
Test Ready UML Statechart Models

PVR Murthy
CT, Siemens

84, Electronics City
Bangalore, India
+91 80 25113674
PVR.Murthy

@siemens.com

PC Anitha
CT, Siemens

84, Electronics City
Bangalore, India
+91 80 25113628

PC.Anitha
@siemens.com

M Mahesh
CT, Siemens

84, Electronics City
Bangalore, India
+91 80 25113605

M.Mahesh
@siemens.com

Rajesh Subramanyan
Siemens Corporate

Research
755 College Road East

Princeton, NJ 08540, USA
+1 609.734.3651

Rajesh.Subramanyan
@siemens.com

ABSTRACT
The dynamic behavior of systems is best described by Finite-state
machines. Generation of executable tests from behavioral models
such as UML Statecharts offers benefits such as systematic testing
and test adequacy. We choose UML Statechart models of
behavior as the basis for test generation. This paper attempts to
lay a new foundation for UML Statechart based test generation by
introducing Test Ready UML Statechart models that can be used
by testers in the testing phases just as the conventional UML
Statecharts are required during the design and development
phases. In order to achieve the goal of automatic test generation
based on UML Statecharts, we identify what is required over and
above UML Statecharts for testers to specify so that the resulting
test ready models are amenable for automatic generation of
executable test scripts. The test generation problem from a Test
Ready UML Statechart is solved by determining all the sentential
forms derivable from an equivalent extended context free
grammar model.

Categories and Subject Descriptors
D.2.5. [Software Engineering]: Testing and Debugging – Testing
Tools
General Terms
Algorithms, Reliability, Verification

Keywords
Model based Testing, UML Statecharts, Context-free grammar

1. INTRODUCTION
Finite-State machine model based testing has been studied
extensively [1,2,4,5,6,15,16]. Automatic test generation from
SDL and Message sequence charts [7] has been attempted.
However, our work differs from the previous work in the
following ways: a) we suggest visual formalism for specifying
events along state transitions. For example, to specify the event
“entry of date of flight”, both invalid and valid dates of flight need
to be modeled for test generation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SCESM’06, May 27, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00

For a valid date of flight, it may be important to test the
application with a date that corresponds to a leap year and
February 29th. Thus, an extended UML Statechart model for
testing purposes should allow a tester to model different
characteristics of events. We propose modeling events using data-
flow graph nodes (data generator node, data selector node, data
aggregate node). b) The test generator generates test cases as
instances of paths in the extended UML Statechart model. If the
event date of flight is modeled using a data selector node and is
attached to a state transition, the test generator may select one of
the inlinks (say leap year) of date of flight data selector node
before proceeding with the generation of the rest of the path. The
test generator may encounter a guard condition along a
subsequent state transition checking if an inlink that specifies leap
year for the event date of flight has been selected. If the guard
condition is satisfied, the test generator proceeds with the rest of
the path, otherwise, it backtracks to a suitable node and explores
another path for test generation. Thus, specification of guard
conditions along state transitions is a powerful mechanism for the
test generator to select test scenarios that are coherent and c) in
the extended UML Statechart model, test statements may be
specified along state transitions or state nodes. Once a path is
generated which is a sequence of state transitions, test statements
along the state transitions and in the state nodes are concatenated
together to form an executable test case. d) The extended UML
Statechart model provides a framework for generation of tests for
any test execution environment. The test generator considers the
test statements as mere strings to be emitted in an order dictated
by a path generated.

UML statecharts may be used to describe the behavior of event-
driven systems such as communication protocols or graphical user
interface systems. In Software Testing, a key requirement is to
ensure test adequacy with respect to the features or requirements
of the Software Under Test (SUT). In model based testing
approaches, tests are derived automatically from models such as
UML statecharts. Confidence in Test Adequacy may be achieved
easily by ensuring that tests corresponding to different workflows
or paths in a model are created or automatically generated

Section 2 discusses about Test Ready UML Statechart Modeling.
Section 3 presents a few examples of paths in the Test Ready
UML Statechart model in Figure 1 and discusses about feasible
paths and the test generation process. Section 4 presents the
equivalent extended context free grammar model (of the Test
Ready UML Statechart model in Figure 1). Section 5 presents the
path generation algorithm. Section 6 discusses about how the user

75

provides test statements along state transitions in a test ready
UML Statechart model so that a test generator can generate
executable tests. The user may import existing UML Statechart
models from a tool such as IBM Rational Rose or create the UML
Statechart models using a standalone editor.

