
P2P File Sharing Analysis for a Better Performance
Martha-Rocio Ceballos

Doctoral student
Dept. of Telematics

Polytechnic University of Catalonia
+34 93 401 59 94

ceballos@entel.upc.es

Juan-Luis Gorricho
Associate professor
 Dept. of Telematics

Polytechnic University of Catalonia
+34 93 401 68 30

juanluis@entel.upc.es

ABSTRACT
The so-called second generation P2P file-sharing applications
have with no doubt a better performance than the first
implementations. The most remarkable difference is due to the file
division into smaller pieces, where a receiving peer of any piece
automatically becomes a new source to other peers. But a new
question arises on how we distribute all the pieces provided by a
seed peer to minimize the global and presumably individual
download times. In this paper we summarize part of the work we
have developed up until now to answer this general question, in
particular, we will analyze how close the present second
generation P2P file-sharing applications remain from an ideal
solution with the theoretical best performance, that is, where all
peers are interconnected with each other and all peers have an
altruistic behavior always uploading its contents at any chance.
Successive modifications of the ideal solution will lead us to more
realistic scenarios. We will estimate the performance on each case
and finally present the current studies we are carrying out to
improve the overall capacity.

Categories and Subject Descriptors
H.4.0 [Information Systems Applications]: General

General Terms
Algorithms, Experimentation, Measurement, Performance.

Keywords
File sharing, video streaming, network measurements, peer to peer
applications, service capacity, performance evaluation.

1. INTRODUCTION
P2P file sharing applications have become very popular since the
introduction of Napster, allowing users to share MP3 formatted
music files, a few years ago. Independently of legal issues, the
first P2P file sharing applications such as Napster, Gnutella and
KaZaA were intended to satisfy the most relevant P2P properties:
scalability, reliability and great efficiency on information delivery.
Nevertheless, the free-riding phenomenon became an extended
practice, peers downloading from other peers while not

contributing to upload to others; and finally, in spite of the
proclaimed P2P features, all these file sharing applications
became the traditional client/server model, with only a few altruist
peers as file servers and all the others as file requesters.

To avoid this undesirable situation, recent P2P file sharing
applications such as BitTorrent [1] and eMule [2] have defined a
new scenario with all peers forced to upload part of their received
data if they want to download the complete file. The requested file
is divided into chunks, so any peer receiving a chunk may be
forced to upload it to other peers. These new P2P file sharing
applications propose different algorithms to incentivate the peer
collaboration, solving the way all peers establish and temporally
renew its connections with other peers interested on the same file.
A practical principle suggests that I will upload to you if you also
upload to me, a tit-for-tat assumption [3].

In a more general sense, putting aside the free-riding
phenomenon, the transmission of any information in smaller
pieces always increases the system capacity when more than one
node is involved, as re-transmitter or intended receiver. This is the
case, because we don’t wait for a completed file transmission to a
particular peer, before this one begins the retransmission to the
next peer. This feature is magnified if we deliver all chunks from
the source peer, also called the seed peer, to the greatest variety of
peers, this way we promote an increasing number of parallel
transmissions among all peers.

The P2P networks are classified as structured and non-structured
networks depending on the methodology used to organize the
information search. On a structured network the resource location
information is stored in a predefined way with the aid of hash
tables, while on non-structured networks the resource location
registration becomes an ad hoc process leading to a subsequent
search procedure usually based on a flooding or a random-walk
mechanism; in this case, to increase the search success the non-
structured networks are usually organized in logically
interconnected peers and super-peers, storing the resource
location information only in the super-peers.

Independently of the P2P network type we can distinguish two
phases: the resource search and the resource access or download,
depending on the particular service. Considering a file sharing
application the most relevant issue is the file download, not its
location, due to the critical time delay we can experience if we
have a high demand from the file requesters or a limited upload
capacity from the file provider. In this respect it is crucial to
achieve a reliable and scalable file delivery mechanism; this way
we could even extend the file sharing application to implement

Copyright is held by the author/owner(s).
ICSE’06, May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

941

the so many times named video streaming service without an IP
multicast solution.

