
Using Software Birthmarks to Identify 
Similar Classes and Major Functionalities

Takeshi Kakimoto    Akito Monden    Yasutaka Kamei  
Haruaki Tamada    Masateru Tsunoda    Ken-ichi Matsumoto 

Nara Institute of Science and Technology 
8916-5 Takayama Ikoma Nara Japan 630-0192 

{takesi-k, akito-m, yasuta-k, harua-t, masate-t, matumoto}@is.naist.jp 
 

ABSTRACT 
Software birthmarks are unique and native characteristics of every 
software component. Two components having similar birthmarks 
indicate that they are similar in functionality, structure and im-
plementation. Questions addressed in this paper include: Which 
are similar class files? Can they be gathered into one class file? 
What are major functionalities among class files? To answer to 
these questions, this paper analyzed the similarity of birthmarks 
for all pairs of classes in ArgoUML, and visualized them using 
Multi-Dimensional Scaling (MDS). As a result, three pairs of very 
similar class files, which seem to be made by copy-and-paste 
programming, were identified. Also, four major functionalities 
were identified in the MDS space. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Product Metrics; K.6.3 
[Management of Computing and Information Systems]: Soft-
ware Management – Software maintenance; 

General Terms: Measurement, Experimentation 

Keywords 
software birthmark, multi-dimensional scaling 

 
TARGET OSS PROJECT 
ArgoUML (written in Java) 

MINING AREA 
- Change impact, propagation coupling analysis 
- Architecture and design quality analysis 

MINING QUESTIONS 
The following two questions are addressed in this paper. 
(1) Which are similar class files? 
This question needs to be answered when one wants to refactor a 
Java program. Similar class files are often refactored into one 
class file to improve software maintainability. Also, when one 
modifies a class file, he/she often needs to find similar class files 
that need to be modified as well. 
(2) What are major functionalities among class files? 
This question needs to be answered when one joins a project and 
tries to understand the mapping between class files and their func-
tionalities. 

 

INPUT DATA 
From 1,432 class files of ArgoUML release 0.20, 61 classes hav-
ing more than 30 lines of source code were chosen as an input 
dataset. 

1. APPROACH AND TOOLS USED 
1.1 Birthmark 
Java birthmarks[1] are unique and native characteristics of every 
Java class files. Originally, birthmarks are used to detect the sto-
len (i.e. illegally copied) Java class files across two different pro-
jects. In this paper we use birthmarks to find similar class files in 
a project to help maintenance activities. 
We used a Java birthmark tool called jbirth1 to extract four types 
of birthmarks from each class file: (1) constant values in field 
variables (CVFV birthmark), (2) sequence of method calls (SMC 
birthmark), (3) an inheritance structure (IS birthmark), and (4) 
used classes (UC birthmark). Two class files having similar 
birthmarks indicate that they are similar in functionality, structure 
and implementation. 
To compute the similarity between two class files p and q in terms 
of their birthmarks, we used the following definition [1]. 
Definition (Similarity) Let f(p) = (p1, …, pn) and f(q) = (q1, …, 
qn) be birthmarks with length n, extracted from class files p and q. 
Let s be the number of pairs (pi, qi)’s such that pi = qi (1 ≤ i ≤ n). 
Then, similarity between f(p) and f(q) is defined by: s/n·100. 

1.2 Multi Dimensional Scaling (MDS) 
After computing the similarity of birthmarks for all pairs of 61 
class files, we used MDS to visualize their relationships. Major 
functionalities can be identified as clusters in the MDS space. We 
used SPSS as a MDS tool. 

                                                                 
1 http://se.naist.jp/jbirth/ 

Table 1.   Pair of classes having high similarity birthmarks. 

Class pairs simi-
larity

uml.ui.behavior.collaborations.PropPanelCollaboration
uml.ui.behavior.use_cases.PropPanelUseCase                 96.09

uml.ui.behavior.collaborations.PropPanelMessage   
uml.ui.behavior.state_machines.PropPanelTransition  93.91

uml.ui.foundation.core.PropPanelClass   
uml.ui.foundation.core.PropPanelAssociationClass      92.78

 

 
Copyright is held by the author/owner(s). 
MSR'06, May 22-23, 2006, Shanghai, China.  
ACM 1-59593-085-X/06/0005. 