2. TEST READY UML STATECHART
MODELING

. Figure 1 – ATM Transactions
The extended UML Statechart shown in Figure 1 depicts ATM
Transaction scenarios.
Definition: A Test Ready UML Statechart Model is obtained by
annotating a UML Statechart model with events, guard

conditions, tasks and test statements along state transitions.
Events are modeled as data-flow graphs or as an extended
context free grammar. Guard conditions, along state transitions,
are used to specify a boolean condition that must be satisfied to
select the transition. Tasks and Test statements may be specified
in states. When the test generator selects a state transition, the
task specified along the transition is executed which may set user
variables introduced in the model. The extended UML Statechart
model is called test ready, as the model is amenable for test
generation.

 Figure 1 provides a Test ready UML Statechart model to specify
the following ATM transaction behavior. Once a card is inserted
and PIN validated, the transactions deposit, withdrawal and
information display may be carried out. If invalid PIN entries are
made, there is a limit to the number of re-entries. To generate
executable tests from the UML Statechart model provided in
Figure 1, the events PIN, WithdrawalAmount and
ContinueTransaction are modeled as data-flow graphs as shown in
Figure 1. Test statements are specified along relevant state
transitions and in states. Guard conditions are placed along state
transitions (for example, [PIN ~ Invalid] along the state transition
from state ValidatePIN to Re-enterPIN). Note that the data
generator nodes ValidPIN and InvalidPIN generate a valid PIN
and an invalid PIN respectively(from a specified list of values). A
list of valid PIN entries may be associated with the node
ValidPIN by the tester. In a given path, either a ValidPIN or an
InvalidPIN is selected from the data selector node PIN. Similarly,
to model the event that a withdrawal amount less than the Balance
or, greater than or equal to the Balance may be input by the user,
the data selector node WithdrawalAmount is used.
ValidWithdraw and InvalidWithdraw are data generator nodes
each of which is modeled by the tester to generate a valid
withdrawal amount or invalid withdrawal amount respectively.
The tester introduces a variable called Balance into the model in
Figure 1. Each time a deposit is made into the account, the
variable Balance is updated (this is done through the execution of
a task specified along the state transition AcceptCheque ->
ContinueNextTransaction. In our tool Tasks are modeled as
methods in Java).

3. PATHS IN THE TEST READY UML
STATECHART MODEL
Consider the paths in the UML Statechart in Figure 1(curly braces
indicate cycles).
Path1: Start -> (event:InsertCard) ->CardInserted ->{AcceptPIN
-> (event: PIN) -> ValidatePIN -> guard condition: [PIN ~
Invalid] -> Re-enterPIN -> guard condition: [NoOfTrials <=
Limit]} -> guard condition: [NoOfTrials > Limit] ->
AbortTransaction
The sequence of state transitions in curly braces forms a cycle and
the cycle terminates through the state transition Re-enterPIN ->
AbortTransaction.
Path2: Start -> (event:InsertCard) -> CardInserted -> AcceptPIN
->(event:PIN) -> ValidatePIN -> guard condition: [PIN~Valid]
 -> ATMTransactionBegin -> (event:Operation) ->
OperationSelected -> guard Condition: [Operation ~ Information
Display] InformationDisplayed -> ContinueNextTransaction ->
guardCondition: [ContinueTransaction~No] -> ReturnCard ->
End.

76

Test cases are instances of paths in the Test Ready UML
Statechart Model. Note that an event modeled using a
combination of data selector node, data aggregate node and/ or a
data generator node is an extended context free grammar. We
refer to it as an extended context free grammar because guard
conditions may be specified along the input links of data selector
nodes.

Definition of an Extended Context Free Grammar Model: A test
Ready UML Statechart model is an extended context free
grammar model. Events attached to state transitions are modeled
using a data selector node, a data aggregate node or a data
generator node. A data generator node is a terminal in a CFG
(ValidPIN, InvalidPIN, ValidWithdraw, InvalidWithdraw,
NextTransaction, ExitTransaction), a data aggregate node is a
non-terminal whose right hand side production consists of one or
more non-terminals and a data selector node is a non-terminal
with alternate production rules (PIN, WithdrawalAmount,
ContinueTransaction, Operation).

Definition of a Feasible Path: A feasible path is a path
originating from the start node and terminating in a final state
and for which all guard conditions along its state transitions are
satisfied during test generation.

