
Using Assumptions in Service Composition Context

Zheng Lu
School of IT & Computer Science

University of Wollongong, Australia

zl07@uow.edu.au

Peter Hyland
School of IT & Computer Science

University of Wollongong, Australia

phyland@uow.edu.au

Aditya K. Ghose
School of IT & Computer Science

University of Wollongong, Australia

aditya@uow.edu.au

Ying Guan
School of IT & Computer Science

University of Wollongong, Australia

yg32@uow.edu.au

ABSTRACT
Service composition aims to provide an efficient and accu-
rate model of a service, based on which the global service
oriented architecture (SOA) can be realized, allowing value
added services to be generated on the fly. Unlike a tradi-
tional software module, which runs within a predictable do-
main, Web Services are autonomous software agents running
in a heterogeneous execution environment. Because of dis-
tributed responsibilities, ownership and control, it is often
not feasible to acquire all information needed for the service
composition. Thus, there is no guarantee that the service
execution has the anticipated effects. Full automation of
this process poses challenges to reliable service composition
by raising questions such as how to deal with incomplete
knowledge during the dynamic service composition, and how
to ensure consistent service execution result without human
intervention.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Miscellaneous

General Terms
Design, Management, Reliability

Keywords
Web Service, Service Composition, Assumption

1. INTRODUCTION
OWL-S [10], formerly known as DAML-S, is an upper on-

tology for services, aimed at achieving the automation of
service discovery, invocation, composition and interopera-
tion. OWL-S leverages the rich expressive power of OWL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IW-SOSE’06, May 27–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

[3] together with its well-defined semantics to provide richer
descriptions of Web Services. Service ontologies can be used
to map service functional descriptions and domain proper-
ties into a standardized logic so that they can be machine
understandable and interpretable. Recently, semantic web
rules language (SWRL) [4, 17] has been proposed to de-
fine service process preconditions and effects, process con-
trol conditions and their contingent relationships in OWL-S.
Though OWL-S is endowed with more expressive power and
reasoning options when combined with SWRL, the descrip-
tion provided by a combination of OWL-S and SWRL about
service composition is still only a partial picture of the real
world. Most of what we know about the world, when for-
malized, will yield an incomplete theory precisely because
we cannot know everything - there are gaps in our knowl-
edge [15]. Similarly, the ontology of services, is finite and
incomplete. Thus, a service composition specified by OWL-
S has to deal with partial or incomplete knowledge.

In this paper, we are going to bridge the gap between
the semantic service description and multiple operational
domains involved by introducing the representation of “ser-
vice assumptions”. Currently, OWL-S has no mechanism for
handling the explicit description of service assumptions and
no method for reasoning about their side-effects. We will
extend the current OWL-S and try to define a formal mech-
anism for reasoning about incomplete knowledge in dynamic
service composition context.

The paper is structured as follows: in Section 2 we ex-
plain an atomic service and composite service in general. In
Section 3, we define the basic semantics for the planning-
based service composition domain. In Section 4, we present
a framework for reasoning about incomplete knowledge in
the service composition context. In Section 5, we use a real
world scenario to illustrate our framework. In Section 6, we
extend current OWL-S to provide a richer service descrip-
tion schema by introducing service assumptions. We also
provide an example of using assumptions in service compo-
sition. Then in Section 7, we summarize the reasoning pro-
cess in service composition. Finally, we present related work
and our conclusions and discuss future research in Section 8
and Section 9 respectively.

19

2. ATOMIC SERVICE AND SERVICE
SELECTION

2.1 Atomic Service
An atomic service only performs a single function, each

atomic service ws is described by a tuple 〈p, e, a〉, where

• p is a set of sentences representing the preconditions
that must be true for the atomic service to execute.

• e is a set of sentences representing the change of world
state, which include both positive and negative effects.

• a is a set of service assumptions.

