Osprey: A Practical Type System for Validating Dimensional Unit Correctness of C Programs

Lingxiao Jiang
Zhenhong Su
Department of Computer Science
University of California, Davis, CA 95616, U.S.A.
{jiangl, su}@cs.ucdavis.edu

ABSTRACT

Misuse of measurement units is a common source of errors in scientific applications, but standard type systems do not prevent such errors. Dimensional analysis in physics can be used to manually detect such errors in physical equations. It is, however, not feasible to perform such manual analysis for programs computing physical equations because of code complexity. In this paper, we present a type system to automatically detect potential errors involving measurement units. It is constraint-based: we model units as types and flow of units as constraints. However, standard type checking algorithms are not powerful enough to handle units because of their abelian group nature (e.g., being commutative, multiplicative, and associative). Our system combines techniques such as type inference and Gaussian Elimination to overcome this problem. We have implemented Osprey, a prototype of the system for C programs, and evaluated it on various test programs, including computational physics and mechanical engineering applications. Osprey discovered unknown errors in mature code; it is precise with few false positives; it is also efficient and scales to large programs—we have successfully used it to analyze programs with hundreds of thousands of lines of code.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—reliability, validation; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—program analysis

General Terms: Languages, Reliability, Verification

Keywords: Gaussian Elimination, constraint-based analysis, dimensional analysis, measurement units, type systems

1. INTRODUCTION

Scientific applications use measurement units such as meters, seconds, or kilograms. Misuse of measurement units in these applications can be disastrous: it is believed that the Mars Climate Orbiter is lost because data denominated in the English system was fed into the navigation system which expected metric units [18]. In order to have correct computational results, it is important to validate dimensional unit correctness of a program. However, standard type systems do not enforce the correct use of units.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
ICSE '06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

Physicists routinely use dimensional analysis to check the dimensional unit correctness of quantities in equations. Dimensional analysis assumes that each physical quantity has a meaningful, fixed unit of measure and the units of both sides of an equation are the same. Although useful, such analysis can be difficult to carry out, especially for non-physicists. Many physical equations involve complicated computation, and it is difficult to track the flow of units in those equations. Manually applying dimensional analysis to programs that calculate such equations is even more complicated.

We use the concrete example in Figure 1 to illustrate unit errors and explain our analysis. For now, please ignore those shaded tokens starting with a $, such as $unity$: they are unit annotations for our type system. The code computes an electron’s final energy using the formula (adapted from Brown’s work on SIUNITS [4]):

$$\frac{1}{X_0} = 4\pi r_e^2 \frac{N_A}{A} \left(Z^2 L_{rad} - f(Z)\right) + Z L_{rad}$$

We briefly explain the physical meaning of the variables: α is the fine structure constant; r_e is the radius of an electron; N_A is the Avogadro’s number; L_{rad} and L_{rad} are Tsai’s constants; X_0 is radiation length; and $f(Z)$ is treated as zero in the code.

The code has two unit errors, neither of which can be detected by the standard C type checker: (1) Although the name of the function radiationLength implies that the unit of its return value is that of length, it is actually a unit of area density, for example, kilogram*meter$^{-2}$. The return statement in radiationLength should return the reciprocal of the original expression; (2) The argument of exp in the return statement of finalEnergy should be unitless according to the II theorem in physics. Considering this together with the first error, the argument should be “thick * density / X0.” Unit errors occur for many reasons, such as misunderstanding physical meaning of equations or simply programming errors. It is difficult for programmers to apply manual dimensional analysis to discover these errors because of function calls, structures, pointers, and other language constructs. It is thus desirable to mechanize dimensional analysis. Although many approaches exist to support automatic dimensional analysis, there is not yet a practical method for verifying unit correctness of large C programs. We defer a detailed survey of related work to Section 7.

In this paper, we design a type system for automatic dimensional analysis. In our system, we model units as types in programming languages and reduce dimensional analysis to type checking. However, the semantics of units is more complicated than that of standard types. Units can be operated on with arithmetic operations, such as multiplication, division, and square root, and they form an

1According to the Buckingham’s II theorem [9] in physics, parameters and return values of a transcendental function (e.g., exponential, logarithmic, or trigonometric functions) should be unitless [26].
double pow(double, $unity double);
$unity double log($unity double);
$unity double exp($unity double);
extern $unity double alpha, NA;
extern $meter double re;
typedef struct {
$kilogram double atomicWeight;
$unity double atomicNumber;
} Element;

double radiationLength(Element * material) {
 double A = material->atomicWeight;
 double Z = material->atomicNumber;
 double L = log(184.15 / pow(Z, 1.0/3));
 double Lp = log(1194.0 / pow(Z, 2.0/3));
 return (4.0*alpha*re*re) * (NA/A)
 * (Z*Z*L + Z*Lp); }

double finalEnergy(Element * material,
$kilogram*meter^3 double density,
$meter double thick,
$kilogram*meter^2*second^-2 double initEnergy)
{ double X0 = radiationLength(material);
 return initEnergy / exp(thick / X0); }

Figure 1: Sample code with unit errors.

abelian group.2 We thus need more powerful algorithms to perform type checking for unit correctness. Our type checking algorithm combines both standard type checking and Gaussian Elimination methods to validate units. As a novel contribution, our system can also validate the factors used for converting one unit to another of the same dimension. Our goal is to have a system that is sound (does not miss any errors), scalable (can analyze large programs), precise (does not report many spurious errors), and usable (is easy for programmers to use).

We have implemented Osprey, a prototype of the system for C programs meeting this goal. Ignoring certain unsafe features of C, Osprey is sound: if it does not find unit errors in a program, then the program is guaranteed to be free of unit errors. To validate the other claims (\textit{i.e.}, being precise, scalable, and usable), we have extensively evaluated Osprey on various test programs, including computational physics and mechanical engineering applications. Osprey discovered unknown errors in mature code. It is also precise with few false positives in our experiments. It is efficient and scales to large programs with hundreds of thousands of lines of code. It is also easy to use because it requires lightweight annotations (in the form of simple type qualifiers) and is fully automatic.

The rest of the paper is structured as follows. We first give an overview of our system (Section 2). We then present details of the components in the system (Section 3), followed by a discussion of its implementation (Section 4). Next, we show experimental results and evaluation of Osprey (Section 5) and discuss its current limitations and possible ways to enhance it (Section 6). Finally, we discuss related work (Section 7) and conclude (Section 8).