1.1 Relationship to previous work
Early studies on P2P file sharing have focused on traffic
measurements for the most popular applications like: Gnutella,
Napster and BitTorrent [4, 5, 6]. At present time more research
has derived to the performance analysis of these applications from
different approaches. In [7] a queuing model is proposed for an
accurate study of the file sharing application performance. In [8]
the study considers a transient regime to handle bursty traffic to
demonstrate the exponential growth in service capacity and
exhibits the sensitivity of this growth to system policies and
parameters; later on, the same study considers a model for such
systems in a steady state to show how the average delay seen by
the peers would scale in the offered load and rate at which peers
exit the system. In [9] a simple fluid model is presented to study
the scalability, performance and efficiency of the file sharing
mechanisms, including the evaluation of the BitTorrent built-in
incentive mechanism on the network performance.

1.2 Our contributions
Our study on the performance characteristics of the present
second generation P2P file sharing applications have been carried
out in a similar fashion to [8,9], but in our particular case
comparing the obtained results with a modified step by step semi-
ideal application. Our study analyzes the chunk distribution with
an ideal application, and how this distribution is deteriorated as
we modify the best scenario to approach to the real situation of
present applications. We intend to estimate the performance loss
for the semi-ideal scenario, justify the losses with each new
assumption and contribute with new ideas on how the present P2P
file sharing applications could obtain a better performance.

2. An ideal P2P file sharing application
The characteristics of an ideal P2P file sharing application are
those that maximize the throughput capacity of the network,
achieving the lowest transmission delays for any peer trying to
download a particular file. In our first simplified model for this
ideal application we will assume all peers have the same
transmission capacity for uploading and downloading. Also, to
simplify the model we suppose any file is divided into a number
of pieces, each one transmitted in a T interval time. At the
beginning the seed-peer transmits the first chunk of the file to any
peer; later on, the seed-peer continues transmitting consecutive
chunks and simultaneously those peers which already have any
chunk will try to retransmit one of them to other peers. In this
ideal scenario, all peers are interconnected with each other, so a
particular peer can deliver a chunk to any peer. The pieces
delivery is done from the sources point of view, acting as peer re-
transmitters, the goal is to upload as many chunks as possible. In
the best case, when all peers have at least one chunk to upload, all
peers but one will find a peer receiver, this is because we must
count the seed-peer which is also a source peer. For this particular
situation all peers are receiving a new chunk, so the system
capacity is maximized. Let us see two examples of the pieces
delivery among all peers with a different number of peers to check
that we can easily find the best pieces distribution, we advance
there is not a unique solution. Let us assume for this example the
file has 9 pieces, and they are numbered from 1 to 9.

Table 1. Examples of chunk distribution with 3 and 8 peers
 P1 P2 P3 P1 P2 P3 P4 P5 P6 P7 P8
T1 1 1
T2 1 2 1 2
T3 2 3 1 1 1 2 3
T4 3 2 4 2 2 1 3 4 1 1 1
T5 4 5 3 3 3 4 2 2 5 2 2
T6 5 4 6 4 4 3 5 3 3 6 3
T7 6 7 5 5 5 6 4 7 4 4 4
T8 7 6 8 6 6 5 7 5 8 5 5
T9 8 9 7 7 7 8 6 6 6 9 6
T10 9 8 8 8 7 9 7 7 7
T11 9 9 9 8 8 8 8
T12 9 9 9 9

On Table 1 we can see two different examples of chunk
distribution with 3 and 8 peers as time goes by in the downward
direction. On time T1 the seed-peer delivers the first chunk to any
peer, on time T2 the seed-peer delivers the second chunk to
another empty peer and the former receiver uploads its chunk to
another empty peer. This initial phase lasts until all peers have at
least one chunk to upload. The best results on chunk delivery are
obtained precisely when the chunks are firstly delivered to empty
peer. Later on, in the second phase, all peers receive a new chunk
from another peer or the seed-peer. That means that all but one
peer will upload a new chunk. The second phase lasts until the
seed-peer delivers the last chunk: number 9. In the second phase
the best results on chunk delivery are obtained when we proceed
as follows:

1. - The peers try to upload the chunk with the largest index they
have, beginning the chunk distribution from the peer with the
shorter chunk index (the source peers are sorted from the one with
the shorter of largest chunk index, min-max). In practice, all but
one will upload its intended chunk. The receiving peers are asked
on an indexed order.

2. - The seed-peer delivers the new next chunk to the only peer
that did not receive any chunk from the other peers in step 1.

Following the same procedure as in second phase, although
without the seed-peer participation, we arrive to the third phase
where all peers finish downloading the remaining chunks.

We can say from Table 1 these are two examples of an ideal file
sharing scheme as there is no hole, loss of transmission capacity,
in the second phase, and the first and third phases are the best we
can do.

We can appreciate on Table 1 for the 8 peers example how the
chunks download follows an exponential law on the delivery of
any particular chunk. The delivery sequence is always: Tn:1 (the
seed-peer upload), Tn+1:1, Tn+2:2, Tn+3:4. And this pattern applies
for any number of peers independently of its number; it follows a
power of 2 law until the last step, when we deliver the intended
chunk to the remaining peers.

We have checked the chunk distribution results following the
procedure described in this section with an increasing number of
peers, and we must say that quite frequently we achieve the best
distribution. For those cases where there are inevitable holes in
the mentioned second phase due to the applied algorithm, these

942

represent less than 10% considering a 9 chunks file. These losses
on transmission usually happen at the first steps on the second
phase, and later on at isolated intervals. The mentioned percentage
on lost transmissions becomes less than 4% considering files with
more than 100 chunks.

Trying to diminish these percentages, we have proved different
alternatives to modify the presented algorithm for step 1 on the
second phase, asking the receiving peers on a random fashion and
a min-max sort instead of the indexed order. We have also
exchanged steps 1 and 2, so the seed-peer delivers the new chunk
before the other peers ask the receiving peers to upload a chunk.
Many resultant chunk distributions have been tested. We must say
that in all cases the obtained results are quite similar to those
mentioned in the previous paragraph.

2.1 An increasing number of peers
In a more realistic scenario we are not going to have a constant
number of peers participating in the file download since the very
beginning. For this new approach we can establish an initial
number of peers interested in a particular file, and new
participants joining the peers community later on. We can assume
the transmission time for any chunk small enough to admit
individual incorporations at each round. The initial assumption of
a complete meshed network implies that the increasing number of
peers has no relevance to the chunk distribution. If the new peer is
added at the first phase, this will be a new empty peer. If it enters
the system in the second phase, there is no impact as we have
mentioned earlier that in this phase there is always one peer which
does not upload any chunk, this time it will do that to the new
peer. And finally, the peer incorporation in the third phase has no
impact to the remaining peers as they are in the final term of
chunk delivery and there are more sources than requesters.

Table 2. Example with an increasing number of peers
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
T1 1
T2 1 2
T3 1 1 2 3
T4 2 2 1 3 4 1 1 1
T5 3 3 4 2 2 5 2 2
T6 4 4 3 5 3 3 6 3 2
T7 5 5 6 4 7 4 4 4 3
T8 6 6 5 7 5 8 5 5 4 3
T9 7 7 8 6 6 6 9 6 5 4
T10 8 8 7 9 7 7 7 6 5
T11 9 9 8 8 8 8 7 6
T12 9 9 9 9 8 7
T13 9 8
T14 1 9
T15 2
T16 1

On Table 2 we can see the particular chunk distribution with
initially 7 peers and the incorporation of P8 at T4, P9 at T6 and P10
at T8. As we can appreciate, the new peers receive the chunk
numbers distributed at the time they join the system, and from
then on they participate on the chunks delivery dictated by the
older peers. At the end, the new ones will download the remaining
chunks until they complete the entire file.

