

Designing Concurrent, Distributed, and Real-Time
Applications with UML

Hassan Gomaa
Department of Information and Software Engineering

George Mason University
Fairfax, Virginia 22030, USA

hgomaa@gmu.edu

Abstract
Object-oriented concepts are crucial in software design because
they address fundamental issues of adaptation and evolution. With
the proliferation of object-oriented notations and methods, the
Unified Modeling Language (UML) has emerged to provide a
standardized notation for describing object-oriented models.
However, for the UML notation to be effectively applied, it needs
to be used with an object-oriented analysis and design method.
This tutorial describes the COMET method for designing real-time
and distributed applications, which integrates object-oriented and
concurrency concepts and uses UML.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques.

General Terms
Design, performance.

1. Introduction
Most books and courses on object-oriented analysis and design

only address the design of sequential systems or omit the
important design issues that need to be addressed when designing
real-time and distributed applications [1]. It is essential to blend
object-oriented concepts with the concepts of concurrent
processing in order to successfully design these applications. As
the UML is now the standardized notation for describing object-
oriented models [2], this tutorial uses the UML notation
throughout.

2. The COMET Method
COMET is a Concurrent Object Modeling and Architectural

Design Method for the development of concurrent applications, in
particular distributed and real-time applications [3]. The COMET
Object-Oriented Software Life Cycle is highly iterative. In the
Requirements Modeling phase, a use case model is developed in
which the functional requirements of the system are defined in
terms of actors and use cases.

In the Analysis Modeling phase, static and dynamic models of
the system are developed. The static model defines the structural
relationships among problem domain classes. Object structuring
criteria are used to determine the objects to be considered for the
analysis model. A dynamic model is then developed in which the
use cases from the requirements model are refined to show the

objects that participate in each use case and how they interact with
each other. In the dynamic model, state dependent objects are
defined using statecharts.

In the Design Modeling phase, an Architectural Design Model
is developed. Subsystem structuring criteria are provided to design
the overall software architecture. For distributed applications, a
component based development approach is taken, in which each
subsystem is designed as a distributed self-contained component.
The emphasis is on the division of responsibility between clients
and servers, including issues concerning the centralization vs.
distribution of data and control, and the design of message
communication interfaces, including synchronous, asynchronous,
brokered, and group communication. Each concurrent subsystem
is then designed, in terms of active objects (tasks) and passive
objects. Task communication and synchronization interfaces are
defined. The performance of real-time designs is estimated using
an approach based on rate monotonic analysis [4].

Distinguishing features of the COMET method are:

1. Structuring criteria to assist the designer at different stages of
the analysis and design process: subsystems, objects, and
concurrent tasks.

2. Dynamic modeling, both object collaboration and statecharts,
describing in detail how object collaborations and statecharts
relate to each other.

3. Distributed application design, addressing the design of
configurable distributed components and inter-component
message communication interfaces.

4. Concurrent design, addressing in detail task structuring and
the design of task interfaces.

5. Performance analysis of real-time designs using real-time
scheduling.
COMET emphasizes the use of structuring criteria at certain

stages in the analysis and design process. Object structuring
criteria are used to help determine the objects in the system,
subsystem structuring criteria are used to help determine the
subsystems, and concurrent task structuring criteria are used to
help determine the tasks (active objects) in the system. UML
stereotypes [2] are used throughout to clearly show the use of the
structuring criteria.

3. Requirements Modeling
In the requirements model, the system is considered as a black

box. The use case model is developed.

• Use Case Modeling. Define actors and black box use cases.
The functional requirements of the system are defined in
terms of use cases and actors.

Copyright is held by the author/owner(s).
ICSE’06, May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

1059

4. Analysis Modeling
In the analysis model, the emphasis is on understanding the

problem; hence, the emphasis is on identifying the problem
domain objects and the information passed between them. Issues
such as whether the object is active or passive, whether the
message sent is asynchronous or synchronous, and what operation
is invoked at the receiving object are deferred until design time.
The activities are

• Static modeling. Define problem-specific static model. This
is a structural view of the information aspects of the system.
Classes are defined in terms of their attributes, as well as their
relationship with other classes. Operations are defined in the
design model. The emphasis is on the information modeling
of real-world classes in the problem domain.

• Object structuring. Determine the objects that participate in
each use case. Object structuring criteria are provided to help
determine the objects, which can be entity objects, interface
objects, control objects, and application logic objects. After
the objects have been determined, the dynamic relationships
between objects are depicted in the dynamic model.

• Finite State Machine Modeling. The state-dependent
aspects of the system are defined using hierarchical
statecharts. Each state-dependent object is defined in terms of
its constituent statechart.

• Dynamic Modeling. The use cases are refined to show the
interaction among the objects participating in each use case.
Collaboration diagrams or sequence diagrams are developed
to show how objects collaborate with each other to execute
the use case. The dynamic analysis approach is used to help
determine how objects interact with each other to support the
use cases. For state-dependent use cases, the interaction
among the state-dependent control objects and the statecharts
they execute needs to be explicitly modeled.

5. Design Modeling
In the design model, the solution domain is considered. During

this phase, the analysis model is mapped to a concurrent design
model. For concurrent applications, such as distributed and real-
time applications, the following activities are performed:

• Make decisions about subsystem structure and interfaces.
Develop the overall software architecture. Structure the
application into subsystems.

• Make decisions about how to structure the distributed
application into distributed subsystems, in which subsystems
are designed as configurable components. Design the
distributed software architecture by decomposing the system
into distributed subsystems and defining the message
communication interfaces between the subsystems.

• Make decisions about the characteristics of objects, in
particular, whether they are active or passive. For each
subsystem, structure the system into concurrent tasks (active
objects). During task structuring, tasks are structured using
the task structuring criteria, and task interfaces are defined.
Make decisions about the characteristics of messages, in
particular, whether they are asynchronous or synchronous.

• Make decisions about class interfaces. For each subsystem,
design the information hiding classes (passive classes).
Design the operations of each class and the parameters of
each operation. Use inheritance to develop class hierarchies.

• Develop the detailed software design, addressing detailed
issues concerning task synchronization and communication,
and the internal design of concurrent tasks. Design connector
classes.

• For real-time applications, analyze the performance of the
design. Apply real-time scheduling to determine if the
concurrent real-time design will meet performance goals.
Investigate alternative software architectures.

6. References
1. H. Gomaa, “Software Design Methods for Concurrent and

Real-Time Systems”, Addison Wesley, 1993.

2. G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling
Language User Guide”, Addison Wesley, Reading MA, 1999.

3. H. Gomaa, “Designing Concurrent, Distributed, and Real-Time
Applications with UML”, Addison Wesley Object Technology
Series, Reading MA, 2000.

4. SEI, Carnegie Mellon University, “A Practioner's Handbook for
Real-Time Systems”, Kluwer, 1993.

1060

