
Aspect-Oriented Software Design with a Variant of
UML/STD

Shin NAKAJIMA
National Institute of Informatics

nkjm@nii.ac.jp

Tetsuo TAMAI
The University of Tokyo

tamai@acm.org

ABSTRACT
The notion of aspect is important as a systematic approach
to the representation of cross-cutting concerns and the in-
cremental additions of new functionalities to an existing sys-
tem. Since UML is a modeling language used in early stages
of software development, studying how UML is related to
aspectual software is an important topic. This paper pro-
poses a way of introducing the join point model (JPM) to
UML/STD. The proposed extension is smoothly integrated
with the core part of the execution semantics adapted by
the UML standard.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification

General Terms
Design

Keywords
UML State Diagrams, Join Point Model, SPIN

1. INTRODUCTION
The notion of aspect is important as a systematic ap-

proach to the representation of cross-cutting concerns and
the incremental additions of new functionalities to an exist-
ing system. Given a base description having certain func-
tionalities, an aspect is added to or weaved into the base in
order to create a desired system. Starting as a technology
for programming, the aspectual approach is now recognized
to be effective as a modeling technology [6].

In the early stages of software development, UML [19] is
used as the modeling language and introducing the notion
of aspect into UML turns out to be important. UML is a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCESM’06 May 27, 2006, Shanghai, China
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

family of notations, each of which can represent a system’s
certain viewpoint. How the notion of aspect is introduced
is dependent on the viewpoint that the diagram provides.
Moreover, a complete software design, either aspectual or
non-aspectual, requires using various UML notations. There
actually have been lots of work to introduce the aspectual
concept into UML [2][4][5][6][7]. Weaving is a kind of model
transformation to have a whole integrated description.

In UML, a state-transition diagram (STD) is used to rep-
resent the dynamic behavior of the system. Since opera-
tional meanings are important for the dynamic behavior,
UML/STD is also accompanied with a set of rules to execute
the model descriptions. Concequently, the notion of aspect
and the weaving is expected to refer to the fine-grained op-
erational meanings or the execution mechanism as was done
for the case of the aspect-oriented programming.

This paper proposes an aspectual UML/STD. It defines
a join point model based on behavioral specifications of
UML/STD and shows that the operational rules can be in-
tegrated with the core part of UML/STD’s operational se-
mantics [19]. The proposed operational rules are rigorous
enough to realize weaving automatically, and can be a basis
for the behavioral analysis with SPIN model-checker [9].

2. BACKGROUNDS
Aspect-oriented software development is a technology con-

cerned with both modeling and mechanism.
A primary aim of modeling is to have a clear and easy-

to-understand system descriptions at an adequate abstract
level. The aspectual notion can help identifying appropri-
ate concerns. I.Jacobson [10] adopts his “usecase” model-
ing approach to represent the aspectual use-cases as well.
Theme/UML [2] is a modeling method for mining the as-
pect and the base, and uses an extended UML representing
the aspectual concepts with certain stereotypes.

A mechanism, on the other hand, is related to the com-
putational model of the language to describe the aspectual
software. An aspectual language has constructs to describe
the aspect as well as the base, and it is equipped with a
certain tool to weave the aspect into the base. An aspec-
tual mechanism has been mainly studied in the develop-
ment of aspect-oriented programming languages [15]. As-
pectJ [12][18] extends Java language to include a language
construct (aspect) for the representation. An AspectJ com-
piler then automatically performs the weaving.

In the early stages of software development, UML [19] is
used as the modeling language and introducing the notion
of aspect into UML turns out to be important. Among the

44

S0 S1 T0 T1 T2

/ put

return

get

put

/ return

/ return

Subject Target

Figure 1: Base

diagrms UML provides, a state-transition diagram (STD) is
used to represent the dynamic behavior of the system. Since
the operational meanings are important for the dynamic be-
havior, UML/STD is also accompanied with a set of rules to
execute the model descriptions. Concequently, the notion of
aspect and the weaving is expected to refer to the execution
mechanism as was done for the case of AOP. Further, the as-
pectual UML/STD should be integrated with the core part
of UML/STD’s operational semantics [19], and be a basis
for the behavioral analysis with the model-checker.

