforms.

4. RELATED WORK
Vinoski [18] and Stuckenholz [17] provide rather bleak overviews
of the state of the art in middleware versioning. Within the realm
of web services, Ponnekanti and Fox’s work [15, 14] is the closest
to ours, proposing to chain interface adapters to achieve compati-
bility. However, they focus on using third party adapters to
match clients with independently developed web services rather
than on including the development of such adapters in the web
service evolutionary cycle. Brown and Ellis [2], on the other
hand, advocate having one service support multiple interfaces (cf.
Figure 5 but without the inheritance) and advertising the fact
through UDDI. Irani [8] covers the subject at a high level, and
seems to advocate running multiple versions in parallel (cf. Figure
3) at a single endpoint, with a broker in the server engine dis-
patching calls appropriately. Finally, Kalali et al. [9] assume that
clients can adapt automatically to changing interfaces if they are
but notified that they have indeed changed.

For web services defined using WSDL and XML Schema, another
promising avenue of approach is to look specifically at the exten-
sibility of XML languages. Most of the work is centered around
the W3C, with unfinished proposals that range from XML
Schema extensibility details [11, 12, 13] to general versioning
principles [14] such as “must understand” and “must ignore”
rules. Wilde [19] has looked at applying some of these ideas to
web services, along with additional declarative semantics to de-
scribe extensions to a service’s vocabulary. While some of these
ideas look promising and may yet come to fruition, they are not
yet distilled enough to be employed by web service developers
without further research.

Finally, the present work was inspired by (and its name derived
from) the Adapter and Chain of Responsibility design patterns
from Gamma et al. [5]. We later discovered that a design tech-
nique essentially identical to Chain of Adapters had been sug-
gested by Hallberg [7] for Haskell modules under the name “Eter-
nal Compatibility in Theory”; we do not know whether his pro-
posal was adopted by that community. Hallberg hints that the
idea may have been floated much earlier by Stroustrup, and we
also have anecdotal reports of the technique being used informally

Figure 11. Reconfiguring an application piece-by-piece

91

in other object-oriented systems. If so, it may well be a design
pattern just waiting to be discovered.

5. CONCLUSIONS
In this paper, we laid out our requirements for a solution to the
web service version management problem, and illustrated a num-
ber of unsatisfactory yet popular approaches. We then presented
our own solution called Chain of Adapters, which is a simple
design technique that can be applied by the developer to achieve
backwards compatibility. Our technique provides a good tradeoff
between satisfying the various requirements, with particular
strength in the area of version untangling.

The Chain of Adapters can prove useful in self-configuration
scenarios. By decomposing a long update/roll-back transaction
into a sequence of independent smaller transactions, the response
time is affected to a smaller degree and the end user won’t notice
a discontinuity in service.

Though we implemented an Eclipse plug-in that helps apply this
technique to WSDL/SOAP web services and tested it on a few
small applications, it is not clear whether the design would scale
to large web services. Further evaluation along these lines is
needed, as well as further research into independent re-inventions
of this design technique in hope of an eventual promotion to a
full-fledged design pattern. The effectiveness of this approach in
self-configuration scenarios is also subject to further work.

6. ACKNOWLEDGEMENTS
This research was supported by the IBM Centre for Advanced
Studies (CAS), Toronto and the National Sciences and Engineer-
ing Research Council (NSERC) of Canada.

7. REFERENCES
[1] Bernstein, P. and Newcomer, E. Principles of Transaction

Processing. Morgan Kaufmann, 1997.
[2] Brown, K. and Ellis, M. Best practices for Web services

versioning. IBM developerWorks, Jan. 30, 2004. http://www-
128.ibm.com/developerworks/webservices/library/ws-version/

[3] Brown, W. J., Malveau, R. C., McCormick, H. W., and
Mowbray, T. J. AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley & Sons,
New York, NY, 1998.

[4] Christensen, E., Curbera, F., Meredith, G., and
Weerawarana, S., eds. Web Services Description Language
(WSDL) 1.1. W3C Note, Mar. 15, 2001.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[6] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and
Nielson, H. F., eds. SOAP Version 1.2 Part 1: Messaging
Framework. W3C Recommendation, June 24, 2003.

[7] Hallberg, S. M. Eternal Compatibility in Theory. The
Monad.Reader, Issue 2, May 2005.
http://www.haskell.org/tmrwiki/EternalCompatibilityInTheory

[8] Irani, R. Versioning of Web Services: Solving the Problem
of Maintenance. Web Services Architect, Aug. 8, 2001.
http://www.webservicesarchitect.com/content/articles/irani04.asp

[9] Kalali, B., Alencar, P., and Cowan, D. A Service-Oriented
Monitoring Registry. In Proceedings of the 2003
Conference of the Centre For Advanced Studies on
Collaborative Research (CASCON 2003) (Toronto, Ontario,
Canada, Oct. 6-9, 2003). IBM Centre for Advanced Studies
Conference. IBM Press, 107-121.

[10] Kramer, J. and Magee, J. The Evolving Philosophers
Problem: Dynamic Change Management. In IEEE
Transactions on Software Engineering, 16, 11 (Nov. 1990),
1293-1306.

[11] Mendelsohn, N. An Approach for Evolving XML
Vocabularies Using XML Schema. IBM Corporation, June
15, 2004. http://lists.w3.org/Archives/Public/www-
tag/2004Aug/att-0010/NRMVersioningProposal.html

[12] Orchard, D. Extensibility, XML Vocabularies, and XML
Schema. O’Reilly xml.com, Oct. 27, 2004.
http://www.xml.com/pub/a/2004/10/27/extend.html

[13] Orchard, D. Providing Compatible Schema Evolution. Jan.
19, 2004.
http://www.pacificspirit.com/Authoring/Compatibility/ProvidingCo
mpatibleSchemaEvolution.html

[14] Orchard, D. and Walsh, N., eds. Versioning XML
Languages. Proposed TAG Finding, Nov. 16, 2003.
http://www.w3.org/2001/tag/doc/versioning.html

[15] Ponnekanti, S. R. and Fox A. Application-Service
Interoperation without Standardized Service Interfaces. In
Proceedings of the First IEEE International Conference on
Pervasive Computing and Communications (PerCom 2003)
(Dallas-Fort Worth, Texas, United States, March 23-26,
2003). IEEE, 2003, 30-37.

[16] Ponnekanti, S. R. and Fox, A. Interoperability Among
Independently Evolving Web Services. In Proceedings of
the 5th ACM/IFIP/USENIX International Conference on
Middleware (Toronto, Ontario, Canada, Oct. 18-22, 2004).
ACM International Conference Proceeding Series, vol. 78.
Springer-Verlag, New York, NY, 331-351.

[17] Stuckenholz, A. Component Evolution and Versioning State
of the Art. ACM SIGSOFT Software Engineering Notes, 30,
1 (Jan. 2005), 1-13.

[18] Vinoski, S. The More Things Change. IEEE Internet
Computing, Jan/Feb 2004, 87-89.

[19] Wilde, E. Semantically Extensible Schemas for Web
Service Evolution. In Proceedings of the 2004 European
Conference on Web Services (ECOWS ’04) (Erfurt,
Germany, Sep. 27-30, 2004). Springer-Verlag, Lecture
Notes in Computer Science, vol. 3250, 2004, 30-45.

92