Note that p and a are different. It must be able to establish
that p is true for ws to be invoked. On the other hand,
we only need to establish that a is consistent with what is
known i.e. nothing is known that contradicts a. p is a strong
condition which must be true in order to execute the service
ws, while a is a weak condition. Initially we assume a to be
true, unless we get additional information which is explicitly
contradictory to a.

2.2 Service Selection
Compared to conventional software module compositions,

the automated process of Web Service compositions holds
some additional critical issues, such as service matching, se-
lection and retrieval. UDDI [6] provides a mechanism for a
Web-wide service registry, in which descriptions of Web Ser-
vice in UDDI are stored and searched by Category. OWL-S
allows us to semantically describe the capabilities of Web
Services, thus it is possible to perform logical inference for
service matching. [8] Provides one way to combine these
two efforts, registering Web Services defined in OWL-S with
UDDI and allowing UDDI engines to exploit OWL-S seman-
tic information to facilitate the retrieval of Web Services. In
this proposed framework:

• wsi represents an atomic service.

• WS is the set of all Web Services, wsi ∈ WS.

• All Web Service descriptions are held in their corre-
sponding categories {cat1, cat2, . . . , catn}. cati is a
tangible area split from the service registry, for ex-
ample downloadable Multimedia.

• CAT is the set of all service categories cati ∈ CAT ,
cati ∈ WS, cati = {ws1, . . . , wsm}.

• Service selection function sel : CAT → WS which
takes a certain service category as its input and give
us an atomic service based on the service matching i.e.
sel(cati) = ws.

Every atomic service in the rest of this paper refers to
a Web Service which is produced by the service selection
function defined above. For more details about the service
matching, interested readers may refer to [8, 9].

2.3 Composite Service
Intuitively, a composite Web Service which performs com-

bined functions may include multiple atomic services. A
composite service is the combination of the multiple atomic

services wsi, where 0 < i < n, a composite service CompWS
is represented by:

CompWS = {sel(cat1), . . . , sel(catn)}
Because participants of the service composition do not

necessarily share the same objectives and background, with-
out reasoning about incomplete knowledge and its side ef-
fects during the service execution, conflicts easily arise in
the service composition context.

3. WEB SERVICE COMPOSITION AS
PLANNING

It is often assumed that a business process or application
is associated with some explicit business goal definition that
can guide a planning-based composition tool to select the
right service [16]. Typically, classical planners presuppose
complete and correct information about the world. How-
ever, this simplified assumption is neither suitable and nor
realistic in the context of Web Service composition. Each
node of service composition is designed, owned, or operated
by distinct parties, thus the agent may not have complete in-
formation about the world. To reason about incompleteness
of information in the service composition context, we ex-
tend the current semantic Web Service description in OWL-
S by introducing service assumptions. Assumptions, in this
framework, together with states, preconditions, effects, and
goals are all specified in Description Logic L [2].

Now we are prepared to define the semantics of a ser-
vice composition domain. A state S is a snapshot which
describes the world with respect to the service composition
context. The state S in this work is extensionally defined as
a set of positive or negative ground atomic formulas (atoms).
Those atoms which may change their values during the state
transition are called fluent, while those which don’t change
are called state invariant. Unlike traditional planning, S
here is a partial description of the world. A state transi-
tion t is represented as a tuple t = 〈s, ws, s′〉, where s, s′ are
states and ws is an atomic service. It is also worthwhile to
mention that the initial state s0 is also a partial description
of the world. A goal G is set of conjunctions of atoms which
need to hold in a desired world state or say final state. A
service composition plan for a goal is a sequence of state
transitions of atomic services, and the transitions lead from
an initial state to a final state where all ground atomic for-
mulas in the goal are true.