The approach discussed in this paper is to introduce a
join point model based on the behavioral specifications of
UML/STD Join Point Model (JPM) is the basic model adapted
in AspectJ, a representative of AOP languages [12][15][18].
Its aspectual notion is captured by the use of advice and
pointcuts to define behavior that crosscuts the structure of
the base program. Join points are a collection of points in
execution at which the advice may be executed. Such join
points are called a pointcut. An advice is an action per-
formed at the join points in a particular pointcut.

Since JPM is a typical model to embody the characteris-
tics of the aspectual mechanism, the following sections will
study how to introduce a similar model to UML/STD.

3. UML/STD AND JPM

3.1 UML/STD
A UML state diagram (UML/STD) is a hierarchical finite-

state transition system based on the Statecharts proposed
by D.Harel [8]. It is hierarchical in that a state can have
multiple sub-states, and two kinds of the hierarchies are de-
fined, an And-hierarchy and an Or-hierarchy. A state with
an And-hierarchy can have multiple sub-states at a time, and
those sub-states are considered to execute concurrently.

Figure 1 is a simple example of UML/STD, which will
be hereafter weaved with an aspect in Section 4. The top-
level STD System is expanded into an And-hierarchy con-
sisting of Subject and Target. Each is further expanded
into an Or-hierarchy. Subject contains two terminal states,
while Target is decomposed into three. Intuitively, System
consists of two component state machines executing con-
currently (Subject and Target). The progress of the state
machines is determined by events to fire the transitions.

UML/STD [19] is a large language providing a lot of in-
teresting features, and the standard document describes the
syntax and the rules for the execution informally. This paper
focuses on the core features of UML/STD; the hierarchical
state machine and the RTC (run-to-completion) execution
rule. The following discussion will be based on the formal-
ism in [13]. The key idea is to use a configuration term to
represent UML/STD formally.

First, a configuration is introduced to represent an execu-

tion snapshot of a given UML/STD. It is a term representa-
tion of the And-Or tree structure of the state hierarchy. For
example, the initial state of the example in Figure 1 can be
described as a term

System(Subject(S0), Target(T0)).

Note that two concurrently executing And-component ma-
chines are explicitly represented as sub-terms of System.

Second, a transition is a rewriting rule on the configura-
tion term that is triggered by an appropriate event. Two of
the transitions in the example are

System(Subject(?X), Target(T0))

-(get)-> System(Subject(?X), Target(T1))

System(Subject(?X), Target(T1))

-(/ return)-> System(Subject(?X), Target(T0))

where ?X denotes don′tcare, which can be matched with
any possible sub-term (either S0 or S1 in the example).
Intuitively, Target’s transition from T0 to T1 can be fired
regardless of the Subject state since two And-component
machines are considered to execute concurrently.

The following triple, a configuration automaton, is suffi-
cient to represent the formal model of a state machine for
the subset of UML/STD in this paper.

(State, Event, Rule)

State : a finite set of (ground) configuration terms

Event : a finite set of events

Rule : a finite set of rewriting rules

Note that a state is a ground configuration term not con-
taining variables and that a rewriting rule is defined on a
configuration term that may have a variable such as ?X as
shown in the above example.

The central part of the UML/STD semantics is a RTC
step in which a pool (EventPool) is assumed to contain a
set of events to be dispatched. The RTC step describes that
some of the events in the pool are processed at a time, and
that the current events are completely executed before the
next set of events is dispatched. Furthermore, a dispatched
event that does not trigger any transition is lost (an implicit
consumption of an event). An event can also contribute to
trigger more than one transitions (a broadcast event).

An execution snapshot is described by a pair consisting
of the configuration term and the set of events in the event
pool.

<Configuration, EventPool>

The pair is updated according to the RTC step rules. The
traces to show how the pair is changed is considered to be
executions of STD.

Behavioral specification is a set of execution paths that
a configuration automaton generates according to the RTC
step. The notion of execution paths is defined in terms of a
run, which is an infinite sequence (π) such that

π = s0s1. . .sn. . .,

45

...

...

...