The test generation problem thus reduces to determining feasible
paths in the Test Ready UML Statechart model, which is an
extended context free grammar model, and creating instances of
the paths. An event node (a data selector node which is a non-
terminal with alternate production rules) attached to a state
transition also contributes to a sub-path of a path from the initial
state to a final state in the test ready UML Statechart model. The
generation of paths starts from the start node with a state
transition and exploring each one of the state transitions of the
next node, provided guard condition, if any, along a state
transition is satisfied. Guard conditions are based on the input link
(a grammar rule) selected for a data selector node (or a non-
terminal). Or, a guard condition is a boolean condition on user
variables introduced by the tester in the model such as Balance >
1000 and set by tasks, if specified, along state transitions. A guard
condition may also be a combination of both the above forms. All
guard conditions are evaluated during path generation. A depth-
first traversal over the graph, which is a combination of the UML
Statechart model and the event nodes represented as data-flow
graphs, is used in determining feasible paths. If a guard condition
is not satisfied, backtracking may be required which initially starts
by exploring other transitions or inlinks of the current node and if
none of them lead to a feasible path, then backtrack to the
previous node and explore alternative state transitions or inlinks
of event nodes. If backtracking continues right upto the start node
or root node without finding any feasible paths, the test generator
reports that it cannot find any more feasible paths.

Cycles are detected by maintaining a list of the nodes visited
already in the path formed so far and if the next node is already
present in the list of visited nodes of the path prefix, the cycle is
marked. Once a state transition from the current node resulted in a
cycle with a node already visited, then an alternate transition from
the current node may terminate the path ending in a final state.
Such a path has one or more cycles marked.

The tool built based on Test Ready UML Statechart models has
three phases (a) Tester creates a Test Ready UML Statechart

model and also specifies a depth factor used as a limit to expand
cycles, (b) The Test generator first generates paths that may have
cycles and (c) for test case or test script generation, a cycle is
expanded a random number of times limited by the depth factor.
Note that the cycle expansion step (c) is required only if a cyclic
state transition is not guarded. If a cyclic state transition is
guarded as the cycle in Path 1 above, then cycle expansion is
carried out in step (b) above by the Test generator.

4. EXTENDED CONTEXT FREE
GRAMMAR MODEL
The variable Balance is initialized and it is updated whenever
there is a deposit or a withdrawal by executing a task specified
along the respective transitions as shown below in the extended
Context Free Grammar Model (of the Test Ready UML Statechart
Model shown in Figure 1). The grammar below is a CFG
extended with guard conditions along state transitions (enclosed
within square brackets), tasks and scripts along transitions or
alternate productions (for a detailed explanation about why a test
ready UML Statechart model is a CFG, refer to Section 3. Events
are shown in italics in the extended context free grammar below).

//ATM State Diagram Transitions
Start -> InsertCard CardInserted
CardInserted -> AcceptPIN
AcceptPIN -> PIN ValidatePIN
ValidatePIN -> ATMTransactionBegin , if [Pin~Valid]
 -> Re-enterPIN , if [PIN~invalid]

Re-enterPIN -> AcceptPIN, if [NoOfTrials <= Limit]
 -> AbortTransaction,
 if [NoOfTrials > Limit]
ATMTransactionBegin -> Operation OperationSelected
OperationSelected -> AcceptCheque, if [operation~Deposit]
 (Task: update var Balance)
 -> AcceptAmount,
 if [Operation ~ Withdraw]
 -> InformationDisplayed,
 if [Operation~InformationDisplay]
 -> Exit, if [Operation ~ Exit]

AcceptCheque-> ContinueTransaction ContinueNextTransaction

InformationDisplayed ->
 ContinueTransaction ContinueNextTransaction

AcceptAmount -> WithdrawalAmount CheckAmount

CheckAmount -> InsufficientBalance ,
 if [WithdrawalAmount >= Balance]

-> DispatchAmount ,
 if [WithdrawalAmount < Balance]

InsufficientBalance -> AcceptAmount

DispatchAmount->
 ContinueTransaction ContinueNextTransaction
 (Task: update var Balance)

ContinueNextTransaction ->

77

 ATMTransactionBegin, if [ContinueTransaction~Yes]

ContinueNextTransaction ->
 ReturnCard, if [ContinueTransaction~No]

ReturnCard -> End

//Events used in ATM example and their grammar Rules

PIN -> validPIN

 -> InvalidPIN

WithdrawalAmount -> ValidWithdraw
 -> InvalidWithdraw

ContinueTransaction -> NextTransaction
 -> ExitTransaction

Operation -> Deposit
 -> Withdraw
 -> InformationDisplay
 -> Exit

The next section presents a path generation algorithm that we use
based on depth-first traversal.

