
Variability Management in Software Product Line
Engineering

Klaus Pohl Andreas Metzger
Lero (The Irish Software

Engineering Research Centre)
University of Limerick

Limerick, Ireland
+ 353-(61)-202-706

pohl@lero.ie

Software Systems Engineering
University of Duisburg-Essen

Schützenbahn 70
45117 Essen, Germany

+49-(201)-183-4660
pohl@sse.uni-due.de

Software Systems Engineering
University of Duisburg-Essen

Schützenbahn 70
45117 Essen, Germany

+49-(201)-183-4650
metzger@sse.uni-due.de

ABSTRACT
By explicitly modeling and managing variability, software prod-
uct line engineering provides a systematic approach for creating a
diversity of similar products at low cost, in short time, and with
high quality. This tutorial focuses on the two principle differences
of software product line engineering when compared to single
systems development: The differentiation of two key development
processes (domain engineering and application engineering) and
the explicit representation and management of variability. We
characterize the two processes and their main activities and intro-
duce the orthogonal variability modeling approach (OVM). We
further illustrate the OVM approach in the product line require-
ments engineering and product line testing activities.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies; D.2.13
[Software Engineering]: Reusable Software – domain engineer-
ing, reusable libraries

General Terms
Documentation, Design, Languages, Verification.

Keywords
Requirements engineering, software product lines, testing, vari-
ability management, variability modeling

1. INTRODUCTION
Software product line engineering (SPLE) has proven to be the
approach for developing a diversity of similar software products
and software-intensive systems at low costs, in short time, and
with high quality. Numerous reports document the significant
achievements of introducing software product lines in industry.

To facilitate the efficient development of a diversity of products,
two important kinds of activities are performed in software prod-
uct line engineering:

1. The developers identify and describe where the applications of
the product line vary in terms of the features they provide or the
requirements they fulfill such that the customers can easily se-
lect the features they desire.

2. The developers create reusable artifacts of a product line in
such a way that these artifacts are sufficiently adaptable (vari-
able) to efficiently derive individual applications from them.

Variability modeling, which is used to document the variability of
the product line, is a powerful tool for managing the complexity
that is involved with the above kinds of activities.

After a brief introduction of a proven SPLE framework, the tuto-
rial focuses on product line variability. More precisely, we dis-
cuss the modeling as well as the management of variability across
software product line development artifacts.

The tutorial is based on our recent text book on software product
line engineering [1].

2. A FRAMEWORK FOR SOFTWARE
PRODUCT LINE ENGINEERING

The tutorial is structured along the SPLE framework in Fig. 1,
which has been defined based on our experiences and the results
of the European SPLE research projects ESAPS, CAFÉ, and
FAMILIES [2]. The framework shows the two key product line
engineering processes: domain engineering and application engi-
neering.

D
om

ai
n

En
gi

ne
er

in
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Artifacts of Application 1

Architecture Components Test ArtifactsRequirements

Domain Artifacts incl. Variability Model

Artifacts of Application n

Requirements Architecture Components Test Artifacts

Domain
Requirements
Engineering

Domain
Realization

Domain
Testing

Domain
Design

Application
Requirements
Engineering

Application
Realization

Application
Testing

Application
Design

Fig. 1: SPLE framework (adapted from [1])

Copyright is held by the author/owner(s).
ICSE'06, May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

1049

The domain engineering process (shown in the upper half of
Fig. 1) is responsible for defining the commonality and the vari-
ability of the product line, and thus for establishing the reusable
artifacts. Domain engineering has to ensure that the available
variability is appropriate for producing the applications that are
within the scope of the product line, which also involves mecha-
nisms for realizing variability in the respective development arti-
facts (e.g., by designing configurable components).

The application engineering process (shown in the lower half of
the figure) is responsible for deriving product line applications
from the reusable artifacts. Application engineering exploits the
variability of the reusable artifacts by binding the variability ac-
cording to application specific needs.