(a) sub-sequence is inserted (b) original run is deleted

Figure 2: Modifying Run

where sk+1 is a configuration term obtained from sk in the
RTC step. Although π is infinite, it can represent a finite run
as well by applying the stutter extension rule [9]: namely,
a null self transition (ε) is added on the final state of the
configuration automaton.

It is sometimes useful to extend the run to include the
EventPool since a stable state of the RTC step is a snapshot
consisting of the pair. Such an extended run (π̂) is defined
as

π̂ = 〈s0, ξ0〉〈s1, ξ1〉. . . 〈sn, ξn〉. . .

where ξk denotes an EventPool state. A set of extended runs
π̂ that a configuration automaton generates is written as
̂Π, which constitutes the behavioral specification of a given
UML/STD.

3.2 JPM and Aspect
This paper proposes to use Join point as the basis for

introducing the notion of aspect into UML/STD. Since a
join point is a certain point in the execution sequences, the
element of the run (〈sn, ξn〉) would be an appropriate can-
didate. Moreover, a pointcut is a condition that specifies a
set of join points. It is an expression for denoting a set of
particular elements of the run.

The advice is the action invoked on the join point that
a certain pointcut determines. From the viewpoint of the
behavioral specifications, the advice results in changes in the
behavior of the base state machine. When the behavior is
determined in terms of the run, i.e. a sequence of locations,
the change can be schematically illustrated as in Figure 2.
The circle, the location, in the figure refers to an extended
element (〈sn, ξn〉).

Figure 2 (a) is a case in that a hypothetical run of the
base would be modified to include a certain sub-sequence at
a location specified by the pointcut. The light-gray location
is the one specified by the pointcut and a sequence of dark-
gray locations are inserted which is the effect of the advice.

There may be also a case as shown in Figure 2 (b). The
advice results in deleting all the future sequences starting
at the location specified by the pointcut. It corresponds
to a situation where the behavior of the base is completely
changed by the aspect.

The machinery to have such effects as to modify a hypo-
thetical run is certainly attributed to the events that enable
particular state transitions. This is because the state tran-
sition is the only mechanism responsible for the execution
of STD. For example, a new event generated at the point-
cut location may lead to a completely different execution
sequence (Figure 2 (b)).

It is, however, not possible with the state transition alone
to have effects on the run as shown in Figure 2 (a). The base
is interrupted at the pointcut location (the light-gray loca-
tion) and suspends itself. Then, a sub-sequence is inserted,

M0 M1

[Subject in S1] / suspend(Subject)

[return] / resume(Subject)

Monitor

M2

[return] / get

Figure 3: Aspect

which did not appear in the original run, but is an effect by
the advice. After the sub-sequence is completed, the base
resumes its execution from the point that was interrupted.
Consequently, a certain new mechanism is needed to realize
the suspending and resuming.

4. ASPECT-ORIENTED STATE-DIAGRAM

4.1 Aspectual Example
The base UML/STD in Figure 1 is used as an example for

introducing the aspectual machine in Figure 3. The example
is meant to show the motivation to introduce the pointcut
and the progress control mechanism explained in the rest of
this section.

In Figure 1, Subject component makes an access to Target

by generating a put event. Subject then changes its own
state by a return event from Target to return to the initial
state (S0). Although Target has a transition arc enabled by
a get event, it is never triggered at all in this base descrip-
tion.

Figure 3 is an aspectual component Monitor that intro-
duces a new behavior to the base. The new behavior is
the one such that both put and get events are generated.
Two events are generated in this order from the viewpoint
of Target even if Subject generates an put event only.
Monitor moves from M0 to M1 when the Subject is in the

state S1, and it suspends Subject by using a primitive con-
trol command suspend(Subject). Then, Monitor moves to
M2 when an return event is inserted into the event pool.
Actually the return event is generated by Target. Last,
Monitor goes back to M0 in a similar manner to resume
Subject.

To study the runs, a handy notation σij is introduced.

σij
.
= System(Subject(Si),Target(Tj))

A snapshot in the extended run is a tuple where { ek } stands
for the event pool. Therefore, a snapshot is represented as

〈σij , { ek }〉.
A typical example behavior of the base in Figure 1 would
be written as πbase.

