
Where is Bug Resolution Knowledge Stored?

Gerardo Canfora
Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy

canfora@unisannio.it

Luigi Cerulo
Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy

lcerulo@unisannio.it

ABSTRACT
ArgoUML uses both CVS and Bugzilla to keep track of bug-
fixing activities since 1998. A common practice is to refer-
ence source code changes resolving a bug stored in Bugzilla
by inserting the id number of the bug in the CVS commit
notes. This relationship reveals useful to predict code enti-
ties impacted by a new bug report.

In this paper we analyze ArgoUML software reposito-
ries with a tool, we have implemented, showing what are
Bugzilla fields that better predict such impact relationship,
that is where knowledge about bug resolution is stored.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Analy-
sis and Indexing; D.2.7 [Software Engineering]: Distrib-
ution, Maintenance, and Enhancement

General Terms
Measurement, Experimentation

Keywords
Mining Software Repositories, Impact Analysis

1. OVERVIEW
In [1] we introduced a method to predict the set of source

files impacted by a new bug description submitted to a
bugzilla repository. It takes advantage of the impact re-
lationship extracted from CVS commit notes as suggested
in [3]. In a set of four case studies, we obtained a top 1
precision ranging between 20% and 78%, and a top 30 recall
ranging between 67% and 98%. The method builds, for each
source file, a descriptor consisting of free text extracted from
the set of fixed bugs and CVS commit notes that previously
impacted it. An information retrieval algorithm scores each
source file by measuring the similarity between its descrip-
tors and the new bug description. The hypothesis is that

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

the textual data carried by the bug tracking system during
the bug fixing activity is a good descriptor of the impacted
files to be considered in the impact analysis of future simi-
lar bugs. The similarity between descriptors is computed by
using a probabilistic model that assumes that each term is
associated with a topic, and that a document may be about
the topic, or not [5]. The score of a source file descriptor
d with respect to a bug is measured by using the following
statistic measure about the term occurrences in source file
descriptors:

S(d, bug) =
X

t∈bug

Wd (t)

where W is a weighting function directly proportional to
the term frequency in the source file descriptor, and inversely
proportional to the inverse document frequency [5].

A source file descriptor is represented with any combina-
tion of the following software repository fields: notes, the set
of CVS commit notes; short-descr, the short bug description;
long-descr, the long bug description; comments, the set of
comments submitted by developers during bug resolution.

The model has been implemented in a tool, named Jimpa
[2], that allows user to write a short explanation of a change
and return the set of source files, ranked by their relevance
with bug change description. The tool provides the support
for setting information retrieval properties such as stop word
list, stemmer algorithm, and software repositories fields to
be included or excluded from the indexing process. Figure
1 shows a snapshot of the tool.

Data, provided by the tool, is stored in an intermediate
database; we have used this database to perform the analysis
presented in the following section that shows what are source
file descriptor fields that contain more information about
bug resolution.

2. MINING RESULTS
ArgoUML is an open-source UML modeling tool imple-

mented in Java. Development started in 1998. The first
bugzilla bug has been submitted in January 2000. Cur-
rently there are 2018 fixed bugs, 670 of which (about 33%)
are referenced in CVS commit notes. The total number of
Java source files is 1538. 6% of these files have a reference to
more than 10 different bugs, while 40% of files do not have
any bug reference.

We have performed a change impact prediction with the
method introduced in [1] and with source file descriptors
composed in different ways. In particular, we have used, as

183



Figure 1: Tool snapshot

source file descriptor, each combination of bugzilla fields in
order to put in evidence what is the field whose presence
should give a better prediction performance.

Table 1 shows the top 1 precision and top 100 recall. The
first is the percentage of cases in which the first retrieved
source file is correct, while the second is the percentage of
correct source files covered by the first 100 retrieved source
files. Results show that the presence, in source file descrip-
tor, of bug resolution comments give always the best per-
formance. In particular, the overall best performance is ob-
tained with a descriptor composed only with bug comments
and CVS notes. This leads to consider that short and long
descriptions submitted when the bug is discovered contain
a partial knowledge about bug resolution, while most of the
knowledge is contained in the comments submitted during
the bug resolution process. On average, the presence of bug
comments information gives an improvement of precision of
about 5%.

Precision and recall have been computed using the leave-
one-out assessment technique [4, 6] performed over 670 bugs,
with short descriptions used as queries. For a given bugzilla
bug we have predicted the set of impacted files by using an
index without data regarding that bug. The predicted set
of files has been then compared with the oracle set, that is
the files impacted by that bug, recovered by considering the
presence of the Buzilla id number in the revision comments
of the files [3].

No evidence has been found for the dependence of pre-
diction performance with other information retrieval para-
meters, such as, general English stop word list and Porter
stemmer algorithm.

3. CONCLUDING REMARKS
Text mining of software repositories integrates informa-

tion provided by source code analysis and gives new oppor-
tunities to support the software development process and
to know new aspects about software evolution. It can be
used not only for impact analysis but also, for example, to
aggregate source files in a topic clusters.

Table 1: Performance dependencies
top 1 top 100 CVS bug bug bug

precision recall notes short decr long decr comments

0.232 0.791 × ×
0.212 0.802 × × ×
0.191 0.795 × × × ×
0.163 0.792 × × ×
0.161 0.790 × ×
0.145 0.788 × × ×
0.126 0.754 × ×
0.119 0.701 ×

Quality of text and project maturity are two factors that
strongly impact every approach that takes advantage on free
text stored in software repositories. Sometime CVS com-
ments are used for communication rather that for descrip-
tion purpose and in almost all projects there is an initial
period of transition that generates noise in both CVS and
Bugzilla repositories. This leads to consider that results and
issues obtained by applying data mining algorithms on soft-
ware repositories can suggest new directions in developing
more innovative configuration management and software de-
velopment tools.

The open source community uses other repository for knowl-
edge sharing, such as: mailing lists, newsgroups, and IRC
conversations. They are rich of free text and it should be
interesting to investigate how this information can be used
in conjunction or as an alternative to CVS and Bugzilla.

4. REFERENCES
[1] G. Canfora and L. Cerulo. Impact analysis by mining

software and change request repositories. In METRICS
’05: In Proceedings of the 11th IEEE International
Software Metrics Symposium, Como, Italy, 2005. IEEE
Computer Society.

[2] G. Canfora and L. Cerulo. Jimpa: An eclipse plug-in
for impact analysis. In CSMR ’06: In Proceedings of
the 10th European Conference on Software Maintenance
and Reengineering: Tools Demonstration, Bari, Italy,
2006. IEEE Computer Society.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In ICSM ’03: In Proceedings of the
19th International Conference on Software
Maintenance, Amsterdam, Netherlands, 2003. IEEE
Computer Society.

[4] K. Fogel and M. Bar. Cross-Validatory Choice and
Assessment of Statistical Predictions (with Discussion),
volume 36. J. the Royal Statistical Soc., 1974.

[5] K. S. Jones, S. Walker, and S. E. Robertson. A
probabilistic model of information retrieval:
development and comparative experiments. Inf.
Process. Manage., 36(6):779–808, 2000.

[6] B. Ribeiro-neto and Baeza-yates. Modern Information
Retrieval. Addison Wesley, 1999.

184