In this tutorial, we will explain in detail how product line variabil-
ity can be handled during the product line requirements engineer-
ing and product line testing activities (see Fig. 1):

• During the domain requirements engineering sub-process,
common and variable requirements of the product line are elic-
ited and documented. The output of this sub-process comprises
reusable textual and model-based requirements, and in particu-
lar, the variability model of the product line.

• During application requirements engineering, requirements
specifications of the individual, customer-specific applications
are developed by reusing the requirements artifacts from do-
main requirements engineering.

• In domain testing, early tests are performed to ensure a high
quality of the reusable artifacts of the product line. Addition-
ally, reusable test cases are created.

• In the application testing sub-process, individual application
test cases are derived from the reusable test cases, and further
tests are performed to validate and verify the individual applica-
tions of the product line.

3. MODELING VARIABILITY
For managing the variability of the product line, an adequate
documentation of variability information is essential. Variability
information has to be available both during domain engineering
when deciding on the variability and commonality of the product
line, as well as during application engineering when the variabil-
ity is bound to develop individual applications.

3.1 Explicit Documentation of Variability
To be useful, the documentation of variability should at least an-
swer the following questions:

• What does vary? The answer of this question leads to a variable
item or a variable property of an item, called variation point;
e.g., the kind of alarm notification of an alarm system.

• How does it vary? Answering this question identifies the possi-
ble instances of a variable item or a variable property, called
variants. For example, variants of the variation point ‘alarm no-
tification’ can be ‘siren’, ‘flasher’, and ‘police call’.

• Why does it vary? This question leads to the rationale behind a
variation point or variant. In the example, different regional
laws might prohibit certain kinds of alarm notification.

• Who is it documented for? This question identifies the target
group of a variation point or variant; e.g., the customers.

3.2 Orthogonal Variability Model (OVM)
Existing approaches for explicitly documenting variability, e.g.,
FODA or FORM [3], are adequate for specifying both common
and variable features of a product line. However, this can lead to
huge and complex models. With our orthogonal variability model-
ing approach (OVM [1]), a significant reduction of model size
and complexity can be achieved, because only the variable as-
pects of a product line are documented in the OVM models.

Additionally, the OVM approach can be used to document the
variability of arbitrary development artifacts, ranging from textual
requirements to design models and even test cases. Also, the
documentation of variability is separated from the technical reali-
zation of variability in the development artifacts and as such pro-
vides a further level of abstraction that aids developers in manag-
ing complexity.

In this tutorial, we introduce the OVM approach in detail. Fig. 2
shows parts of the meta-model for the OVM language.

constrains constrains

0..*

0..*

offers
0..*0..*

VariantVariation Point 1..*1..*

0..*

0..*

constrains

Fig. 2: Excerpt of the OVM meta-model (adapted from [1])

The core concepts of the OVM language are variation point
(“what does vary”) and variant (“how does it vary”). Each varia-
tion point has to offer at least one variant (offers-association).
Additionally, the constrains-associations between these elements
describe dependencies between variable elements.

Employing the OVM approach has three major advantages:

• Improved communication: High-level abstractions of variable
artifacts are available to simplify the communication of product
line variability.

• Improved decision making: Engineers have to make their ra-
tionales for introducing variability explicit.

• Improved traceability: The dependencies between variable arti-
facts can easily be traced by employing the constrains-
associations in the OVM models.

4. REFERENCES
[1] Pohl, K., Böckle, G. and van der Linden, F. Software

Product Line Engineering – Foundations, Principles, and
Techniques. Springer, Berlin, Heidelberg, New York, 2005.

[2] van der Linden, F. Software Product Families in Europe: The
Esaps & Café Projects, IEEE Software, 19(4), 2002, 41–49.

[3] Kang, K.C., Kim, S., Lee, J. et al. FORM: A feature-oriented
reuse method with domain-specific reference architectures.
Annals of Software Engineering, 5, 1998, 143–168.

1050