In the process of the state transition, there are three types
of knowledge about the current world which represent the
state transition. In rest of the paper, we will use symbol |= to
represent logical entail. Let SENi denote a set of sentences
used to change the state Si. This set of sentences can be
partitioned into three categories, namely, state invariant,
state expansion and state update. The set of sentences is
defined as:

SENi = {Invi | Expi | Updi}
where:

1. State invariant Invi denotes a set of sentences which
can be entailed by the knowledge in the previous state,
defined as:

Si−1 |= Invi

20

2. State expansion Expi denotes a set of sentences which
cannot be entailed by the knowledge in the previous
state and its negation also cannot be entailed by the
knowledge in the previous state, defined as:

Si−1 � Expi

and

Si−1 � ¬Expi

3. State update Updi denotes a set of sentences whose
negation can be entailed by the knowledge in the pre-
vious state, defined as:

Si−1 |= ¬Updi

In our framework, for any atomic service ws, and where
WS is the set of all Web Services, E is the set of all service
effects, P is the set of all service preconditions, we define
the following extraction functions:

1. Effect extraction function fe : WS → E which takes
an arbitrary atomic service wsi as an input, and ex-
tracts the effect ei of wsi as its output. ei is a set of
primitive effects of wsi and every primitive effect is a
partition with the state invariant, state expansion and
state update i.e.

fe(wsi) = ei

and

ei = {eInvi | eExpi | eUpdi}
in which eInvi, eExpi, eUpdi denote state invariant,
state expansion and state update respectively.

2. Precondition extraction function fp : WS → P which
takes an arbitrary atomic service wsi as an input, and
extracts the precondition pi of wsi as its output i.e.
fp(wsi) = pi. Similar to the effect extraction function:

pi = {pInvi | pExpi | pUpdi}

Following the definitions above, we can define the generic
state transition operator as:

Si = Δ(pUpdi, eUpdi, Si−1) + eExpi + pExpi

which means the state transition from Si−1 to Si is com-
pleted by means of applying pUpdi and eUpdi to the state
Si−1 in order, then adding the two types of expansion of
knowledge (eExpi, pExpi) to the state Si−1 . Note that the
order of applying state update must be strictly followed.

4. DEFEASIBLE REASONING FOR
SERVICE COMPOSITION

Comparing with the traditional software development, a
dynamic service composition is an automated process with
less human intervention. Usually, it does not have a prede-
fined boundary, based on which the problems of uncertainty
and incompleteness of information could be tackled. Unpre-
dictable service executions and a dynamic changing context
complicate dynamic service composition in many ways. In-
spired by Non-monotonic logic [5], the following subsection
will attempt to provide a formal framework for reasoning
about incomplete knowledge in service composition context.

4.1 Defeasible Reasoning Framework
In this work, our conflict checking and reasoning about in-

completeness of information work with three kinds of rules,
namely absolute rules, defeasible rules and defeaters [5]. The
absolute rule, which is interpreted in the classical sense,
means that whenever the premises are indisputable then so
is the conclusion. On the other hand, the defeasible rule
is one whose conclusion is normally true when its premises
are, but certain conclusions may be defeated in the face of
new information. Defeasible rules can be defeated by con-
trary evidence or by defeaters. Defeaters represent knowl-
edge which is able to prevent defeasible inference from tak-
ing place. We use the operator ⇒ for absolute rules, ∼> for
defeasible rules and �→ for defeaters.

So, wsi represents a Web Service which is produced by the
service selection function (see section2.2), ai represents the
assumptions of wsi, pi represents the precondition of wsi,
ei represents the effects of wsi and isV alid(wsi) represents
a Web Service whose preconditions can be satisfied. Based
on Nute’s defeasible reasoning [5],

• Absolute rule (Rule A):

pi ⇒ isV alid(wsi)

Which means that only precondition holds, and then
the service is a valid candidate service to participate
in service composition.

• Defeasible rule (Rule B):

isV alid(wsi) ∼> ei

Which means that normally ei is the conclusion of a
valid candidate service wsi, but that ei may be de-
feated in the face of new information.

• Defeater (Rule C):

¬ai �→ ¬ei

Which means that given an assumption ai, if the nega-
tion of the assumption is entailed by a given state of
knowledge, it will prevent the Rule B from making the
conclusion ei.