2. OVERVIEW OF OUR APPROACH

Our analysis is cast as a constraint-based type inference system, consisting of a definition of types, a set of type checking rules, a constraint generation phase, and a constraint solving phase. Given a program, constraints are generated based on the definition of types and type checking rules. The constraints are then solved, and errors will be reported if the constraints are unsolvable. In the following, we present the type system along with its prototype implementation Osprey, to make it more concrete.

2.1 Users’ View

To users, our system works like a standard type system. Users assign types (units) to program variables and other objects, and the system checks type correctness of the program and may issue error reports for users to fix these errors.

In practice, Osprey should be familiar to users because the unit annotations are analogous to types. Consider again the sample code in Figure 1. The tokens starting with a $ are unit annotations. The units represented by these annotations should be self-explanatory; \textit{kilogram1meter2second$^{-2}$} is actually a unit of energy. Osprey provides aliases and abbreviations for commonly used units. For example, the aliases and abbreviations \textit{unity}, m, kg, s, and E are used to represent \textit{unitless}, meter, kilogram, second, and the aforementioned unit of \textit{energy}, respectively. Our later discussions will use some of these abbreviations.

Osprey issues the error report shown in Figure 2 for the sample code. In the error report, \texttt{u_20_thick} represents the unit of thick declared on line 20; \texttt{u_23_thick}\texttt{DIV}\texttt{X0} represents the unit of the expression “\textit{thick} / \textit{X0}” on line 23; \texttt{u_22_X0} represents the unit of “\textit{X0}” declared on line 22. The division in the original program is rephrased as multiplication in the error report.

Such a report means that the code corresponding to these unit variables contains a unit error. By examining the code in Figure 1, we see that on line 23, the unit of the argument for \texttt{exp} must be \textit{unitless} (according to the \textit{Pi} theorem, \textit{cf.} Footnote 1), and thus \texttt{u_23_thick}\texttt{DIV}\texttt{X0} is \textit{unity} and \texttt{X0} should have the same unit as \textit{thick}, \textit{i.e.}, \textit{meter}, but in fact it is \textit{meter2kilogram$^{-1}$} according to the error report. After checking the origin of the value of \texttt{X0}, we know that either the return value of \texttt{radiationLength} or the way we use the function is problematic. Thus, such error reports may help users to fix the errors mentioned in Section 1.

2.2 Internal View

Figure 3 depicts the internals of Osprey. We use a specialized type definition for units (Section 3.2) and a set of unit constraint generation rules (Section 3.3) for the constraint generation phase. Because of the abelian group nature of units, the generated constraints may involve equalities, multiplications, or inverses. The constraints that involve only equalities are resolved by the constraint resolution engine—\textit{Banshee} [17]. We then use the (partial) solution from this phase and simplify all constraints using a tailored \textit{un}ion/\textit{find} (U/F) engine to reduce the number of unit variables and constraints. The result is subsequently fed to a \textit{Gaussian
3. TYPE SYSTEM FOR UNIT CHECKING

3.1 Dimensions and Units

We first introduce properties of dimensions and units. Every dimension can be derived from the seven base dimensions in the International System of Units (SI) [12]. Each base dimension has a corresponding base unit, but may have more than one unit. For example, meter is the base unit of length, while centimeter and foot are also units of length. Each unit of a dimension can usually be converted to other units of the same dimension by multiplying a unit factor. For example, \(0.01\) is the unit factor converting centimeter to meter because \(1\text{meter} = 100\text{centimeter}\). Unit prefixes in SI, such as kilo and milli, are used to derive units and can be viewed as unit factors.

3.2 Unit Types

We model units as types and define a unit type language:

\[
\text{ut} ::= \text{meter} \mid \text{kilogram} \mid \text{second} \mid \text{ampere} \mid \text{kelvin} \\
\mid \text{mole} \mid \text{candela} \mid \text{unity} \mid \text{ut} \cdot \text{ut2} \mid \text{ut}^{-1} \mid f \mid \delta
\]

\[
\text{cut} ::= \text{ut} \mid \text{ref}(\text{cut}) \mid \text{struct}(\text{cut1}, \ldots, \text{cutn}) \\
\mid \text{lam}(\text{cut0}, \text{cut1}, \ldots, \text{cutn})
\]

The abelian group for units is defined by the grammar for ut: The first seven elements are the seven base units; unity denotes the identity; multiplication is denoted by the symbol \(\cdot\); \(\text{ut}^{-1}\) denotes the inverse element of ut; and the symbol \(f\) denotes a unit factor. We also introduce unit variables, \(\delta\), to represent unknown units. Unit types without variables, such as meter and “kilogram * meter\(^{-2}\) * 2.” are called unit constants.

To express programming language constructs, we also introduce composite unit types (cut). The last three production rules for cut define unit types for pointers, structures, and functions respectively. In lam, cut0 denotes the unit type of a return value; cut1, \ldots, cutn, denote the unit types of fields (of a structure) or parameters (of a function). These three kinds of unit types have no real physical meaning, but they are helpful for tracking flow of units over these language constructs. For example, in the code in Figure 1, the argument material to the function radiationLength is of the type ref(struct(kilogram, unity)).

3.3 Unit Constraints

We now introduce unit constraints to model the flow of units in a program. Unit constraints are mainly of two forms: \(u_a = u_b\) or \(u_a = u_b * u_c\), where \(u_a\), \(u_b\), and \(u_c\) are either unit variables or constants. Due to space constraints, instead of giving the formal constraint generation rules in our system, we illustrate constraint generation in Osprey with the sample code in Figure 1. Interested readers can find a formal description in the full paper [13].

We follow the standard technique of constraint generation in constraint-based program analysis. The idea is natural: we essentially perform a recursive traversal of the abstract syntax tree (AST) of a program and generate constraints for each node based on the node’s corresponding generation rule. Constraint generation rules can be roughly classified into two categories: declarations and expressions. The former changes the unit environment (which maps program variables to unit types) and may indirectly generate new constraints, while the latter generates new constraints directly and may affect the unit environment.

Figure 4 shows constraints generated for some representative fragments of the code in Figure 1. As for notation, mappings enclosed in \([\]\) are to be added into the current environment, and constraints enclosed in \(\{\}\) are to be generated when the corresponding code is being analyzed. We explain some of the rows in the figure:

Row 1 The unit variables \(u_2\text{log}\text{return}\) (for the return value) and \(u_2\text{log}@1\) (for the parameter) are both unitless.