171



2. RESULTS AND INTERPRETATIONS 
2.1 Finding Similar Class Files 
Table 1 shows pairs of classes that had high-similarity birthmarks 
(similarity > 0.9). As we investigated their source code, each pair 
had very similar functionality, structure and implementation. It 
can be considered that these pairs were made by copy-and-paste 
programming, and can be refactored so as to reduce the duplicated 
code. 

2.2 Finding Major Functionalities 
Figure 1 shows relationship among classes in the MDS space. 
Classes having similar birthmarks are located in near space, and 
classes having dissimilar birthmarks are located far apart. From 
Figure 1, we could identify the following four major functional-
ities. 

• Most of classes at the lower right part (“diagram” circle) were 
related to diagram (e.g. FigAssociation class, FigUseCase 
class.) 

• Classes at the lower left part (“PropPanel” circle) were related 
to PropPanel (e.g. PropPanelAttribute class, PropPanelOpera-
tion class.) 

• Classes related to WizStep were in “WizStep” circle (e.g. 
WizStepConfirm class.) 

• Classes related to SettingsTab were in “SettingsTab” circle 
(e.g. SettingsTabEnvironment class.) 

All these functionalities were identified by finding clusters and 
similar file names in the MDS space. We believe that using birth-
marks together with MDS is useful to understand the relations 
between class files and to roughly recognize their functionalities. 

3. CONCLUSIONS 
This paper analyzed the similarity of birthmarks for all pairs of 
classes in ArgoUML, and visualized them using MDS. As a result, 
three pairs of very similar class files were identified. Also, four 
major functionalities (diagram, PropPanel, WizStep and Setting-
sTab) were identified in the MDS space. 

4. ACKNOWLEDGMENTS 
This work is supported by the EASE (Empirical Approach to 
Software Engineering) project of the Comprehensive Develop-
ment of e-Society Foundation Software program of the Ministry 
of Education, Culture, Sports, Science and Technology of Japan. 

5. REFERENCES 
[1] Tamada, H., Nakamura, M., Monden, A., Matsumoto, K. 

Java birthmark –Detecting the software theft. IEICE Trans-
actions on Information and Systems, E88-D, 9 (Sept. 2005), 
2148-2158 

 

-2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

uml.diagram.sequence.ui .FigClassi fierRole

uml .diagram.ui .FigAssociation

cognitive.ui .D ismissToDoItemDialog

cognitive.ui.W izStepCue

cognitive.ui.W izStepConfi rm

cognitive.ui .W izStepChoice

cognitive.ui .AddToDoItemDialog

cognitive.ui .W izStepTextField

cognitive.ui .ToDoPane

uml.generator.ParserD isplay

uml.ui .behavior.state_ machines.PropPanelTransition

persistence.PGM LParser

uml.ui .TabTaggedValues

uml.ui .SourcePathTableM odeluml .ui.UM LAddD ialog

uml .ui .TabDocumentation

uml.diagram.state.ui.UM LStateDiagram

uml .generator.ui.ClassGenerationD ialog

cognitive.ResolvedCritic

cognitive.ToDoI tem

uml .ui.behavior.common_ behavior.PopupM enuNewAction

uml .ui .behavior.common_ behavior.PropPanelReception

uml .cognitive.cri tics. Init

uml .reveng. java.JavaLexer

ui .explorer.ExplorerPopup

uml.diagram.col laboration.ui.FigClassi fierRole

uml.ui .behavior.use_ cases.PropPanelExtend

uml .ui .foundation.core.PropPanelGeneralization

uml .ui .foundation.core.PropPanelAssociationClass

ui .A boutBox

ui .SettingsTabL ayout ui.SettingsTabEnvironment

ui.TabResults

ui.FindD ialog

ui.ProjectBrowser

ui .SettingsTabPreferences

ui .DetailsPane

ui.SettingsTabUser

ui .SettingsTabAppearance

uml .diagram.static_ structure.ui .FigCommentPropPanel

WizStep

SettingsTab

diagram

Figure 1. Relationship among class files in MDS space based on similarity of birthmark. 

172