3. A semi-ideal P2P file sharing application
There are two main assumptions made in the previous section
which have defined an ideal P2P file sharing application. The
most relevant one considers a complete meshed network with all
the participants. This implies any new peer incorporation forces
the establishment of a new connection from all the peers to the
new one. The other assumption considers a chunk distribution
carried out by all peers in the most altruistic manner. All peers try
to upload the chunk with the largest index they have, as it is
supposed to be the rarest chunk the peer can offer to the other
peers, contributing this way to the intended exponential growth on
the chunk distribution.

3.1 Chunk delivery on requesters demand
Let us suppose a more realistic scenario with a chunk delivery
from the requesters’ point of view. This time every peer in an
indexed order asks another peer in a min-max order for a new
chunk. The asked peer will first offer the largest index chunk it
has, if not required, it will offer the next one, and so on, until the
last one. If the requester peer has all the offered chunks, it will ask
the next peer, and so on. On the same round, the seed-peer will
upload the new chunk to the first unsuccessful peer from the
previous procedure in an indexed order, with empty peer
preference. Let us see an example of the resultant chunk delivery
with an initial 7 peer network and an increasing number of
participants, the same as on Table 2.

Table 3. Example of chunk delivery on requesters demand
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
T1 1
T2 1 2
T3 2 1 1 3
T4 3 2 2 1 1 4
T5 4 3 3 5 2 2 1 2
T6 5 4 4 3 6 3 2 1 3
T7 6 5 5 4 4 4 3 3 7
T8 7 6 6 8 5 5 5 4 2 4
T9 8 7 7 6 9 6 6 5 4 3
T10 9 8 8 7 7 7 6 5 6
T11 9 9 8 8 7 7 6 5
T12 9 9 8 8 1 7
T13 9 9 8 2
T14 9 8
T15 9
T16 1

On Table 3 we can appreciate there is no great difference between
the chunk distribution observed on Table 2. This is due to the
relatively short number of nodes: 7 initial peers and 3 new
incorporations. The difference is really at T4, here there are 6
downloads, on Table 2 at the same round of time there are 8
downloads. This inefficiency will increase with the number of
initial peers and it lasts for more than one T period. An extensive
number of simulations have demonstrated the reduction of the
transmission capacity is only observed at the initial phase, with
the consequent delay spread as the number of peers increase. In
fact, we have appreciated a certain loss of the exponential growth
behavior on the chunks delivery. The second phase, where all
nodes have something to upload, and the third one have
demonstrated no remarkable degradations.

943

3.2 Chunk delivery with limited connections
The most problematic assumption made on the ideal application is
the consideration of a complete meshed network. A real P2P file
sharing application will work with a limited number of
connections for any peer. In this scenario some questions arise:
how many connections would be desirable? how do we choose the
peers we will connect to? To overcome the free-riding
phenomenon it’s been said that I will upload to you if you upload
to me, does it mean we must define complete meshed subsets of
peers to promote this collaboration? When do we decide to renew
the established connections? And how can we find the appropriate
new peers?
We will go a little bit further in our desire to stay as close as
possible to the ideal file sharing application. It seems that, in spite
of a mandatory limited number of connections, the idea of a
complete meshed subset of peers will not contribute to the
exponential growth on chunk delivery. In that respect, let us
propose the establishment of disjoint peer connections, that is, any
peer will randomly connect to a limited number of peers with
upload purposes. If all peers act the same way we will create a
meshed, although not complete, network, but again it will
presumably work fine if all peers have an altruistic behavior, just
the opposite to the tit-for-tat principle mentioned above.
Nevertheless, this is a more realistic system implementation as we
are already working with a limited number of connections. Let us
see an example of the resultant chunk distribution with an initial
and constant number of peers, all of them working with 4
connections. The total system transmission delay is less than the
value obtained in the previous two examples because this time all
peers are present at the simulation start.