πbase
.
= 〈σ00, { }〉 〈σ10, { put }〉 〈σ12, { }〉 〈σ10, { return }〉

〈σ00, { }〉 〈σ10, { put }〉 . . .

A new run that is affected by the aspect in Figure 3 is
changed to be πmodified as given below.

πmodified
.
= 〈σ00, { }〉 〈σ10, { put }〉 〈σ12, { }〉

〈σ10, { return, get}〉 〈σ11, { }〉 〈σ10, { return}〉
〈σ00, { }〉 . . .

46

The difference between πbase and πmodified can be seen in
the underlined snapshots.

The aspectual machine in Figure 3 always monitors the
execution of the base, actually the run generated by the
base. More concretely, the machine watches all the informa-
tion contained in the tuple (〈sn, ξn〉). A short sub-sequence

(〈σ10, {return, get}〉〈σ11, { }〉)
is inserted into a certain location in πbase. This is an exam-
ple of the schematic diagram in Figure 2 (a).

4.2 Pointcut
The pointcut is a means to express conditions to select cer-

tain join points. The join point here is 〈sk, ξk〉 where sk is a
(ground) configuration term and ξk is an event pool. Since
a pointcut is an expression for discriminating join points
uniquely, it is enough to include two kinds of atomic propo-
sitions: one posed on sk and another on ξk. Here is an
abstract syntax of the pointcut.

P := M in S | E | ¬P | P ∧ P | P ∨ P

The first atomic proposition (M in S) is true when a com-
ponent state-machine M is in the state S. The second one
(E) is true when the event pool contains the specified event.

As for the example in Figure 3, the transition from M0 to
M1 is triggered when Subject is in the state S1: namely, the
configuration term takes a form of:

System(Subject(S1),Target(?X))

The transition from M1 to M2 is enabled when a return event
is generated and inserted into the event pool. The monitored
event (return in this case) is not consumed but it will be
dispatched in the next RTC step.

In order to deal with the pointcut expressions in the RTC-
based execution rules of UML/STD, the expressions should
be evaluated against a certain stable snapshot of the system
(〈sn, ξn〉). An RTC step consists of lots of micro-steps and
the intermediate states are not stable nor well-defined. The
pointcut is evaluated against the system status at the end
of each RTC step.

4.3 Controlling Progress of Machine
As discussed in Section 3.2, a certain machinery to con-

trol the execution of a STD is needed to have the modified
sequences as in Figure 2. A primitive, a provided clause,
to control such executions is introduced. A provided clause
takes a form as below in which N refers to a name of a com-
ponent state-machine and P describes the condition.

N provided P

Operationally, the sub-machine N is scheduled only when
the condition P is true. Here, being scheduled refers to the
situation that transitions defined on N are consulted when
events are dispatched. Conversely, when N is not scheduled
because of P’s false value, no transition occurs on N even if
appropriate events to fire the transition are dispatched.

The condition P takes either of the following.

P := M in S | false | true | ¬P | P ∧ P | P ∨ P

A simple example might be adequate here: Example consists
of several And-components including N and M, and N has a
provided clause of (M in S1).

Example(..., N(T), ..., M(S), ...)

The And-component machine named N is scheduled when
its brother machine M is in the state S1. M can thus control
the progress of N.

Since a provided clause is introduced to control over the
progress of the component state-machines, this notion should
be included in the formal definition of UML/STD. Thus, the
configuration automaton becomes a quadruple

(State, Event, Rule, ProvidedClause)

where ProvidedClause is a mapping from the name of the
component state-machine to its provided clause.

Moreover, the binding relationship can be changed in the
course of the execution.

provided(N) := P

Such a modification primitive can be a part of the action
taken when a certain transition occurs. By using this prim-
itive, two progress control actions used in Figure 3 are ac-
tually macros.

suspend(N)
.
= provided(N) := false

resume(N)
.
= provided(N) := true

By using these primitives, Monitor’s action is that (1) sus-
pending the execution of Subject at a transition from M0 to
M1, (2) generating get event at a transition from M1 to M2

when first return is generated, and (3) resuming Subject

when another return comes.

