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Abstract. This paper considers the use of a state-of-the-art, general-
purpose, component programming language, specifically ArchJava, to
implement software product lines. Component programming languages
provide a more straightforward mapping between components as assets
and components as implementation artifacts. However, guaranteeing that
the implementation conforms to the architecture raise new issues with re-
spect to dynamic configuration. We show how this can be solved in Arch-
Java by making the components auto-configurable, which corresponds to
replacing components by component generators. Such a scheme can be
implemented in various ways, in particular with a two-stage generator.
This solution goes beyond the initial technical ArchJava issue and com-
plements the standard static generative approach to software product-
line implementation.

1 Introduction

The software product-line approach [9, 11] is one of the three use cases of soft-
ware architectures [6, 15, 26, 27]. When applicable, it represents one of the most
promising approaches to increased reuse of software, increased quality, and de-
creased time-to-market and maintenance cost. The software product-line ap-
proach is an intra-organizational software reuse approach that has proven suc-
cessful and achieved substantial adoption by the software industry.

The key to software reuse is to move the focus from engineering single sys-
tems to engineering families of systems. Software product lines take advantage
of the commonalities and variabilities that define the software architecture of
these families in order to delay design decisions. A basic strategy is to divide the
process of creating product-line applications in two major activities: Domain En-
gineering and Application Engineering [11]. Domain Engineering is the activity
of creating reusable assets. Application Engineering is responsible for creating
specific products according to customer needs, by reusing and specializing the
assets created during the former activity.

Software components [16, 28] are the building blocks of modern software ar-
chitectures. In the software product-line approach, Component-Based Software



Engineering (CBSE) is at the root of Domain Engineering. In fact, most of the
reusable assets created during this activity are components targeted to be reused
in specific products.

On the one hand, Architecture Description Languages (ADLs) have been de-
fined to describe, model, check, and implement software architectures [23]. Most
of the ADLs help specify and analyze high-level designs. On the other hand,
so called component programming languages (e.g. Fractal [10], ArchJava [3],
Koala [30]) integrate different ideas from ADLs into practical programming lan-
guages. As a result, component programming languages are interesting target
implementation languages for software product lines. They potentially provide a
more straightforward mapping between components at the design level and the
implementation. This holds the promise of facilitating the traceability between
the design and the implementation level, and of improving the quality of the
software products.

As a way to better understand the level of support provided by current state-
of-the-art component programming languages, we considered a standard example
of software product line, well-described in the literature: the bank account ex-
ample of [11]. We first implemented this case study using Java as a basis for our
experiment, and then considered its implementation in ArchJava. ArchJava is a
component programming language that extends Java with architectural features
that enforce communication integrity [21, 24]. The ArchJava architectural spec-
ifications, which include an explicit hierarchical architecture, components, com-
munication interfaces called ports, bindings and connectors, are similar to those
of Darwin [22]. Darwin is an ADL designed to support dynamically changing
distributed architectures and ArchJava inherits some of its dynamic capabilities
like dynamic component creation and definition of communication patterns be-
tween components. Another good point of ArchJava is that, compared to other
component language prototypes, its implementation is fairly robust. In spite of
these qualities, the implementation of our case study turned out not to be so
easy. A major issue was the constraints imposed by communication integrity on
dynamic configuration, making it impossible to configure a component from the
outside.

This paper reports on this experiment. It describes how the above-mentioned
problem can be solved by making the components auto-configurable, which cor-
responds to replacing components by component generators. This is presented as
a general pattern. From an ad hoc implementation, two other implementations
are derived, an interpretive one based on connectors and a compiled one based
on a second generator. This leads to a two-stage configuration scheme whereby a
static generator, resulting from Domain Engineering, produces a dynamic gener-
ator responsible for dynamic configuration. This solution goes beyond the initial
technical ArchJava issue and complements the standard static generative ap-
proach to software product-line implementation.

The reminder of this paper is structured as follows: Section 2 presents our
case study and discusses its object-oriented implementation in Java. Section 3
summarizes the main features of ArchJava. Section 4 describes the issue raised



by communication integrity and presents our dynamic configuration pattern and
its implementation. Related work is pointed out in Section 5. The paper ends
with a conclusion and some ideas about future work.