4.2 Outdated Assumptions and Assumption
Database

When the negation of a service effect is the logic conse-
quence of a current state, we refer to the assumption as-
sociated with this service as the outdated assumption. In
other words, if the negation of all sentences in ei is entailed
by some states Sj , where ei is an effect of Web Service
wsi and j > i, then the assumption ai associated with ei

called the outdated assumption. Formally, the outdated as-
sumption can be represented as: ∀x ∈ ei, ∃j > i such that
¬x ∈ Cn(Sj), where Cn(Sj) denotes logical closure of Sj .

The outdated assumptions are not allowed to participate
in defeasible reasoning. A simple example of an outdated
assumption is: a book borrowing service assumes that the
borrower is in same city as the library. When the borrowed
book is returned, we say this assumption is outdated.

To conduct the defeasible reasoning about the current
state of the world, it is necessary to describe and record var-
ious assumptions generated during the service composition
planning. In this framework, we maintain an assumption

21

Figure 1: Car Renting Service

Figure 2: Sightseeing Service

database Dα to store these assumptions and their relevant
effects as a pair 〈ai : ei〉 . Same as preconditions and effects,
assumptions are represented as ground literals.

In this framework, it is not only possible to make tentative
conclusions when the information available is insufficient but
also to revise these conclusions in face of additional informa-
tion. In the context of service composition, our framework
has the following kinds of advantages:

1. Making the decision upon partial or incomplete infor-
mation easily fails to achieve consistency. This frame-
work bridges the gap between user requirements and
the consistent service composition.

2. The assumptions are used as justifications of the effects
in service composition context. And the knowledge of
the state can be revised over the time to incorporate
new knowledge, thus it enhances the ability to deal
with exceptions.

5. SCENARIO
In our Web Service examples (Fig.1 and Fig.2) we use

syntax similar to that of the Planning Domain Definition
Language (PDDL [7]). The first example Fig.1 is about a
car rental service which rents a car to a customer. The
precondition of this service is that customer has a visa card
and this visa card is valid e.g. has enough credit and not
expired. As the effect of this car rental service, the customer
rented his preferred car. And the assumption of this service
made by its service provider is that the car is used in proper
way e.g. a city car is not used for a mountain or desert dune
exploration.

NotDriveOn (see Fig.1) is our example is a service as-
sumption which can be expressed as a property atom by
SWRL. A property atom consists of a property name and
two elements that can be individual names, variable names
or data values [17]. In this case, BR(Bad Road conditions,
see Fig.1) is an individual constant and represents a road

condition on which the rented car must not drive on accord-
ing to the car rental company’s service policy.

Satisfaction of the Service Precondition: To partic-
ipate in the service composition, the selected Web Service
must be a valid candidate service, here Rule A is fired. In
the example above, to be a valid candidate service, the pre-
condition associated with this Web Service must be satisfied
(A customer has a visa card and this visa card is valid).

Applying the Effects: If the car rental service is a valid
candidate Web Service, normally the effects associated with
this Web Service can be applied to the current state as Rule
B. However, these effects may be defeated in the face of new
information.

Making assumptions: Certainly, the rented car should
be used in proper way. For instance, if the rented car is a
city car, in common sense, this car should not be used for
a mountain or desert dune exploration. To deal with excep-
tions which may result from incomplete information, the car
rental service provider makes an assumption here that the
car is not used for certain road conditions. The assumptions
are stored in Dα. To clarify the usage of the assumption in
our framework, here we give a simplified example of a sight-
seeing plan service(see Fig.2), which is supposed to integrate
with the car rental service together as a travel agency pack-
age.