Rows 3 and 4 These two rows illustrate how structures are modeled in our system. When a field is defined within a structure, a new mapping for the corresponding unit variable is added, for example, the unit variable \(u_6\text{named}@\text{atomicWeight}\) for the field atomicWeight in the anonymous structure is mapped to kilogram; when a field is accessed, the corresponding unit variable is used to generate constraints, such as the constraint in row 4. A field of a structure corresponds to a fixed unit variable, and thus different instances of the structure always have the same unit. This kind of modeling of fields within a structure is called field-level field-sensitivity.

Row 5 This row shows how constants are modeled. A fresh variable \(u_1\text{DIV}@1\) (for the division) is created and a new constraint among the variables is generated. The variables \(u_1\text{DIV}@1\) and \(u_1\text{DIV}@2\) are for the second and third constants on line 13 and both unity.

Rows 6 and 7 These rows show the effects of the double to pow. According to the function declaration on line 1 in Figure 1, there is no unit annotations for the first parameter and the return value, and Osprey considers them to be polymorphic (i.e., different calls to the same function are treated independently and thus the units of the polymorphic elements can be different at the different call sites), while the second parameter is unitless. Constraints relating parameters and actual arguments are generated at the call sites. To distinguish the two call sites, different instances of the polymorphic variables are needed. We can see in Figure 4 that the unit variable for the first parameter \(u_1\text{pow}@1\) and that for the return value \(u_1\text{pow}@\text{return}\) are instantiated using the position information of the call sites, while the unit variable for the second parameter \(u_1\text{pow}@2\) is kept the same. Such a technique is called syntactical instantiation and is commonly used to implement context-sensitive analysis. More details on polymorphism and context-sensitivity are given in Section 4.3.

Row 11 This code involves a function call and an assignment. The function call is treated the same as the ones to pow, except that we also need to instantiate the set of constraints for the function body, usually referred to as a function summary and
generated according to the body. The combination of function summaries and syntactical instantiation enables performing inter-procedural analysis efficiently. Due to space limitations, we do not show the complete set of constraints.

Another common situation involves user-defined unit conversions. For example, consider the following code:

```c
#define mm (unity*25.4)

X0 = u1*inch*25.4 / (u1*inch*25.4 + u1*inch*25.4);  // u1 is a constant
```

Such a program may produce physically meaningful results if 25.4 is used as a unit factor for converting `inch` to `millimeter`. In order to validate units, Osprey needs to know whether 25.4 is such a unit factor or just an arbitrary constant. Therefore, a user needs to tell Osprey that 25.4 is a unit factor using `u1`. Based on such annotations, Osprey generates a constraint `u1*inch = u1*inch*25.4` and verifies the correctness of this unit conversion during the subsequent constraint solving phase.

3.4 Constraint Resolution

We now discuss how to solve unit constraints. The general form of a unit constraint is:

\[u_1 \ast \cdots \ast u_n = v_1 \ast \cdots \ast v_m \]

where \(u_i \)'s and \(v_i \)'s are either unit variables or constants. In our analysis, \(n + m \) is usually 2 or 3 due to the structure of C abstract syntax trees and the constraint generation rules.

Constraints of the form \(u = v \), where \(u \) and \(v \) are both variables, are standard equality constraints. Given a set of such constraints, Banshee [17] can efficiently compute an equivalence class representative (ECR) for each unit variable \(u \), and the unit of \(u \) is the same as that of its ECR. If all constraints are in such a form, we can completely rely on Banshee to solve them in linear time.

Constraints that involve multiplications and unit constants, such as \(u_1 = u_2 * u_3 \) and \(u = a \) (where \(a \) represents a unit constant), require different techniques. Wand and O'Keefe [26] use Gaussian Elimination (GE) and a specialized unification algorithm to solve equations. The algorithm in their paper handles fewer units, and their system is presented for the simply-typed lambda calculus. Antoniu et al. [3] also suggest solving unit constraints via GE, but they have not fully deployed the algorithm for two reasons: GE is cubic time and incapable of reporting why a linear system is unsolvable.

In order to have a more usable system, especially validating unit conversion factors, we believe GE for solving linear equations is necessary. We adapt Antoniu and Steckler's technique, exploit a union/find algorithm to reduce numbers of unit variables and constraints, re-program the linear system solver in the linear algebra package CLAPACK [2], and utilize the line numbers in the naming convention illustrated in Figure 4 to locate sources of unit errors.

Our algorithms are shown as Algorithms 1 and 2. The function **replace** in Algorithm 1 replaces all variables in a constraint with their ECRs. The constraint is then simplified with **reduce** such that it contains at most one unit constant and no repetitive variables. The simplified constraint is subsequently processed according to its form. For example, if the current ECR's \(u_1 \) and \(u_3 \) are \(m \) and \(m^2 \) respectively, then \(u_1 = u_2 \ast u_3 \) can be reduced to \(m \ast m^{-1} = u_2 \); \(u_4 \ast u_4 = u_4 \) can be reduced to \(u_4 = unity \). The ECRs are updated accordingly. Errors may be issued if the units of the two sides of a constraint are not the same.

Algorithm 2 reduces a set of unit constraints to linear systems. Each unit constraint can be transformed to eight linear equations corresponding to the seven base dimensions and one unit factor by taking logarithm. For example, the aforementioned \(u*mm = u*inch*25.4 \) can be transformed to the following linear equations:

\[
\begin{align*}
\log_{10} u*mm - \log_{10} u*inch*25.4 &= 0 \\
\log_{10} u*kilogram - \log_{10} u*inch*25.4 &= 0 \\
\log_{10} u*second - \log_{10} u*inch*25.4 &= 0 \\
\log_{10} u*ampere - \log_{10} u*inch*25.4 &= 0 \\
\log_{10} u*mole - \log_{10} u*inch*25.4 &= 0 \\
\log_{10} u*candela - \log_{10} u*inch*25.4 &= 0 \\
\end{align*}
\]

Such a transformation is performed by **tolinearEquation** in Algorithm 2. The resulting linear systems have solutions if and only if there are no unit errors in the original program. We solve the linear equations via **LU Factorization** [20]. The function **lufactorization** decomposes a linear system into a unit lower-triangular matrix \(L \) and non-unit upper-triangular matrix \(U \). **Forward substitution** and **backward substitution** [20] then transform \(L \) and \(U \) to diagonal matrices in turn, via row operations in linear algebra, to obtain a solution. The original solver in CLAPACK has applied these techniques, but we have modified it to handle non-square matrices and singular \(U \) whose diagonal elements contain zeros. Also, during backward substitutions, whenever an unsolvable equation (i.e., the left-side coefficients of the equation are all zeros, while its right-side is non-zero) is encountered, the names of the unit variables involved in the equation are reported to help users to locate the source of errors.