5. FORMAL ANALYSIS

5.1 Model-Checking
Model-checking is an analysis method for dynamic behav-

iors represented by UML/STD. Its basic idea is to explore all
the state space that a given UML/STD design constructs,
and to decide whether a given property holds or not. There
has been a study on model-checking UML/STD [13][16][17].
This paper adapts similar techniques for the formal anal-
ysis of the aspectual UML/STD. However, as discussed in
Section 3, behavioral specification of UML/STD is defined
in terms of run (a sequence of 〈sn, ξn〉). The verification
problem will be presented here in terms of the run.

For a given UML/STD description to generate a run (π̂),
the generation method should follow the rule defined in the
RTC step being modified to take into account the pointcut
evaluation. Such a design description may, in general, have

non-determinism and thus generate a set of runs (̂Π). A
state space referred to above is actually a graph (a set of
nodes and a set of edges)1 for representing the set compactly.
A node of the graph is a tuple to express the snapshot of
the configuration machine status, and an edge denotes that
connecting two nodes are adjoining in a run.

Next, if a logical formula f is assumed to stand for a
property to be checked, the verification problem is defined
as to test whether f is valid or not with respect to the set
of runs.

̂Π |= f

1It is called Kripke Structure in literatures.

47

As for expressing temporal properties, LTL (linear temporal
logic) is a convenient means and is used to query whether a
state machine shows a particular behavior or not.

An LTL formula f can have three temporal operators, []
(always), <> (eventually), and U (strong until) as well as
usual logical connectives such as ! (¬), && (∧), || (∨), and
-> (⇒). Their semantics follow the standard definitions [9]
and are skipped here. Atomic propositions, referred to in
the formula, are chosen so as to be defined on the snapshot
of the pair 〈sk, ξk〉.

- M in S : referring to configuration term sk

- E (∈ Event) : referring to event pool ξk

Their meanings are the same as in the case of the pointcut
in Section 4.2.

In regard to conducting the analysis, the SPIN model
checker [9] is used. This is because SPIN is quite an efficient
model-checker and it is often used as a back-end engine for
model-checking of design notations such as UML/STD and
programs such as C or Java.

Using SPIN for the model-checking engine for the aspec-
tual UML/STD is straight forward. A given UML/STD de-
sign description, actually its configuration machine, is trans-
lated into Promela, that is the input specification language
of SPIN. Since the translated Promela program should be
faithful to the core semantics of UML/STD and the point-
cut evaluation, it consults the micro-steps in the modified
RTC cycle. This can be done by the Promela program,
which incorporates an interpreter to implement the modified
RTC steps together with the surface description of the given
UML/STD. Moreover, the Promela program can be written
so as to have non-deterministic choices of many transitions;
thus introducing non-determinism is easy.

5.2 Weaving and LTL Formulas
It is important to ensure that the design after weaving

hold a certain required properties, and LTL formulas are
adequate means for this purpose.

Some simple example LTL formulas are shown below for
the case of the design description in Figure 1 and 3.

First, the base design in Figure 1 satisfies

[](put -> <> return) ... (a)

which reads such that it is always the case that a put event
is eventually followed by a return. The formula is also valid
after the base is weaved into the aspect in Figure 3.

Second, there is an LTL formula which the base satisfies
but is not valid after weaving. For example, an LTL for-
mula, meaning that it is always the case that a put event is
eventually generated, but a get event is never generated, is
written as

[]<>put && !([]<>get) ... (b)

After weaving, it is not satisfied any more. Contrarily, the
LTL formulas below are valid.

[]<>put && []<>get

[](put -> <>get)

These formulas are actually the required properties to hold
and the formula (b) is the one to be avoided. By checking an
appropriate LTL formulas, the weaved design can be shown
to satisfy the requirements.