If the customer Alice chose a city car as her preferred car
and registered to the sightseeing plan service. The desert
dune exploration as a sightseeing plan is generated and as a
result, the car will be used for this dune exploration (Fig.2).
Now the state holds the following the sentences:

rented(Alice, cityCar),
hasP lan(Alice, duneExploration),
driveOn(cityCar, dune)
The assumption made by the car rental service is stored

in Dα, which is: notDriveOn(cityCar, dune). Clearly, the
negation of the car usage assumption now is entailed by
the current state, that is S |= ¬a, then we can reach the
conclusion that Rule C is fired. In this case, the violation
against the car usage is detected, and the car rental com-
pany could not rent a city car to this customer for his desert
dune exploration. This example explains how the service as-
sumption can help us to detect potential conflicts in service
composition context, especially when there is only incom-
plete information available.

6. EXTENDING OWL-S
Because different enterprises have distinct business ob-

jectives, rules and assumptions about using or providing a
Web Service, especially in some rule or policy intensive en-
terprises, it is unrealistic to acquire complete information
from all parties involved during dynamic service composi-
tion. Making the decision upon partial or incomplete in-
formation often fails to achieve consistency. The solution
to this problem is to use the assumptions as justifications
of the effects in service composition context, which bridge
the gap between user requirements and consistent service
composition. The inability to make assumptions therefore
translates into an inability to deal with exceptions [13].

6.1 Syntax
Currently, there is no way for OWL-S to describe the vari-

ous assumptions about the multiple independent application
domains involved in service composition. And no mecha-

22

nism to guarantee that the service execution has the antici-
pated effects when there is only insufficient knowledge avail-
able during the service composition execution. By adopting
the service assumptions into OWL-S, we can conduct reason-
ing about what is known in the composite service execution
context against various domain assumptions. Thus the on-
tology for Web Service becomes more complete and closer
to the real world. We proposed to add the assumptions as
the properties of service process, which allows various as-
sumptions to be captured and recorded in readily accessible
fashion. Syntax as follows:

<owl:Class rdf:ID="Assumption">

<owl:subClassOf rdf:resource="&expr;

#Expression"/>

</owl:Class >

<owl:ObjectProperty

rdf:ID="hasAssumption">

<rdfs:domain rdf:resource="#Process"/>

<rdfs:range rdf:resource="&expr;#

Condition"/>

</owl:ObjectProperty >

6.2 Example of Using Assumption
The proposed mechanism gives OWL-S the ability to de-

scribe the various assumptions of the service domain. Hence,
the assumption can be defined as one of the properties of the
service process together with input, output, preconditions
and effects. We also propose to use SWRL expressions in
OWL-S assumptions, thus we can use the expressive power
of rules to facilitate service conflict reasoning. Example as
follows:

<process:hasAssumption >

<expr:SWRL -Condition rdf:ID="Road -

Restriction -Assumption">

<rdfs:label >

the car assumed must not drive on

certain road conditions

</rdfs:label >

<expr:expressionLanguagerdf:resource="http

:// www.daml.org/services/owl -s/1.1/

generic/Expression.owl#SWRL"/>

<expr:expressionBody rdf:parseType="

Literal">

<swrl:AtomList ><rdf:first >

<swrl:IndividualPropertyAtom >

<swrl:propertyPredicate rdf:resource="#

NotRunningOn"/>

<swrl:argument1 rdf:resource="#car"/>

<owl:Individual rdf:ID="dune"/>

</swrl:IndividualPropertyAtom ></rdf:first >

<rdf:rest rdf:resource="http :// www.w3.org

/1999/02/22 -rdf -syntax -ns#nil" />

</swrl:AtomList > </expr:expressionBody >

</expr:SWRL -Condition >

</process:hasAssumption >

In our proposed framework, one can make two kinds of as-
sumptions in OWL-S. Here we denote variable name by
x, y, z, concept atom by C and property atom by P , then
we have:

Figure 3: Defeasible Reasoning Process

1. Concept assumptions C(x), which asserts x belongs to
concept C;

2. Property assumptions P (y, z), which asserts z is value
of the property P for y.

7. DEFEASIBLE REASONING PROCESS
In this section, we are prepared to illustrate the process

of constructing the service composition plan based on our
proposed framework. Service composition planning can be
viewed as a process of resolving conflicts and gradually re-
fining a partially specified plan, until it is transformed into
a complete plan that satisfies the goal.

