Introduction to GaMMa 2006
First International Workshop on Global Integrated Model Management

Jean Bézivin
ATLAS (INRIA & LINA)
University of Nantes
2, rue de la Houssinière
Nantes, France
www.sciences.univ-nantes.fr/lina/atl/contrib/bezivin

Jean-Marie Favre
University of Grenoble
IMAG
Domaine Universitaire
Grenoble, France
www.planetmde.org/p/favre

Bernhard Rumpe
Braunschweig University of Technology
Software Systems Engineering
Braunschweig, Germany
www.sse.cs.tu-bs.de/~rumpe

Categories and Subject Descriptors
D.2.0 [Software engineering]: Generic -- methodologies.

General Terms
Design, Experimentation, Standardization, Languages, Theory.

Keywords
Model-Driven Engineering, MDA, DSL Engineering, Megamodeling, Modeling-in-the-Large.

1. INTRODUCTION
Model Driven Engineering is currently attracting a lot of attention [2][8][9]. This does not mean that all problems are solved but, on the contrary, that we should anticipate problems if this approach is going to be adopted at large in software industry. The recent success of generative techniques and model-based approaches raise the question of dealing with the large amount of models, metamodels, transformations, and other related artifacts produced by different teams spread around the world.

We need to recognize that Modeling-in-the-small is different from Modeling-in-the-Large. In other words, Model Driven Engineering, is not only about modeling a particular individual piece of software from the particular view point of a particular stakeholder, working in a particular place and using a particular modeling language with a particular code generator. The success of MDE and its ability to deal with industrial scale problems will also depend on our ability to anticipate the problems related to the cooperative development of large-scale and long-living software products by large teams, often localized in various geographical areas.

The aim of GaMMa 2006, the First International Workshop on Global Integrated Model Management, is to bring together researchers working on Modeling-in-the-large issues, with a view to discussing them, comparing their approaches, techniques, or ideas, and letting these researchers take advantage of different perspectives on these issues.

More particularly, second-generation modeling environments are now coming up, where the focus is no more on one unique general purpose modeling language (like UML 2.1 for example), but on a large family of more or less related domain specific languages (DSLs) corresponding to different corporations, different needs, different levels of abstraction, etc. Separation of concerns is a real challenge in Software Engineering, and developing large software products requires many different expertises, often spread in different teams and even in different corporations. Proposing one unique "one size fits all" language for everybody and for all purposes is not going to work.

First generation tools were mainly based on one unique "hardwired" implicit metamodel (e.g. UML) while most recent tools are metamodel agnostic and able to deal with various kinds of metamodels or DSLs. The advantages of using a set of DSLs instead of one unique General Purpose Language (GPL) are easy to understand, but we also need to cope with the corresponding drawbacks. The resulting fragmentation may be addressed by the existence of a unique metametamodel (like OMG's MOF) to which all DSLs may conform.

They are however various proposal for this "unique" metametamodel (e.g. EMF ECORE, Microsoft DSL/Tools, KM3 [7], etc.). Another solution is to use precisely defined and semantically sound model transformation and composition operators between the various DSLs. However these solutions alone are not sufficient to handle the complex situation arising from the use of a high number of artifacts of different types like models, metamodels, model transformations, model weaving, etc. This is true when various technical spaces [1] as well as different domains are taken into account. The notion of metamodel takes different incarnations in each technical space (e.g. grammars in Grammarware, ontologies in Ontologyware, schemas in XMLware, etc.). The fragmentation problem remain however the same. Therefore we need to devise general and solid solutions to global integrated model management in situations where the various artifacts are distributed as general resources available in a Web-based distributed system. As a consequence global model management is bringing a set of new research challenges that we have to address on the short to medium term. To solve these open

Copyright is held by the author/owner(s).
GaMMa '06, May 22, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.
problems, it will be interesting to apply the same kind of methods that have originated them, i.e. model engineering solutions and consequently we need to invent these new "integrated" methods to global model management. These new engineering techniques need to be based on a solid modeling theory, dealing with composition, refinement, abstraction and other useful semantic based development relationships between models.

2. MODEL DRIVEN ENGINEERING

More than five years ago, the OMG has proposed the MDA™ approach to deal with the separation of platform dependent and independent aspects in information systems [10].