Idle Try

Enter

/ req(X)

req(X)
/ get(X)

ack(X)

/ put(X)

Free Busy(X)

get(X) / ack(X)

put(X)

Idle Exec/ req(X)

req(X)

Low High

Med

Mutex

Exec

Idle Try

Enter

/ req(X)

req(X)
/ get(X)

ack(X)

/ put(X)

Exec

Figure 4: Priority Inversion

6. AN APPLICATION

6.1 Priority Inversion Phenomena
The problem at hand considers scheduling tasks with mu-

tually exclusive dependencies. There are three tasks that
are given execution priorities just as their names suggest.
Two of them, Low and High have a shared resource Mutex,
while Med can execute freely in a sense. A faulty behavior
may appear when Low locks Mutex while High waits for its
release. At a certain scheduling point, Med is executable be-
cause the priority of Med is higher than Low. Note that High
is not runnable because it waits for the release of Mutex.
Then it shows the Priority Inversion Phenomena in that
High is blocked while Med is in execution [3].

The primary role in the example is the notion of prior-
ity. It actually controls the progress of a component state-
machine, which can be represented easily with the provided

clause. Figure 4 is a UML/STD description for the present
situation. In addition to the behavior described with the
diagrammatic notation, a task state-machine with a differ-
ing execution priority is accompanied with an appropriate
provided clause.

Med provided !(High in Exec)||(High in Enter)

Low provided !((High in Exec)||(High in Enter))

&& !(Med in Exec)

The above specifies that Med can proceed only when the
specified condition is satisfied: High is not in Exec nor in
Enter which corresponds to the situation that High is not
in execution. The clause for Low is dependent on both Med

and High tasks.
Next, the design description in Figure 4 is analyzed by

using Promela/SPIN. The verification problem at hand is to
check whether the system is free from any of faulty behavior
or not. To study such potential faults, a progress property,
or a leads-to property, expressed in terms of LTL formula,
is used.

[]((High in Try) -> <>(High in Exec))

It reads such that High eventually goes to the Exec state if
it issues a request to obtain the shared resource in the Try

state.
The result of the model-checking returns a counter exam-

ple scenario: Low, holding the shared resource Mutex, is not
scheduled at all because Med executes forever. The situation
is what is called priority inversion since Med with a priority
lower than High executes while High is blocked.

48

M0 M1

[(Mutex in Busy(L)) && (High in Try)]/ raisePriority(Low)

[(Low in Idle) && (High in Enter)]/ initialPriority(Low)

Figure 5: Aspect for Priority Inheritance

6.2 Priority Inheritance Protocol
It is known that the priority inversion phenomena can be

resolved by several methods [3]. The priority inheritance
protocol is introduced to resolve the faulty situation below.

The basic idea is that the priority of Low task is temporar-
ily raised to that of High waiting for the release of Mutex.
When Low is competing to get scheduled with Med, Low is
chosen because its priority is now higher than Med. Since
Low eventually unlocks Mutex, High can obtain the shared
resource as expected.

Although such a change may usually be scattered in vari-
ous entities, it is not hard to introduce an aspectual machine
responsible for the dynamic priority control. Figure 5 is a
representation of such an aspectual machine that is weaved
into the base description (Figure 4). The weaving is sim-
ply to add the aspectual machine as a new And-component
state machine.

The aspectual machine, while being in M0 state, monitors
the execution status of the other components. It goes to
M1 when Mutex is locked by Low and High is in Try state
to try obtaining Mutex. The automaton changes the pri-
ority of Low to that of High as an effect of the transition
(raisePriority(Low)). The monitor automaton, then, put
it back the priority of Low (initialPriority(Low)) when
High starts its execution with Mutex obtained (Enter state)
and Low is in Idle state. For simplicity, the function,
raisePriority(Low), looks as

provided(Low) := true

which specifies that Low is always scheduled. Although the
condition is stronger than the standard priority inheritance
protocol, it is suffice for the purpose here to say that the
priority of Low is higher than that of Med.

The whole system can be shown to have no faulty behavior
by checking the leads-to property for the High task by using
the LTL formula in Section 6.1.

6.3 Overhead in Model-Checking
To see how much computational overhead is introduced

in model-checking the proposed aspectual STD, a simple
reachability check is conducted by SPIN.

First, the base design model in Figure 4 is checked. Al-
though it shows a priority inversion phenomenon, the reach-
ability analysis result shows that the system is deadlock free.
This is because Med task is executed forever, which the sys-
tem as a whole is not in a deadlock.