3.5 Complexity and Soundness

The constraint generator in our system takes linear time in the size of the input abstract syntax tree. Banshee solves equality con-
Algorithm 1 Union/Find Algorithm for Simplifying Constraints

function UF(C: ConstrSet, R: ECRMMap)
repeat
for all c ∈ C do
 c ← REPLACE(c, R)
 c ← REDUCE(c)
 if c matches ‘a = a’ or ‘u = u’ then
 C ← C \ {c}
 else if c matches ‘u = a’ then
 R ← R[ECR(u) → a];
 C ← C \ {c}
 else if c is of the form ‘u1 = u2’ then
 R ← R[ECR(u1) → ECR(u2)];
 C ← C \ {c}
 end if
end for
until R does not change
return (C, R)
end function

Algorithm 2 Gaussian Elimination for Solving Unit Constraints

function GE(C: ConstrSet, R: ECRMMap)
D ≡ base dimensions ∪ {factor}
for all d ∈ D do
 LSd ← 0
 for all c ∈ C do
 LSd ← LSd ∪ TOLINEAREQUATION(c, d)
 LSd ← LUFATORIZATION(LSd)
 LSd ← FORWARDSUBSTITUTION(LSd)
 LSd ← BACKWARDSUBSTITUTION(LSd)
 end for
 return R
end for
end function

Users provide unit annotations for physical quantities in the form of type qualifiers [8]; the number of annotations required is usually small compared to the number of tokens in a program (cf. Table 1, column “Annotation Burden”).

We adapt the parser of CQual [8] to generate abstract syntax trees and perform standard semantic checking for programs. The unit environment is constructed during constraint generation. We also use the following recursive function to construct the unit type for a variable x based on its C type τ when no appropriate annotations for x are provided:

\[
\text{enrich}(\tau, x) \triangleq \begin{cases}
\text{ref}(\text{enrich}(\tau_1, x)) & \text{if } \tau = \text{ref}(\tau_1) \\
\text{struct}([\text{enrich}(\tau_1, f_1), \ldots, \text{enrich}(\tau_n, f_n)]) & \text{if } \tau = \text{struct}(f_1 : \tau_1, \ldots, f_n : \tau_n) \\
\text{lam}([\text{enrich}(\tau_0, x_0), \ldots, \text{enrich}(\tau_n, x_n)]) & \text{if } \tau = \text{lam}(\tau_0, \ldots, \tau_n) \\
\delta_x & \text{otherwise}
\end{cases}
\]

where pointers, structs, and functions are transformed to reference, structural, and functional units respectively; other un-annotated variables are mapped to fresh unit variables δx; un-annotated numerical constants are mapped to unity by default.

Special care is needed to avoid infinite recursions when dealing with recursive types using enrich. For example, consider the following structure declaration:

\[
\text{struct list \{ struct list *next; \ldots \}}
\]

We can detect that the unit type for struct list is a recursive one (\text{struct(ref(struct(ref(...))))}) via tracking records of encountered types, and use a dummy unit variable as a ground unit (\text{struct(ref(δ dummy))}) to terminate the recursion. This decreases the precision of our analysis and may cause false alarms, but it is efficient and inessential to unit checking.

Many library functions should also be annotated with units. Fortunately, we believe most of them can be treated in the same way as transcendental functions or polymorphic functions. There are situations where users can use side annotations to improve Osprey’s precision. For example, the library function “double sqrt(double x)” may need an annotation of the form “\text{u sqrt \ u sqrt = u sqrt}” to relate the return value and the parameter; for the library function “double pow(double base, double power),” users may need to provide similar annotations at call sites to relate the return value and the first argument.

4.3 Context Sensitivity

Consider the following example of a polymorphic function:

\[
\text{sqrt = x}
\]

straints in linear time. Each iteration of the repeat/until loop in Algorithm 1 takes linear time. Because the number of variables in a unit constraint is usually no more than three, the complete U/F algorithm takes linear time and is capable of reducing many variables and constraints (cf. Table 1). The time and space efficiency of GE are cubic and quadratic respectively, in the size of the linear system, which is bounded by the size of the program.

Putting everything together, our system requires worst-case cubic time and quadratic space. Notice that the GE step is the bottleneck and thus the U/F step is important to reduce the order of the generated linear systems to improve scalability.

Ignoring certain unsafe features in C, such as type casts, unions, and pointer arithmetic, our type system underlying Osprey is sound: it does not miss any unit errors. Although unit constraints are of the abelian group nature and they are solved using Gaussian Elimination, the proof of soundness for our system still follows that for CQual [8] and is omitted here.

4. IMPLEMENTATION

4.1 Unit Representation

A common way to represent units is based on exponent vectors over base units and unit factors. For example, \(m^2 kg \cdot m^{-2} \), a unit of energy, can be represented as \([2, 1, -2, 0, 0, 0] \) * 1. Thus, arithmetic operations on units can be reduced to vector additions, subtractions, or comparisons. Compared with this representation, Cuni’s [6] prime number-based representation may be more time and space efficient: distinct small prime numbers are used to denote different base units, and each rational is used to represent a unique unit. For example, the above unit can be represented as the rational \(12/25 = 2^2 \cdot 3^1 \cdot 5^{-2} \). However, the prime number-based representation cannot represent units with non-integer exponents, e.g., the unit of the square root of energy. We use the exponent vector-based representation in Osprey.