5. PATH GENERATION ALGORITHM
The function PathGen(node, pathPrefix) is initially invoked on the
start or the root node of the extended Context Free Grammar (start
node of the Test Ready UML Statechart Model). Initially,
pathPrefix is set to null as it indicates the portion of the path
traversed so far. The function getNextTransition(node) checks if
there is a transition from node through which a path is not yet
explored, each time a node is visited (it basically checks the set of
transitions from node minus the set of transitions from node
explored so far). The function guardCondition(transition) returns
true if the test generator determines after evaluation that the guard
condition specified along the transition is true. If no guard
condition is specified, then the guard condition is assumed to be
true. The function executeTask(transition) executes the task
specified along the transition. Execution of tasks may set Test
Ready Model variables. The function backtrack(node) in a given
state maintained by the test generator checks if there is an
alternate transition from node that is not yet explored. If all
transitions from node are already explored and no path could be
generated, then the test generator backtracks to the previous node.
The state maintained by the test generator consists of the state
transitions explored so far from the current node, the path prefix
generated so far and the parent node. In addition, the state of
variables in the Test Ready Model is also maintained so that
whenever there is backtracking, the user variables are reset to the
values that they should hold at the backtrack point which may be
a previous node or an alternate state transition, or an alternate
inlink of a data selector event node. The function
expandCycle(node, transition) expands the cycle as many times as
required , if the cyclic sub-path consists of guard conditions.
Otherwise, the cyclic subpath is just marked as a cycle. When test
scripts are generated, the cycle is expanded limited by the depth
factor specified by the user. The function
genSuffixPathsExcludingTransitionsLeadingToCycle(node,

transition, pathPrefix#transition) detects the alternate transition(s)
from the node through which a final state can be reached. The
function considers different paths that may arise, if multiple state
transitions from node participate in cycles.

The path generation algorithm is based on depth-first traversal.

PathGen(node, pathPrefix)

begin
 if (transition = getNextTransition(node)) then
 nextNode = transition.destn
 else
 begin
 backtrack(node, transition)
 return
 end

 if nextNode is a finalStateNode then
 if guardCondition(transition) then
 begin
 executeTask(transition)
 appendPath(pathList)
 end
 else
 begin
 backtrack(node, transition)
 return
 end

 else if (nextNode not present in pathPrefix) then
 if guardCondition(transition) then
 begin
 executeTask(transition)
 PathGen(nextNode, pathPrefix#transition)
 end
 else
 begin
 backtrack(node, transition)
 return
 end
 else
 if guardCondition(transition) then
 begin
 executeTask(transition)
 expandCycle(node, transition)
 genSuffixPathsExcluding
 TransitionLeadingToCycle(node,
 transition,

pathPrefix#transition)
 end
 else
 begin
 backtrack(node, transition)
 return
 end

end

78

6. TEST SCRIPT GENERATION
Consider the path
 Start -> (event: InsertCard) -> CardInserted -> {AcceptPIN ->
(event: PIN) -> ValidatePIN -> guard condition: [PIN ~ Invalid]
-> Re-enterPIN -> guard condition: [NoOfTrials <= Limit]}
 -> guard condition: [NoOfTrials > Limit] -> AbortTransaction

A test case is an instance of a path in the model. The tester
provides along a state transition in the Test Ready UML
Statechart model in Figure 1 just the portion of the test case or
script that should be emitted, if the state transition is a part of the
path from which the test case under construction is instantiated. It
may be noted that a state transition may be a part of two or more
paths, for example, Start ->CardInserted, or, ValidatePIN ->
ATMTransactionBegin. Test statements (say in Java) may be
specified along only chosen state transitions or as a part of chosen
states to validate if the software under test reaches an expected
state on the occurrence of a specified event. The tester, however,
should have a coherent view of the snippets of code specified
along state transitions so that the part of the test code specified
along a state transition is coherent with the following test code in
subsequent state transitions in a path. If a state transition is a part
of multiple paths, the tester has to ensure that the test statements
provided along the common state transition are coherent for all
paths containing the state transition.

In state based testing, it is essentially state sequencing that is
checked. The testing problem for each test scenario is to consider
the sequence of events specified by the corresponding path in the
Test ready UML Statechart Model (behavioral diagram) and
verify that as each event occurs, the ATM Software reaches the
next state as specified by the Statechart. In general, a snippet of
test code along a state transition checks if the Software Under
Test (ATM Software) has not reached the expected state. If for an
event that triggers a state transition, the Software Under Test does
not reach the expected state, the implementation does not conform
to the UML Statechart model. When a test is run, the test
statements specified along a state transition throw an exception or
generate an error message under the condition that the Software
Under Test does not reach the expected state condition on the
occurrence of the event along the state transition.