As a quantitative comparison to see the overhead intro-
duced by the provided clause evaluation, the same system
without any provided clause is analyzed. Since the system
does not have any notion of priority, the reachability analysis
for this simplified description is just to test whether there is
an inadequate sequence of mutex operations leading to cer-
tain deadlock situations. The analysis result demonstrates

that no such faulty situation occurs. The size of the state
space to be explored is about 25% smaller than the system
with provided clauses. In another words, about 25% in-
crease in the size of the state space is an overhead relating
to the evaluation of the provided clause.

Second, the aspectual automaton executes in every RTC
cycle to check the status of the other component state ma-
chines, which may result in an increase in the size of the
state space. The overhead of the aspectual machine is not
small, and the state space is about 90% larger than the sys-
tem shown in Figure 4. This is because the aspectual ma-
chine executes in every RTC cycle to check whether a certain
pointcut is satisfied or not. The state space inevitably be-
comes large and is almost double for this example.

All the experiments reported above used the latest version
of the SPIN tool version 4.2.5 executed under Windows/XP
operating on a laptop computer. All the experiments termi-
nated almost instantaneously, which shows that the trans-
lated Promela program did not have any trouble from the
viewpoint of the runtime cost.

7. RELATED WORK
This paper adapts the formalism of UML/STD proposed

by J.Lilius and I.P.Plator in [13], especially the idea of rep-
resenting the hierarchical state-machine as a configuration
term. And it introduces the join point model and other
related aspectual concepts into a variant of UML/STD.

The idea of using the provided clause to control the ex-
ecution of the state-machine at a meta level is not new to
this work. The provided clause in Promela/SPIN [9] can
have any condition so that it is very expressive. This work
restricts the use of the provided clause to have the propo-
sition of the form in Section 4.3. Although restricted, it can
be used to describe interesting designs such as the one in-
volving task scheduling. As for the implementation for the
model-checking, provided of Promela is not used, but its in-
terpretation is integrated with the RTC step of UML/STD.
In UML/STD, a similar execution control can be described
by a set of guard conditions on transition arcs. It has a
drawback, however, in that guard conditions should appro-
priately be defined on a lots of transitions. On the other
hand, only one provided clause can represent the condition
for the control.

M. Mahoney et al. [14] use the idea of the aspect to
have a set of statechart descriptions that are adequately
modularized. The key idea is to provide a modeling method
in which one or more separate statecharts are woven by using
auxiliary declarations of how they are put together. The
woven design is used as an input for an automatic generation
of executable codes. Hence, their work is related to a model-
driven development method. Verification of the statecharts
with the aspect annotations is not discussed.

J. Araujo et al. [1] introduce the notion of aspect into the
scenario-based software requirement research. A scenario is
basically a description of event sequences. Some of the iden-
tified scenarios are considered to be the base, while others
are aspectual. All the scenarios are merged to synthesize a
state machine that generates the event sequences as its be-
havioral specifications. In their work, the notion of pointcut
is implicit in the synthesis algorithm.

E. Katz and S. Katz [11] propose a verification method
for checking the validity of the synthesized scenarios. As-
pectual scenario has a pointcut in terms of LTL formula.

49

The method consults the pointcut expression to synthesize
a state machine from a given set of scenarios. The obtained
state machine is considered as a result of weaving of the
given scenarios. However, a scenario is a sequence of what
has happened and can be divided into several fragments.
Some of the fragments are atomic in that they cannot be di-
vided further in the weaving process. The verification prob-
lem is to ensure that the state machine does not violate the
atomicity that the given scenarios originally have.

As discussed in Section 5.2, the LTL formula is adequate
to specify requirements and coarse-grained properties. It
is not easy to write down the LTL formula to express the
condition on the correctness of the weaving in the sense that
E. Katz and S. Katz defined. A certain form of representing
and verifying the atomicity of the base is called for.