Table 4. Example with a limited number of connections
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
T1 1
T2 2 1
T3 3 1 1 2
T4 4 3 2 1 1 1 2 1
T5 5 1 1 4 2 2 2 3 3
T6 2 6 3 2 5 3 4
T7 3 7 2 5 3 3 4 4 6 5
T8 6 8 7 4 4 5 5 5 4
T9 7 5 4 6 5 9 6 3 8
T10 9 4 5 7 7 8 6 7 6
T11 8 8 9 6 6 7 9 7
T12 9 6 8 8 7 7 9 8
T13 9 9 8 9 8 9

On table 4, all peers establish 4 connections at random; these
connections have only an upload purpose. The simulation runs
considering that first of all the peers in a min-max order try to
upload a chunk to one of their 4 connected peers, offering the
largest index chunk it has; if no one is interested, it will offer the
next chunk, and so on; if, at any round this peer can not upload
any chunk to the connected peers, we consider a loss in
transmission and it renews the less used connection with a new
peer in a random fashion for the next round. On the same round,
the seed-peer uploads a new chunk in an indexed order to any free
peer, choosing only empty peers when available.

We have made many simulations with a different number of peers
and a different number of simultaneous connections. In the worst
case, working with 3 or 4 connections per node and more than
100 peers we can appreciate a reduction on the system capacity
compared to the ideal situation where all peers are interconnected
of about 30%. This capacity reduction diminishes rapidly as we
increase the number of connections per node.

4. The research plan
In this section we will present the last results in our research. In
particular, we will describe the most remarkable features of the
BitTorrent and E-mule applications. From them, we will inherit
the relevant features useful to define an application model for the
intended simulations. We will explain with a few illustrative
examples the obtained chunk distributions with this model. We
will present in detail the most remarkable results obtained from
the comparison on system performance between the semi-ideal
application model we have been working on and the second
generation file sharing application model. This will conclude with
some ideas on how the present P2P file sharing applications could
obtain a better performance.
Finally we will describe our future research plan consisting on the
implementation of a file-sharing P2P network to be deployed and
evaluated on the Internet; this way we will achieve an empirical
comparison with other alternatives, and presumably extend the
file-sharing P2P application to a multimedia-streaming P2P
service.

5. ACKNOWLEDGMENTS
This work was supported by CICYT Grant TIC2003-08129-C02.

6. REFERENCES
[1] Cohen B. Incentives build robustness in bittorrent, May

2003. http://bitconjurer.org/BitTorrent/bittorrentecon.pdf.
[2] eMule authors. http://www.emule-project.net
[3] Hales D. and Patarin S. Computational sociology for systems

“in the wild”: the case of BitTorrent. IEEE Distributed
Systems on-line, Vol. 6, n. 7, July 2005.

[4] Ripeanu M. Peer-to-peer architecture case study: Gnutella
network. Technical report, University of Chicago, 2001.

[5] Ripeanu M., Foster I. and Iamnitchi A. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and
implications for system design. IEEE Internet Computing
Journal, 6(1), 2002.

[6] Andrade N., Mowbray M., Lima A., Wagner G. and Ripeanu
M. Influencies on cooperation in BitTorrent communities.
SIGCOMM’05 Workshops, August 22–26, 2005,
Philadelphia, PA, USA.

[7] Ge Z., Figueiredo D.R., Jaiswal S. Modeling peer-peer file
sharing systems. In Proceedings of IEEE INFOCOM, 2003.

[8] Yang X. and de Veciana G. Service Capacity of Peer to Peer
Networks. In Proceedings of IEEE INFOCOM, 2004.

[9] Qiu D. and Srikant R. Modelling and performance analysis
of BitTorrent-like peer-to-peer networks. SIGCOMM’04,
Aug. 30–Sept. 3, 2004, Portland, Oregon, USA

944