Today the situation has much evolved and Model Driven Engineering (MDE) is being increasingly promoted to handle separation and combination of various kinds of concerns in software engineering. MDE is more general than the set of standards and practices recommended by the OMG's MDA standards. The main idea is to consider models [2] as first class entities, corresponding to various artifacts and operations used or created in the software development and maintenance phases like processes or transformations. Applying MDE to the design, running, administration, and maintenance of complex computer systems means that we need to cope with an important number of well defined and precisely focused independent metamodels, each one corresponding to a given DSL. The resulting fragmentation problem may be considered as an important research issue for second-generation MDE platforms. As a consequence of this evolution, we have to solve the new problem of coordinating all these various DSLs and managing the interplay of the various kinds of models. This new model coordination problem may take a number of forms that need to be investigated.

This comes as no surprise because the present situation in modeling languages and environments parallels the past evolution in programming languages and environments. Following de Remer and Kron Error! Reference source not found., we can target “Modeling-in-the-Small versus Modeling-in-the-Large” [3]. Following Wiederhold, Wegner and Ceri [12], we can target “Megamodeling” [6]. In any case we need to address global coordination between MDE resources (models, metamodels, transformations, correspondences, etc.) located anywhere, for example on Web repositories. We want to apply integrated MDE techniques to help solving this problem. We call global integrated model management the corresponding research field. Global integrated model management intends to apply MDE solutions to face geographical dispersion and logical fragmentation of various MDE artifacts.

Recent undertakings in the MDE community recognize that dramatic increases in complexity of systems need new solutions. Second generation MDE environments may help answering these problems if they are able to scale up in the presence of a rapidly growing number of modeling artifacts representing different concern facets, different stakeholder views, different development states of composite complex systems while offering a regular management interface to them.

3. THEMES AND GOALS

The goal of this workshop is to bring together researchers and practitioners with interest and experience in the development of techniques for global integrated model management, and to explore the potential for integration and interoperability in model engineering research. Specific areas of interest include:

- Taxonomy of MDE resources (models, metamodels, transformations, metadata, etc.)
- Taxonomy and precise definitions of global model relationships (conformance, correspondences, matching, composition, etc.)
- MDE repositories and issues related to establishing, maintaining and using various relationships between MDE resources
- Relations between model engineering and DSL building frameworks
- Coordination and synchronization between different MDE resources
- Higher-level abstractions and tool support for model coordination
- Comparing semantic frameworks for model coordination
- Scalability and extensibility of compositional model abstractions
- Model composition or weaving techniques
- Model annotation or decoration techniques
- Automatic checking of composite model consistency
- Reasoning about correctness of model compositions
- Prediction of properties of compositions from properties of the involved components
- Expression and verification of global constraints
- Formal semantics and type systems for model composition
- Domain-specific versus general composition languages
- Using existing components in model-centric approaches
- MDE support for the specification of architectural assets
- Automatic or semi-automatic model extraction from legacy software
- MDE network-centric development. Distributed model repositories.
- Similar operations on DB schemas, XML or RDF schemas, Ontologies, etc.
- Co-evolution of domain-specific modeling languages and of models using these languages
- Consistency and management of MDE viewpoints

4. FORMAT AND EXPECTED OUTCOME

A very competent and representative program committee has selected eight papers that can serve as the basis for fruitful discussions. These papers were chosen so that a broad range of stakeholders from across the whole domain is represented in the workshop. There will be an introductory talk and a wrap-up session at the end of the day to set goals for further research in the area of global model management. Presentations will be short with strict time limits to ensure ample discussion periods.

The results obtained by discussion will be summarized and published electronically on the workshop web site (http://www.planetmde.org/gamma2006/). The aim is to highlight
outstanding issues that should form a start of the forthcoming research agenda.

In addition to defining a manifesto for global integrated model management, this workshop will also try to identify sources of experimental data that may be used in applied research in the field, like grammars, XML schemas, ontologies, or metamodel public repositories (aka Metamodel Zoos) similar to Atlantic Zoo available from [11] and containing a sample of metamodels expressed in KM3 [7].

5. ACKNOWLEDGEMENTS
We acknowledge the support of ModelWare, IST European Project 511731 to this workshop.

6. REFERENCES