Consider the path

Start -> (event: InsertCard) -> CardInserted -> {AcceptPIN ->
(event: PIN) -> ValidatePIN -> guard condition: [PIN ~ Invalid]
 -> Re-enterPIN -> guard condition: [NoOfTrials <= Limit]}
-> guard condition: [NoOfTrials > Limit] -> AbortTransaction

For the path shown above, the ATM Software implementation
may deviate from the expected behavior if it does not reach an
expected state condition along anyone of the state transitions in
the path on the occurrence of the corresponding event. The ATM
Software passes a test case instance of the above path only if the
implementation successfully satisfies all the conditions of the
intermediate states as per the model and finally reaches the
condition satisfied by the state AbortTransaction.
A sample test case in Java emitted as an instance of the above path
is given below. To carry out model based testing based on State
diagrams, the Software Under Test must be testable. For
testability, the ATM Software provides a number of probe
functions such as IsATMAboutToAbortTransaction() or

IsAtmAwaitingPinEntry(). These boolean functions provide an
access to the current state of the running ATM Software. The test
execution environment may be visualized as consisting of a thread
running ATM Software itself and another running a test case (the
synchronization code is not shown).

//---------Start of TestCase1----------
class TestCase1
{
 TestCase1()
 {
 try
 {
 int NoOfTrial=1;
 int limit=3;
 int balance=10000;

 if(!atmProbeFunction.IsAtmInInitialState())
 {
 throw new Exception("Atm not initialized : failed");
 }

 if(!atmProbeFunction.AtmAwaitingCardInsertion())
 {
 throw new Exception("Card not inserted: failed");
 }
 //Set Card ID

 if(!atmProbeFunction.IsAtmAwaitingPinEntry())
 {
 throw new Exception("Pin entry : failed");
 }

 if(NoOfTrials<=limit)
 {
 NoOfTrials++;
 }

 if(!atmProbeFunction.IsAtmAwaitingPinEntry("2345"))
 {
 throw new Exception("Pin entry : failed");
 }

 if(NoOfTrials<=limit)
 {
 NoOfTrials++;
 }

 if(!atmProbeFunction.IsAtmAwaitingPinEntry())
 {
 throw new Exception("Pin entry : failed");
 }

 if(NoOfTrials<=limit)
 {
 NoOfTrials++;
 }
 if(NoOfTrials>limit)
 {

if(!atmProbeFunction.IsATMAboutToAbortTransaction())

79

 {
throw new Exception("Atm has not reached AbortTransaction :
failed");
 }
 else
 {

 System.out.println("ATM Passed test");
 }
 }
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
}

//----------End of TestCase1----------

7. REGRESSION TESTING
For a new version of the software under test, if its dynamic
behavioral model changes, then the UML Statechart model
changes and hence the test ready UML Statechart model also
changes. A diff of the ECFG models provides information about
the set of the paths that are not present in the previous Test Ready
UML Statechart model.

8. COVERAGE
The concepts of structural coverage based on code exercised are
well studied, for example, statement coverage, branch coverage
and path coverage. We state that path coverage in a test ready
UML statechart model is achieved if tests corresponding to all the
paths or sentential forms in the corresponding ECFG model are
generated. Wherever there are cycles present, we consider (base)
path coverage is achieved if each and every cycle in the paths of
the state model is traversed or exercised at least once in the tests
generated.

9. DISCUSSION
UML Statechart models are used in practice by designers and
developers for describing the dynamic behavior of event-driven
systems. Test scenarios based on UML statechart models can be
visualized as instances of paths in the model. However, for test
generation purposes, what is required is event generation
capability that can capture different variations or characteristics of
events. Just as there are tools being used by developers to create
UML statechart models to describe the dynamic behavior of
systems during the development cycle, there is a need for
corresponding models, methodologies and tools for testers. To
address this need, we have defined a Test Ready UML Statechart
model, which indicates the model is ready with information for a
test generator to be able to generate test scripts automatically from
it.