2 Case Study and Object-Oriented Implementation

We start from a case study well-described in the literature. First, we provide a
classical object-oriented implementation in Java and then, we discuss its appli-
cability in software product-line development.

We choose to base our work on the study of the bank account example
as described in [11]. The reason for doing this is that the domain of banking
applications is very well-suited to illustrating the difficulties that appear when
trying to apply a certain technology in a business domain. It is also a well-
described case study including both Domain and Application Engineering with
an implementation in C++.

In Fig. 1, we present an excerpt of the feature model representing the concept
of “personal account” as detailed in [11]. The main advantage of such a feature
model is that it makes it possible to represent variability in an implementation
independent way. For instance, UML diagrams force the designer to choose im-
plementation mechanisms like inheritance, composition or template classes when
modeling variation points.

The diagram shows some of the possible variation points: owner, payment,
currency, and number of transactions. All but payment are features with
several alternative subfeatures (symbolized by empty arcs of a circle). The sub-
features of payment are or -features (symbolized by filled arcs of a circle), that
is, we can select any nonempty subset of them. For the sake of simplicity and
because the presented features are sufficient to exemplify the difficulties encoun-
tered, we do not include other details (see [11] for a complete analysis).

personal account

owner payment currency # of transactions

[owner type ]

string

[counter type]

int

DEM EUR USDcash deposit

cash withdrawal

transfer

......

...

Fig. 1. Feature model of “personal account”

The next subsection presents a classical implementation approach of the case
study in the Java object-oriented language .



2.1 Object-Oriented Implementation

There are various object-oriented design techniques for implementing variability
in a software product line. The authors of [5] analyze the use of aggregation,
inheritance, overloading, etc. A short survey about this work will be done in
Section 5.

For the sake of illustration, let us consider a solution based on inheritance.
From an object-oriented point of view, it is natural to express commonalities as
abstract classes (or interfaces) while variabilities are implemented in concrete
subclasses.

Using these ideas, we can implement the personal account concept as a
Java class called Account (see Fig. 2) that offers three services/methods to
clients: deposit, transfer, withdraw. The aggregated entities of Account
(owner:String, nbTransactions:String, Currency and PaymentFacilities)
represent the variation points in the architecture. The UML class diagram follows
closely the AbstractFactory pattern ([14]) to express the Account configuration.
In [20] Jézéquel presents and discusses the benefits and applicability of a very
similar approach.

The AccountFactory class defines abstract methods to configure Account
object instances. These methods are implemented in different ways depend-
ing on the subclasses of AccountFactory. The only concrete method is
makeAccount, which creates a non-configured Account instance. This instance
is responsible for calling back the configuration methods (generateCurrency,
generatePaymentFac) on AccountFactory when needed.
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Fig. 2. Class diagram modeling the bank application



The PaymentFacilities class encapsulates the specification for a bank
account that provides no payment facilities (the methods for deposit, trans-
fer and withdraw are abstract), while the classes PaymentFacilities001 to
PaymentFacilities111 provide the different combinations of the three possi-
ble services: each digit in the class name suffix indicates whether the services
deposit, transfer, and withdraw, respectively, are present (1) or absent (0).

Considering the concrete factory AccountGenerator, a client creates an
AccountDescription object first, then passes it to the AccountGenerator and
finally calls the business methods on the newly instantiated Account object.

When trying to perform the operations provided by Account, the client calls
the corresponding method on the object instance. Because the actual subclass
that incorporates the payment facilities is PaymentFacilities, all the requests
are forwarded to it. Before actually performing an operation, this object queries
the different subcomponents of Account to check the validity of the request and
the availability of the Account instance.

If the client wants the properties of an account at a given moment, it can
request an AccountProperties object representing both the internal structure
and the financial status of the account.

2.2 Discussion

When speaking about software product lines, there are some items like config-
urability, reuse and evolution that have to be taken into account. The following
paragraphs discuss each of these items.

For the presented model, the configurability mechanism is fixed in the frame-
work. The newly created Account instance calls back the AccountFactory in-
stance, which, based on the information stored by AccountDescription, sets up
the variation points in Account.