Service Composition planning is similar to the classical
planning in that each world state is represented by a con-
junction of literals and each Web Service is related to a
transition between those states. However, unlike classical
AI planning techniques, in this proposed framework, the
planner is the rule based system which allows making tenta-
tive conclusions and revising them in the face of additional
information. In other words, the planner is endowed with
the ability to reasoning about incomplete information in the
service composition context.

For any state Si−1, Web Service wsi is not applicable to
the state until certain minimal criteria are met. wsi is speci-
fied in terms of the precondition pi, effect ei and assumption
ai, where pi must be satisfied for wsi to be valid (Rule A)
, the effect may be concluded (Rule B) and the negation of
the ai plays the role of being the defeaters (Rule C).

A state in our framework is not a complete view of the
world. Usually, an agent is forced to perform sensing oper-
ations which is aiming at finding out the information which
could satisfy the precondition pi. Like “1” showed in the fig
3, the sensing operation may lead to knowledge expansion
and update of the state Si−1. When the sensing operations
complete, if pi is satisfied, we can conclude that wsi is ap-
plicable to the current state (Rule A). Due to the expansion
and update of knowledge to state Si−1, before the transition
to state Si, we get an intermediate state S′

i−1 which holds
the current knowledge of the world after the agent’s sens-
ing operation. Following the sensing operations, effect ei is
applied to the current world state to simulate the action.
Again, the effect ei may expand and update the knowledge
of the current state (Rule B). This process can be presented
as generic state transition operation as we defined in Section
3.

23

One of the main features in this proposed framework is the
ability to describe various service assumptions and support
defeasible reasoning with these assumptions. Assumptions
generated from the service composition planning are repre-
sented as a set of ground literals stored in the assumption
database Dα. After the effect is applied to the current state,
the knowledge in the state may be expanded or updated. For
the new state of knowledge, the planner needs to carefully
perform the checking to see whether any outdated assump-
tion is in Dα. Because the outdated assumptions are not
allowed to participate the defeasible reasoning, all outdated
assumptions are deleted from Dα. Next, it is to find the
defeaters by the mean of checking whether any negation of
assumptions can be entailed by the current state. The nega-
tion of service assumption which is not outdated plays the
role of being a defeater, which prevents the effects associated
with this assumption being applied to the state (Rule C).
Up to now, the process of state transition from Si−1 to Si

is completed. We have illustrated that how the new world
state is reached in the presence of possibly conflicting rules.

8. RELATED WORKS
WSMO [18] extended and refined Web Service Modeling

Framework (WSMF), aimed at complementing current Web
Service standards. WSMO provides a conceptual model and
language for the relevant aspects of the semantic Web Ser-
vice. Web Service descriptions consist of functional, non-
functional and the behavioral aspects of a Web Service. The
capability of a Web Service is specified in terms of precon-
dition, postcondition, assumption, effect and some others
properties. However, the assumption we proposed in this
work is different from the assumption in WSMO. The as-
sumption proposed in this work extends the semantics of
OWL-S for the purpose of explicitly supporting defeasible
reasoning and trying to tackle the problem of incomplete in-
formation in service composition context. The current Web
Service standards [1, 6] only focused on modularization of
service layers and static service compositions, while some
issues about dynamic service composition have not been ad-
dressed. In particular, how to reason about incomplete in-
formation during the dynamic service composition, in other
words, how to ensure the consistency of service composition
when there is only incomplete knowledge available in service
composition context.

9. CONCLUSIONS AND FUTURE WORK
The goal of dealing with incomplete information in the

service composition context is certainly a challenging task.
The proposed framework is an attempt at tackling the prob-
lem of how to achieve consistent service composition when
information available is insufficient.