4.2 Unit Environment

Osprey takes as an additional input a configuration file that allows new definitions for unit prefixes, unit aliases, and unit factors that can be used in unit annotations. For example, “\#define millimeter milli-meter” defines millimeter; “\#define inch meter 39.370079” defines inch because 1 meter = 39.370079 inches. The definitions are sufficient for unit validation on the code in Section 3.3 (cf. Section 3.4 for the resulting linear system).
δ1 double square (δ1 double a) { return a*a; }
m double m1; kg double k1;
m = square(m1); /* (1) */
k = square(k1); /* (2) */

The function square can take data in any unit as arguments. In a
homomorphic setting, δ1 is a fixed unit, although its exact unit is
not explicitly known. In this case, both the units of m and k flow
into δ1, which causes a unit clash and a false error alarm would
be issued at the call site marked (2). With polymorphism, δ1 and δ2
are viewed as generic-variables and would be instantiated as dif-
ferent unit variables at the two call sites. Now, the units of m and
k flow into different instantiated variables and no error would be
issued. In practice, users do not need to use δ explicitly; any return
value and parameter without annotations are treated by Osprey to
be polymorphic, just like those of pow in Figure 1.

In static analysis, a standard technique to implement context-
sensitive analysis is through function summaries and syntactical
instantiation. There are also techniques based on the so-called
context-free language reachability problem [23]. However, these
techniques usually handle simpler problems, namely atomic label
flow problems [14, 22], and are not directly applicable for unit
types. We thus adopt the approach of function summaries and
instantiation. For example, the summary of square is \{δ1 + δ1 = δ2\}.

The function square can take data in any unit as arguments. In a
homomorphic setting, δ1 is a fixed unit, although its exact unit is
not explicitly known. In this case, both the units of m and k flow
into δ1, which causes a unit clash and a false error alarm would
be issued at the call site marked (2). With polymorphism, δ1 and δ2
are viewed as generic-variables and would be instantiated as dif-
ferent unit variables at the two call sites. Now, the units of m and
k flow into different instantiated variables and no error would be
issued. In practice, users do not need to use δ explicitly; any return
value and parameter without annotations are treated by Osprey to
be polymorphic, just like those of pow in Figure 1.

In static analysis, a standard technique to implement context-
sensitive analysis is through function summaries and syntactical
instantiation. There are also techniques based on the so-called
collection-free language reachability problem [23]. However, these
techniques usually handle simpler problems, namely atomic label
flow problems [14, 22], and are not directly applicable for unit
types. We thus adopt the approach of function summaries and
instantiation. For example, the summary of square is \{δ1 + δ1 = δ2\}.

In this section, we evaluate Osprey in terms of scalability (Sec-
tion 5.2), precision (Section 5.3), and usability (Section 5.4).

5. EXPERIMENTAL EVALUATION

In this section, we evaluate Osprey in terms of scalability (Sec-
tion 5.2), precision (Section 5.3), and usability (Section 5.4).

5.1 Test Programs and Results

We have run Osprey on various test programs, including com-
putational physics and mechanical engineering applications, open
source projects, and some large artificial programs to stress test
its performance. The test programs are shown in Table 1. For each
program, we show lines of code (for both source and preprocessed),
anotation burden (ratio of number of annotations (i.e., number of
‘$’) over number of tokens in the original program (counted using
the wc program)), time and space cost by Osprey, and the number of
unit variables and constraints generated. Columns labeled “U/F” or
“GE” show the costs for the union/find step or the Gaussian Elimi-
nation step during constraint solving. Currently we perform the
experiments on a file-by-file basis. When there are multiple files
in a program, the memory consumption and the number of unit
variables and constraints are taken as the maximum across all files
in the program. For other data, we take the sum over all files of
the program being analyzed. All our experiments were done on
a machine with a 2GHz Intel Xeon and 1GB RAM (2GB virtual
memory), running Linux kernel 2.6.12.

We give some details on the programs: (1) ex18.c and big*.c
are test cases from C-UNITS [24]; (2) fe.c comes from SIU-
NITS [4]; (3) coil02, ghostscript, and gnuplot are open source
projects (coil1.c is the main part of coil02, an electrical induc-
tance calculator); and (4) The rest of the programs are part of the
Ch mechanism toolkit [25], a set of linking libraries used for de-
veloping kinematic analysis or synthesis algorithms, written in Ch,
a superset of C with classes in C++. We manually transform the
Ch code to C because Osprey currently does not support C++. The
big*.c programs are large artificial single-file programs involving
many arithmetic operations on units. Although they do not pro-
duce physically meaningful results, they are useful in evaluating
Osprey’s scalability. We use ghostscript and gnuplot for the
same purpose; they have only a few computations involving units,
and we analyze them with no annotations and treat all functions as
polymorphic.

5.2 Scalability

Table 1 shows that Osprey is efficient and scales to large pro-
grams with hundreds of thousands of lines of code. Because our
current experiments are file-by-file, the single big*.c files are ar-
ificial worst-case scenarios in terms of numbers of unit variables
and constraints. The GE phase is currently the bottleneck of Osprey
because of its quadratic space complexity. If a program generates
many constraints of the form $v_{ij} = v_{ik} + v_{jk}$ and they cannot be
reduced by U/F, Osprey may not be able to solve them. For ex-
ample, big4.c contains hundreds of thousands of expressions of
the form $x=a*b$, and Osprey fails during the GE phase. However,
we believe such situations rarely happen in practice; also the data
for ghostscript and gnuplot justify Osprey’s scalability on real
code. As future work, we plan to incorporate sparse linear solvers
further improve Osprey’s scalability.

U/F is a key technique to make Osprey scale. It gives orders of
magnitude reduction in numbers of unit variables and constraints.
We also observe that the number of annotations has significant impact on analysis performance: the more annotations, the more unit variables and constraints that may be reduced by U/F. This suggests that adding more unit annotations is better not only for debugging by other tools. We explain the three unknown errors:

<table>
<thead>
<tr>
<th>Name</th>
<th>Lines Of Code Preprocessed</th>
<th>Annotation Burden</th>
<th>Time Cost (s) Generation</th>
<th>Time Cost (s) Solving</th>
<th>Peak Memory Usage (MB) Gen</th>
<th>Peak Memory Usage (MB) Solving</th>
<th>Unit Vars U/F</th>
<th>Constraints U/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex18.c</td>
<td>18</td>
<td>17</td>
<td>0.001</td>
<td>0.001</td>
<td>0.00</td>
<td>0.00</td>
<td>36.7</td>
<td>7.8</td>
</tr>
<tr>
<td>fc</td>
<td>29</td>
<td>23</td>
<td>0.005</td>
<td>0.003</td>
<td>0.00</td>
<td>0.00</td>
<td>36.8</td>
<td>7.8</td>
</tr>
<tr>
<td>conic</td>
<td>482</td>
<td>398</td>
<td>0.025</td>
<td>0.019</td>
<td>0.002</td>
<td>38.7</td>
<td>7.5</td>
<td>0.12</td>
</tr>
<tr>
<td>gearedfivebar</td>
<td>667</td>
<td>1120</td>
<td>0.100</td>
<td>0.044</td>
<td>0.003</td>
<td>43.7</td>
<td>7.8</td>
<td>26</td>
</tr>
<tr>
<td>crankslider</td>
<td>829</td>
<td>1071</td>
<td>0.083</td>
<td>0.031</td>
<td>0.001</td>
<td>42.9</td>
<td>7.5</td>
<td>2.45</td>
</tr>
<tr>
<td>fourbar</td>
<td>3107</td>
<td>5166</td>
<td>0.300</td>
<td>0.225</td>
<td>0.011</td>
<td>53.0</td>
<td>8.2</td>
<td>46</td>
</tr>
<tr>
<td>sixbars</td>
<td>4240</td>
<td>6564</td>
<td>0.627</td>
<td>0.527</td>
<td>0.055</td>
<td>69.0</td>
<td>8.6</td>
<td>115</td>
</tr>
<tr>
<td>big0.c</td>
<td>2995</td>
<td>2705</td>
<td>0.190</td>
<td>0.254</td>
<td>0.00</td>
<td>49.8</td>
<td>8.1</td>
<td>420</td>
</tr>
<tr>
<td>big1.c</td>
<td>13017</td>
<td>11705</td>
<td>0.936</td>
<td>1.600</td>
<td>0.00</td>
<td>88.3</td>
<td>9.3</td>
<td>1820</td>
</tr>
<tr>
<td>big2.c</td>
<td>106985</td>
<td>96111</td>
<td>0.154</td>
<td>0.325</td>
<td>0.00</td>
<td>460.4</td>
<td>206.3</td>
<td>150830</td>
</tr>
<tr>
<td>big3.c</td>
<td>499999</td>
<td>449845</td>
<td>2.352</td>
<td>723.0</td>
<td>0.00</td>
<td>1990.3</td>
<td>653.0</td>
<td>699041</td>
</tr>
<tr>
<td>big4.c</td>
<td>122836</td>
<td>122890</td>
<td>0.235</td>
<td>297.3</td>
<td>failed</td>
<td>752.3</td>
<td>failed</td>
<td>294921</td>
</tr>
<tr>
<td>gnuplot</td>
<td>173366</td>
<td>348978</td>
<td>0.1367</td>
<td>5.199</td>
<td>1.884</td>
<td>82.5</td>
<td>85.8</td>
<td>10419</td>
</tr>
<tr>
<td>ghostscript</td>
<td>404669</td>
<td>2368515</td>
<td>0.1658</td>
<td>24.3</td>
<td>8.1</td>
<td>154.8</td>
<td>116.0</td>
<td>53357</td>
</tr>
</tbody>
</table>

Table 1: Experimental Results.

5.3 Precision and Errors Found

Osprey discovered two unknown errors in real applications and three in test code from other tools (one is an unknown error missed by other tools). We explain the three unknown errors:

1. **Error 1** Here is the code fragment in gearedfivebar to calculate the coupler curve of a geared five bar, a term used in mechanical engineering:

   ```
   theta = linkLength / (1+lamda);
   ...
   couplerPointPos(couplerLink, theta, ...);
   ``

   where `theta` is of `radian`, `linkLength` is of `meter`, and `lamda` is unitless. It is interesting that the code passed developers’ tests because the computed value of `theta` is close to the actual value and gives almost meaningful results. Developers of the Ch mechanism toolkit have confirmed that it is a real error, in particular, a misuse of a mechanical formula.

2. **Error 2** This error is caused by misusing programming interface. The following code computes forces and torques of a crank slider, another mechanical engineering term:

   ```
 double angularAccel(double theta2, double omega2, double theta3, double omega3, double alpha2);
 ...
 int forceTorques(...){
 ...
 angularAccel(theta2, theta3, omega2, omega3, alpha2);
 ...
 }
 ``

 where `theta2` and `theta3` (both parameters and arguments) are annotated as `radian`, `omega2` and `omega3` as `radian*second^{-1}`, and `alpha2` as `radian*second^{-2}`. At the function call site, `omega2` and `theta3` are passed in the wrong order. This error has also been confirmed by the developers.

3. **Error 3** This error is caused by using the wrong unit factor. Here is a fragment of the (annotated) code in ex18.c:

   ```
   $\text{meter double mile2meter($\text{mile double x})}$
   ```

 Osprey issues an error that the unit of the return value (`meter`) does not match the unit of `x*(\text{f})*1682`). Indeed, the unit factor for converting mile to meter is around 1609.344, but the code above uses 1682 instead. The ability to discover incorrect unit conversion factors is a distinctive feature of Osprey. To the best of our knowledge, no other tool has this capability.

Table 2 summarizes the numbers of errors reported by Osprey. The redundant reports are chain reactions to other kinds of reports and can be eliminated if others are eliminated. We see that Osprey is precise with low false positives. Section 5.4.2 discusses more details about the errors.

5.4 Usability

We now discuss how easy it is to use Osprey in terms of annotation burden and effectiveness of error reporting.

5.4.1 Annotation Burden

Osprey requires simple unit annotations in the form of type qualifiers, and does not require annotations for all variables in a program because of the flexibility offered by our unit type inference algorithm. Of course, users can use Osprey with no annotations at all, just as what we have done for big[0,2].c, ghostscript, and gnuplot. The annotation burdens for the test programs range from 2% to 11% with larger programs having lower ratios. To further reduce annotation burden, Osprey can suggest “critical” variables for users to annotate. This is based on the U/F step that can group variables with the same unit together, thus only selected representatives from each group need to be annotated.

Although Osprey requires few annotations, more annotations are always desirable. The more annotations, the more potential unit errors Osprey can discover. More annotations are also helpful to discover errors in the annotations themselves because of added redundancy. Thus, although not necessary, we advocate annotating...
During the backward substitution stage in GE, variables in a row for users to find the real origins of a particular unit error. directly causing the linear system to be unsolvable. These are hints units are inconsistent with the units of their representatives; (2)

errors emerge, but generally cannot pinpoint the origins of the errors.