A tester may import UML Statechart models from a developer’s
tool such as IBM Rational Rose into the visual editor of our UML
Statechart test generation tool and then add necessary information
or attributes such as event nodes, guard conditions along state
transitions based on the properties of the event nodes that are

already instantiated, tasks and / or test scripts along state
transitions. Alternatively, a tester may create a UML
statechart/test ready UML statechart from scratch for testing
purposes instead of relying on the model used during the
development cycle. Our methodology has been found effective in
creating test ready UML statechart models for modeling
commercial applications such as bank transactions or an event-
driven system such as the audio system in a car. We have also
seen that Test Ready UML Statechart models can be used to
describe the behavior of Graphical User Interface systems and
generate test scripts automatically that can be executed by GUI
Capture play-back tools without user intervention. Our future
research work shall focus on generation of tests from test ready
UML statecharts that use concurrency. A state diagram that has
nested states is flattened before path or test generation.

10. ACKNOWLEDGEMENTS
The authors would like to thank Juergen Kazmeier, Marlon Vieira
of Siemens Corporate Research, Princeton and Mukul Saxena of
Corporate Technology, India for their valuable support.

11. REFERENCES
[1] Chow,T.S. Testing Software design modeled by Finite-state

machines. IEEE Transactions on Software Engineering SE-
4, 3 (1978), 178-187.

[2] J.A.Whittaker and M.G.Thomason: “A Markov Chain
Model for Statistical Software Testing”, IEEE Transactions
on Software Engineering, 20(10): 812-824, October 1994.

[3] Khaled L.Fakih, Nina Yevtushenko, Gregor Von Bachmann:
FSM-based Incremental Conformance Testing Methods,
IEEE Transactions on Software Engineering. Vol 30,
Number 7, 425-436.

[4] Robert V Binder. Testing Object-Oriented Systems: Models,
Tools and Patterns, Addison-Wesley, 2000.

[5] Teradyne TestMaster, http://www.teradyne.com
[6] Friedman G., Hartman A., Nagin K.,Shiran T., Projected

State Machine Coverage for Software Testing, Proceedings
of ISSTA 2002 International Symposium on Software Testing
and Analysis (July 2002).

[7] Baker P., Bristow P., Jervis C., King D., Mitchell B.,
Automatic Generation of Conformance Test From Message
Sequence Charts, 3rd SAM Workshop - "Telecommunication
and Beyond The broader applicability of SDL and MSC",
Aberystwyth, UK. 24-26th June 2002.

[8] Bassanieri F., Bertolino A., and Marchetti E., The Cow Suite
approach to planning and deriving test suites in UML
projects, Proceedings of the Fifth International Conference
on the Unified Modeling Language - the Language and its
applications UML 2002, LNCS 2460, Dresden, Germany,
September 30 - October 4, 2002, p. 383-397.

[9] Supaporn Kansomkeat., Wanchai Rivepiboon., Automated-
Genearting Test Case Using UML statechart diagrams, ACM
International Conference Proceeding Series; Vol 47,
Proceedings of the 2003 annual research conference of the
South African institute of computer scientists and
information technologists on Enablement through
technology.

80

[10] Basanieri, F., Bertolino, A., Marchetti, E., Ribolini, A.,
Lombardi, G., And Nucera, G. 2001. An Automated Test
Strategy Based on UML Diagrams. In Proceeding of the
Ericsson Rational User Conference, October 10-11, 2001,
Upplands Vasby Sweden.

[11] Hartmann, J., Imoberdof, C., and Meisenger, M. 2000.
UML-Based Integration Testing. In ISSTA 2000, Portland,
August 2000.

[12] Lionel C. Briand , Yvan Labiche, A UML-Based approach to
System Testing, Proceedings of the 4th International
Conference on the The Unified Modeling Language,
Modeling Languages, Concepts, and Tools , October 01-05,
2001, pp.194-208,

[13] Offutt, J., and Abdurazik, A. 2000. Using UML collaboration
Diagrams for Static Checking and Test Generation. In UML
2000, University of York, UK, 2-6 October 2000.

[14] Offutt, J., and Abdurazik, A. 1999. Generating test cases
from UML specifications. In Proceeding of the 2nd
International Conference on the Unified Modeling Language
(UML99), Fort Collins, CO, October 1999.

[15] Kim, Y.G., Hong, H.S., Cho, S.M., Bae, D.H., and Cha,
S.D. 1999. Test cases generation from UML state diagrams.
In IEEE Software, 146(4): 1999, 187-192.

[16] Pretschner A., Slotosch.O, Aiglstorfer.E., and Kriebel.S.
March 2004. Model Based Testing for real--The inhouse
card case study in Journal of Software Tools for Technology
Transfer, ©Springer-Verlag 5(2-3): 140-157.

81