8. DISCUSSIONS AND CONCLUSIONS
This paper focused on studying an aspectual mechanism

for a UML state diagram (UML/STD) and introduced JPM
into UML/STD. In the proposal, weaving was just an ad-
dition of an aspect machine and thus was done automati-
cally. The paper further investigated how behavioral analy-
sis of the aspectual design was conducted by using the SPIN
model-checker. The proposed aspectual state diagram aids
understanding of the key notion of the aspect-oriented de-
sign in UML/STD.

Last, it is interesting to point out that a certain aspectual
design can be represented without the proposed method. It
is because UML/STD [19] is very expressive and in par-
ticular has a notion of broadcast event. In the literature
on aspectual software, a logging aspect is often used. A
base system may consists of two components in which Task

issues get event to have an access to Target. Adding a
logging function to this base can easily be accomplished in
UML/STD just by introducing a new And-component ma-
chine (Logger) into the base system. Since an event is broad-
cast, Logger machine as well as Target can see the get event
that Task generates. The functionality of Logger is ready
to be activated without any further machinery.

Although the logging example is simple, the design that
does not affect the base can be represented by the original
UML/STD alone. Namely, it is not necessary to use the pro-
posed aspectual state diagram. It is interesting to point out
here again that both modeling and mechanism are impor-
tant, but are two distinct technologies, which was discussed
in Section 2.

9. REFERENCES
[1] J. Araujo, J. Whittle, and D. Kim. Modeling and

Composing Scenario-Based Requirements with
Aspects, In Proc. RE 2004, pages 58–67, September
2004.

[2] S. Clarke and E. Baniassad. Aspect-Oriented Analysis
and Design. Addison-Wesley 2005.

[3] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri.
Scheduling in Real-time Systems. Wiley 2002.

[4] M. Deubler, M. Meisinger, S. Rittmann, and I.
Kruger. Modeling Crosscutting Services with UML
Sequence Diagrams. In Proc. MoDELS 2005, pages
522-536, 2005.

[5] T. Elrad, O. Aldawud, and A. Bader. Expressing
Aspects Using UML Behavioral and Structural
Diagrams. In [6], pages 459–478, 2005.

[6] R. Filman, T. Elrad, S. Clarke, and M. Aksit.
Aspect-Oriented Software Development. Addison
Wesley 2005.

[7] R. France, I. Ray, G. Georg, and S. Ghosh. An
Aspect-Oriented Approch to Design Modeling. IEE
Proceedings, 151 (4), August 2004.

[8] D. Harel and A. Naamad. The STATEMATE
Semantics of Statecharts. ACM Trans. Softw. Engin.
Meth., Vol.5, No.4, pages 293-333, 1996.

[9] G. Holzmann. The SPIN Model Checker.
Addison-Wesley 2004.

[10] I. Jacobson and P.-W. Ng. Aspect-Oriented Software
Development with Use Cases. Addison Wesley 2005.

[11] E. Katz and S. Katz. Verifying Scenario-Based Aspect
Specifications. In Proc. FM 2005, pages 432–447, July
2005.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C.V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proc. ECOOP’97,
1997.

[13] J. Lilius and I.P. Paltor. The Semantics of UML State
Machines. TUCS TR No.273, May 1999.

[14] M. Mahoney, A. Bader, T. Elrad, and O. Aldawud.
Using Aspects to Abstract and Modularize
Statecharts. UML 2004 Workshop on Aspect-Oriented
Modeling, October 2004.

[15] H. Masuhara and G. Kiczales. Modeling Crosscutting
in Aspect-Oriented Mechanisms. In Proc. ECOOP
2003, 2003.

[16] E. Mikk, Y. Lakhnech, M. Siegel, and G. Holzmann.
Implementing Statecharts in Promela/SPIN. In Proc.
WIFT’98, 1998.

[17] T. Schafer, A. Knapp, and S. Merz. Model Checking
UML Stata Machines and Collaborations. Electronic
Notes in Theoretical Computer Science, Vol.55, No.3,
2001.

[18] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics
for Advice and Dynamic Join Points in
Aspect-Oriented Programming. ACM TOPLAS,
Vol.26, No.5, pages 890–910, September 2004.

[19] OMG – Unified Modeling Language, v1.5, March 2003.

50