Factor Mismatch

Erroneous Annotation

Imprecise Model

Table 2: Error reports for test programs.

Table 3: Classification of Error Reports.

5.4.2 Error Reporting

Whenever a unit error is found during the constraint solving phase, unit variables and constraints involved in the error are reported. Following the naming convention of variables in our implementation, users can easily locate the positions of the variables in the original program. Osprey can discover the positions where errors emerge, but generally cannot pinpoint the origins of the errors because it currently does not trace the flows of units or row operations in GE. Thus, we heuristically pick several possible variables for the error reports: (1) During the U/F phase, variables whose units are inconsistent with the units of their representatives; (2) During the backward substitution stage in GE, variables in a row directly causing the linear system to be unsolvable. These are hints for users to find the real origins of a particular unit error.

Table 3 classifies different kinds of error reports:

Table: Error reports for test programs.

<table>
<thead>
<tr>
<th>Name</th>
<th>Error Reports</th>
<th>Real Errors</th>
<th>Number of Redundant Errors</th>
<th>False Errors</th>
<th>Imprecise Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex18.c</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fe.c</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>coil.c</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>crankslider</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>fourbar</td>
<td>10</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>gearedrivebar</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>sixbars</td>
<td>16</td>
<td>0</td>
<td>12</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Classification of Error Reports.

as many program objects as possible when using Osprey. In addition, unit annotations, similar to data types of program variables, are relatively stable to program re-organization: structural changes will not require annotation changes as long as data in the program have the same semantics. Thus, annotations for legacy code can be reused because retrofitting legacy code usually changes program organization, not the algorithmic/data aspects of the program.

Inherent Error

Due to the abelian group nature of dimensions and the undecidability of general properties, whenever a unit multiplication occurs in a potentially unbound loop, our system cannot determine the exact unit and may issue a false alarm. For example, the unit of \(x \) in the following code is difficult to determine statically and will lead to a false alarm:

\[
\text{for } (i=0; i<\text{unknownBound}; i++) \quad x *= i;
\]

When the loop bound can be statically determined, such false positives can be prevented with unrolling the loop and using different instances for \(x \).

Erroneous Annotation

Similar to any other forms of program annotations, user-provided unit annotations can be inconsistent. Our system is able to discover such inconsistencies. For example,

\[
\text{
$\text{radian double } x; \\
... \\
x = ($degree)$180; \\
Osprey reports that } x \text{ is assigned a unit (degree) different from its previously assigned unit (radian).}^5
\]

Imprecise Model

To reduce confusion and improve Osprey’s compatibility with different C dialects, we adopt a more strict semantic model of C in our implementation. For example, Osprey does not allow a structure, a variable, or a function to share the same name. Such a strategy may cause additional false positives, but did not in our experiments.

Some code may require more precise analysis techniques, such as path-sensitive analysis (the ability to distinguish different program paths) or instant-level field-sensitive analysis (the ability to distinguish different instances of the same structure). For example, coil02 and the \$ toolkit use particular flags to determine the units of variables:

\[
\text{if (flag)} \\
x = a*F; /* foot to meter */ \\
\text{else } x = a;
\]

where \(F \) is the unit conversion factor from \text{foot to meter}.

Our system does not support this style and would issue false errors. A path-sensitive analysis, such as the one by Das et al. [7], may be incorporated to improve our system. But it remains to be seen whether such enhancements are worthwhile with respect to the added complexity. In addition, such false alarms can also be classified as a bad programming style because unit types of program variables should not change.

\^5Because Osprey uses \text{unity} for all un-annotated numerical constants by default, it may miss the error if \(x \) or 180 is not annotated. We believe this is a usability problem, and the users benefit more from such a system by providing more annotations.
Warning Osprey needs to handle floating point numbers, e.g., to compute unit factors. Thus, computational imprecision is a potential problem. Nuances among unit exponent vectors and unit factors may be discarded and cause two different units to be considered equal, or vice versa. We are careful about the number of significant digits during computations and always apply traditional safe comparisons between floating point numbers, trying to have accurate results within the limitation imposed on the internal representations of floating point numbers. We did not observe any issues due to this kind of computational imprecision in our experiments. Such an implementation issue may make Osprey miss certain errors, but this has no effect on the soundness of the underlying type system.

6. POSSIBLE SYSTEM ENHANCEMENTS

6.1 Other Dimensions and Units

Most units can be represented using exponents and one factor, but some units cannot, e.g., Fahrenheit and Celsius for degrees. To convert Fahrenheit to Kelvin, we need more than one factor:

\[\text{Kelvin} = (\text{Fahrenheit} - 32) \times \frac{5}{9} + 273.16, \]

A possible approach to address such units is to use pre-defined unit conversion functions. For example, we may define the following function to convert Fahrenheit to Kelvin:

```c
$\text{kelvin double f2k($\text{fahrenheit double } f \{ \ldots \}$ }
```

The type system checks that these functions are called correctly with arguments of expected units. In addition, the correctness of such functions needs to be verified manually. This may not be an issue because these functions are generally quite simple and can be verified once and provided as library functions.

There are other models of dimensions and units, such as the relativistic model, the high-energy model, the quantum model, or the natural model [4]. There are also other base dimensions and units outside of physics, such as bit in electronics and dollar in economics that our system does not model currently. We believe it is straightforward to integrate these dimensions and units into the current system and make it more widely applicable.

6.2 Dimension- vs. Unit-Level Analysis

Dimensional analysis may be carried out at two levels: the unit level and the dimension level. At the unit level, two quantities are considered to be unit consistent if and only if their units are exactly the same (including factors). At the dimension level, two quantities are unit consistent if and only if their dimensions are the same. Unit-level analysis is useful for detecting unit errors, including errors caused by wrong unit factors. However, dimension-level analysis may be more convenient to use. Programmers may prefer mixing data in different units and having the system automatically convert data to appropriate units when necessary. Then they do not need to manually supply unit conversion factors.

To support dimension level analysis, extra mechanism is required to enforce the unit correctness of programs. For example,

```c
$\text{meter } float X; \text{ foot } float Y; \ X = Y;
```

The code is incorrect at the unit level, while the dimension level may consider it correct and must guarantee the correctness of the computation. One natural approach is to support automatic unit conversion through program transformation. For example, \(X=Y\) should be automatically transformed to \(X=0.3048*Y\) because 1 foot = 0.3048 meter. Two issues arise.