In this work, we have extended the OWL-S to a richer ser-
vice description representation schema by introducing the
service assumptions. We also adopted defeasible rules for
reasoning with various assumptions. We illustrated how
knowledge based planning could reason about incomplete
knowledge in service composition context and construct the
service composition plan. During the process of the ser-
vice composition, we showed that absolute rules could be
used for service precondition satisfaction, especially defeasi-
ble rules and defeaters could be employed to make tentative
conclusion based on the available information, and to de-

tect potential conflicts in service composition when further
suitably information about the problem is available.

As part of our future work, we are working on the in-
corporation of other service composition technologies, such
as matching of Web Services capabilities, quality of service
etc, which would result in further reliable automation of the
consistent service composition.

10. REFERENCES
[1] Andrews, T., Curbera, F., Dholakia, H., Goland, Y.,

Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D.,
Thatte, S., Trickovic, I., und Weerawarana, S.
“Business Process Execution Language for Web
Services”, Version 1.1. Specification. BEA Systems,
IBM Corp., Microsoft Corp., SAP AG, Siebel
Systems. 2003.

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D.,
and Patel-Schneider, P. F., Eds. 2003. The Description
Logic Handbook:Theory, Implementation and
Applications. Cambridge University Press.

[3] Dean, M. and Schreiber G. “OWL Web Ontology
Language”. Reference W3C Recommendation,
http://www.w3.org/tr/owl-ref/. Feb 2004.

[4] Benjamin N. Grosof, Ian Horrocks “Description Logic
Programs: Combining Logic Programs with
Description Logic” ACM 1581136803/03/0005.

[5] Donald Nute. “Defeasible logic.” In D. Gabbay and C.
Hogger (eds.), Handbook of Logic for Artificial
Intelligence and Logic Programming, Vol. III, Oxford
University Press, 1994:353-395.

[6] Kreger, H. Web Services Conceptual Architecture
(WSCA 1.0). http://www-
4.ibm.com/software/solutions/webservices/ ,
2001

[7] M. Fox and D. Long. Pddl2.1: An extension to pddl
for expressing temporal planning domains, 2002.
http://www.dur.ac.uk/d.p.long/pddl2.ps.gz

[8] M. Paolucci, Takahiro Kawamura, Terry R. Payne,
Katia Sycara. ”Importing the Semantic Web in
UDDI”. In Proceedings of Web Services, E-business
and Semantic Web Workshop.

[9] M. Paolucci, T. Kawmura, T. Payne and K. Sycara.
Semantic Matching of Web Services Capabilities. In
First Int. Semantic Web Conf., 2002

[10] OWL-S White Paper “OWL Services Coalition.
OWL-S: Semantic markup for Web Services”, 2005.
http://www.daml.org/services/owl-s/1.1/overview/#1

[11] Paulo F. Pires, Mario R.F. Benevides, Marta Mattoso
”Building Reliable Web Services”, Web, Web Services
and Database Systems 2002, LNCS 2593

[12] R. E. Fikes and N. J. Nilsson. Strips: A new approach
to the application of theorem proving to problem
solving. In J. Allen, J. Hendler, and A. Tate, editors,
Readings in Planning, pages 88-97. Kaufmann, San
Mateo, CA, 1990.

[13] R. V. Guha. Contexts: A Formalization and Some
Applications. PhD thesis, Stanford University, 1991.

[14] Reiter R. “A logic for default reasoning”, Artif Intell
1980; 13:81-132.

[15] Reiter R. “ON REASONING BY DEFAULT”,
Proceedings of the theoretical issues in natural
language processing-2 July 1978

24

[16] S. McIlraith and T. C. Son. Adapting Golog for
composition of Semantic Web Services. In Proceedings
of the 8th International Conference on Knowledge
Representation and Reasoning (KR2002), Toulouse,
France, April 2002.

[17] “Semantic Web Rule Language”, May 21, 2004.
http://www.w3.org/Submission/2004/03/.

[18] WSMO working group. WSMO homepage, since 2004.
http://www.wsmo.org/.

25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