The framework can be reused only to create instances sharing the same inter-
nal structure. In other words, there is no mechanism to create Account instances
having different instance structures.

When speaking about evolution, the framework could be evolved ei-
ther by adding new variants at the existing variation points (Currency,
PaymentFacilities) or by adding new variation points.

In our implementation (as in any other implementation based on a classi-
cal object-oriented language), what it is called “software component” is actually
represented by an ordinary class. A component instance is therefore an object. In
much more complicated examples, we expect that the relation between compo-
nent and class would be 1 to N, making the task of understanding and evolving
“component-based” applications more difficult.

Using component programming languages makes software architectures eas-
ier to understand, implement and evolve. Components in architectures have a
corresponding component instance in implementations and the connections be-
tween implementation components are more explicit. Evolving an application
means changing components and connections, which is much easier than evolv-



ing a set of related classes (playing the role of components) and their relations
with other sets of classes.

In the next section we present ArchJava, a component programming lan-
guage, and in the following sections, our proposals based on this language.

3 ArchJava

ArchJava [2, 1, 3] is a small, backwards-compatible extension to Java that in-
tegrates software architecture specifications into Java implementation code. It
extends a practical implementation language to incorporate architectural fea-
tures and enforce communication integrity [21, 24]. The benefits of this approach
include better program understanding, reliable architectural reasoning about code,
keeping architecture and code consistent as they evolve, and encouraging more
developers to take advantage of software architecture [3].

In ArchJava, a component is a special kind of object capable of communicat-
ing with other components in a structured way. The communication is performed
using logical communication channels called ports. Each port is allowed to declare
methods qualified by the keywords requires and provides. Only the provided
methods have to be implemented in a component.

The hierarchical software architecture is expressed with composite compo-
nents made of connected subcomponents. To connect two or more ports in an
architecture, the connect primitive is employed. This primitive binds each re-
quired method in a port to a provided method with the same signature in other
ports.

It is possible to create pass-through connections to subcomponents or to
other ports using the glue primitive. The glue primitive differs from the connect
primitive in that it glues the inside of a port to another port instead of connecting
the outside of that port.

ArchJava supports component inheritance and architectural design with ab-
stract components and ports. This allows an architect to specify and type-check
an ArchJava architecture before beginning program implementation.

ArchJava also supports the design of dynamically changing distributed ar-
chitectures. It allows the creation and connection of a dynamically determined
number of components. Components can be dynamically created using the same
new syntax used to instantiate objects in Java. At creation time, each component
records the component instance that created it as its parent component.

Dynamically created components can be connected together at runtime using
connect expressions. Each connect expression must match a connect pattern de-
clared in the enclosing component. A connect pattern describes a set of possible
connections. A connect expression matches a connection pattern if the connected
ports in the expression are identical with those in the pattern and if each con-
nected component instance is an instance of the type specified in the pattern.

Often, a single component participates in several connections using the same
conceptual protocol. In ArchJava, a port interface describes a port that can be
instantiated several times to communicate through different connections. Each



port interface defines a type that includes the set of the required methods in the
port. A port interface type combines a port required interface with an instance
expression that indicates which component instance the port belongs to. Port in-
terfaces are instantiated by connect expressions that return objects representing
the corresponding connections.

The connector abstraction supported by ArchJava [4] cleanly separates
reusable connection code from application logic, making the semantics of connec-
tions more explicit and allowing the easy change of the connection mechanism
used in a program. In ArchJava, each connector is modularly defined in its own
class and the components interact with the connectors in a clean way using Java
method call syntax. The connector used to bind two components together is
specified in a higher-level component. In this way the communicating compo-
nents are not aware of and do not depend on the specific connector used. This
makes it easy to change connectors in a system without having to modify the
communicating entities.

Developers can describe both the runtime and type-checking semantics of a
connector by using the archjava.reflect library, which reifies connections and
required method invocations.

Connectors get instantiated whenever a connect expression that specifies a
user-defined connector is executed at runtime. The principal benefit of using
connectors in ArchJava is that the same connector can be reused to support the
same interaction semantics across many different interfaces, while still providing
a strong, static guarantee of type safety to clients [4]. The main drawback is
that they are defined using a reflective mechanism implying runtime overhead
associated with dynamically reifying method calls.