One is about usability of such a system. When we see an assignment such as \(X=0.3048*Y\), should the assignment be transformed or not? It depends on the meaning of 0.3048. Perhaps the user intends to convert \(Y\) from foot to meter via the assignment, or 0.3048 is just an arbitrary constant. This confusion can be avoided by enforcing necessary programming conventions to decide when automatic transformation is expected. For example, one may require that no unit factors should be used by users and transformation is always performed when inconsistent units are encountered.

The other is how to determine the unit factors for program transformation. We cannot specify all the infinite number of unit factors statically. Here is one flexible, but perhaps not efficient approach: (1) Attach a unit factor variable to each expression in programs, such as \(X=(\text{f}) f*Y\); (2) Perform the unit-level analysis and compute solutions for \(f\); (3) Use a solution for \(f\) as the unit factor to transform programs.

Our current implementation is at the unit level only. It would be interesting to also incorporate dimension level analysis into Osprey.

6.3 Implementation Enhancements

Our current implementation of Osprey works on C code. Since many scientific applications are written in C++, it will be interesting to extend Osprey to support this language. We are collaborating with scientists at the Lawrence Livermore National Laboratory (LLNL) to implement a C++ version of Osprey based on their ROSE compiler framework [21]. We plan to apply our system to the large code base of scientific software at LLNL. Because the linear systems generated in Osprey are usually very sparse, we also plan to leverage LLNL researchers’ expertise in sparse linear solvers to address the performance bottleneck in Osprey.

To improve the usability of the system, it will be useful to show users of Osprey not only where unit inconsistencies happen, but also how they have happened. One possibility is to record how units flow during constraint solving and display this information visually to the user together with the source code, similar to CQual’s PAM mode [10]—a generic interface for marking up programs in emacs.

Finally, adding whole program analysis support may be useful, especially for programs with many cooperating modules. A straightforward approach is to merge unit constraints for each individual module and solve the complete constraint system altogether. This naïve approach is unlikely to scale. However, because many of the constraints are unrelated, one possible solution is to separate them into independent groups and solve each group individually.

7. RELATED WORK

In this section, we survey related work. Many approaches have been developed to perform automatic dimensional analysis. One common approach is via type system enhancements. Wand and O’Keefe [26] add dimensions and dimension variables to the simply-typed lambda calculus, and employ a unification-based algorithm to find the most general dimensions for every typable dimension-preserving term. Kennedy’s dimension types [16] are designed for ML-style languages. He extends the standard ML type system with a dimension type system, and employs a unification-based algorithm to infer dimension types.

Our system follows the same approach and leverages ideas developed in these studies. There are, however, some key differences. First, our system considers both dimensions and units and deals with unit factors and interactions among different units, while they only consider dimensions. Second, we have a prototype implementation for C, a popular language for programming scientific applications, and theirs are for functional languages. Also, we use novel techniques to make our system scalable to large programs.
Our system is also related to CQual [8], a general framework for adding type qualifiers to C. The framework models the flow of qualifiers through a program using subtyping and type inference. However, standard type qualifiers are not expressive enough to model the abelian group nature of dimensions and units.

There are also unit inference and checking systems for other languages, such as Xelda [3] for Excel. Xelda uses unit transformers and constraint generators for Excel functions to infer units of formulae in a bottom-up fashion, propagating units from value cells (cells containing a number) to formula cells using cell references. The transformers and generators are analogous to our unit constraint generation rules, but they have not addressed user-defined data structures and functions in general purpose languages, and substantive effort may be required to design transformers and generators for all functions in Excel. Also, Xelda does not validate the correctness of unit conversion factors, although it supports unit coercions if users provide the factors; while our system does.

Besides of type system enhancements, other forms of language extensions have also been considered. The idea of meta-classes is one of these. Specific types are defined in the original programming languages to denote dimensions, and specific operations are defined to represent the arithmetic nature of dimensions. Unit inference or checking is done by the original type systems of the underlying programming languages. Such extensions are usually provided as additional libraries for the original languages, such as SIUNITS [4] for C++ based on STL, MetaGen for Java based on MxGen [1]—a Java extension, Keller’s Library [15] for Eiffel, Hilfinger’s package [11] for Ada, and Novák’s system [19] for GLisp—an extension of Lisp. This idea is feasible as long as the original programming language supports user-defined types. Although it may provide a tighter integration of dimensions and units into the original language, it is not as flexible and requires significant changes to programming style and re-design of legacy code.

Another common approach is to validate unit correctness at runtime. Cunis [6] incorporates unit information into data objects at runtime for unit checking. C-UNITS [24] is based on a framework for program specification and verification—Maude [5]. The algebraic semantics of C is partially implemented in the framework, and unit information is provided as annotations by users. Unit correctness is checked when programs are simulated in the framework. The assume/assert-based specification approach requires heavier annotations and is difficult to scale to large programs. We believe a type system-based approach is more appropriate for unit checking because type systems are easier to use and more scalable.

8. CONCLUSIONS

We have presented a type system and implemented a prototype tool Osprey for validating unit correctness of C programs. The system is constraint-based and incorporates novel techniques to be scalable, precise and usable. We have extensively evaluated Osprey. It has discovered unknown errors in mature code. It is precise with few false positives, and all of which can be easily classified. It is efficient and scales to large programs with hundreds of thousands of lines of code. It is also easy to use, requiring only lightweight unit annotations, and is fully automatic. We believe that Osprey is a practical tool for improving quality of scientific software, and we are actively pursuing opportunities to improve the tool and apply it on additional production code.

Acknowledgments

We would like to thank Harry Cheng and Yu-Cheng Chou for providing the source code of the Ch mechanism toolkit and helping us evaluate Osprey. We are also grateful to Alex Aiken, Earl Barr, Prem Devanbu, Tom Epperly, Jeff Foster, Shriram Krishnamurthi, Ben Liblit, Ghassan Mirshahi, Dan Quinlan, Matt Roper, Paul Steckler, and Bronis Supinski for interesting discussions and useful feedback on drafts of this paper. Finally, we thank the ICSE anonymous reviewers for their thoughtful comments on this paper.

9. REFERENCES