Communication integrity [21, 24] is a key property in ArchJava. It ensures
that the implementation does not communicate in ways that could violate rea-
soning about control flow in the architecture. Intuitively, communication in-
tegrity in ArchJava means that a component instance A may not call the methods
of another component instance B unless B is A’s subcomponent, or A and B are
sibling subcomponents of a common component instance that declares a connec-
tion or connection pattern between them [2]. ArchJava enforces communication
integrity in the cases of direct method calls and method calls through ports
using both static (compile-time) and dynamic (runtime) checks. It also places
restrictions on the ways the components are used. In particular, subcomponents
are not allowed to escape the scope of their parent component.

4 Proposals/Experiments

Let us now see how to implement the example of Sect. 2 using ArchJava.
Our proposals are oriented towards facilitating the use of ArchJava com-

ponents in dynamic architectures. More specifically, we want components to be
created and (re)configured at runtime. In the case of our banking application, the
architecture is far from being static. The accounts are created, configured and
connected dynamically at any time after the application is started and running.



It is also necessary to allow the reconfiguration of these account components at
runtime without having to instantiate new components to meet the new require-
ments. For example we can imagine an account component that allows deposit
and transfer as its services. At runtime, we could also add the redraw service.
This change has to be done without recreating a new account (providing the
three services) but by seamlessly modifying the existing one.

Based on Java, ArchJava supports only a limited number of the mechanisms
presented in [5] that could be used to code variability. We choose to use inher-
itance as for the Java implementation of the bank account example. The com-
monalities are represented by abstract component classes while the variabilities
ar represented by concrete ones.

Due to the fact that the ArchJava model focuses on keeping the communi-
cation integrity property, components cannot be passed as arguments through
ports. This makes impossible the creation of components outside a component
and their assignment as subcomponents of this component. So, there is no mech-
anism for configuring a component when the configuration details are located
outside the component. The only solution is to encapsulate in the composite
component all the information about the possible configurations of its subcom-
ponents. At runtime the component instance takes some external description and
uses it to specialize its direct subcomponents. This mechanism is heavy and not
extendible. Each time we add a new component class or we extend an existing
one, each component including the configuration information has to be updated
and then reinstantiated in all the applications that use it.

A more natural way of performing internal configuration of a component is
to keep the needed information outside the component and to use specific ports
to perform the configuration. The diversity interfaces in the Koala model [29, 30]
provide such a mechanism but only for static configuration. In many cases a static
approach is sufficient. However, in the case of a product line that requires the
dynamic creation and configuration of components in an architecture, ArchJava
does not provide a direct mechanism to implement variability.

In the case of static architectures where the component are created, con-
figured, and connected at compile time, the general components could be spe-
cialized for a specific application using generators. Using ArchJava, a generator
takes all the specifications for the specific application and all the general compo-
nents and specializes these components to match the specifications. The result
is a specific architecture made of specific components. After the instantiation
of the components nothing can be modified. The architecture remains the same
along the life of the application.

Adopting a dynamic approach, all our proposals are based on the same pat-
tern. To facilitate the internal configuration of a component we use what we call
a component configurator (see ComponentConfigurator in Fig. 3). This special
component plays the role of a dynamic generator. At runtime, it takes an ex-
ternal description containing implementation details for an account. Using this
description, it generates its specific component (Component in Fig. 3) as a sub-
component, declares the same external ports and glues these ports to the ports



published by Component. A client (the Application using its internal port) sees
and interacts only with the component configurator instance as it provides the
same ports as the actual one (the generated one).

Application

ComponentConfigurator

Component

internal port

connection

connection

external
port

external
port

Fig. 3. The Component Configurator Pattern

While all three proposals are based on the same pattern, there are also dif-
ferences either in the way of creating the component configurators or in the way
the components are connected and communicate.

In the first proposal, all the component configurators (there is one for each
composite component type) are created manually by the software engineer. Try-
ing to overcome this drawback, the second proposal addresses the issue of us-
ing static software generators (created during Domain Engineering). We see
these generators as software entities used to automatically generate (usually,
during Application Engineering) all the component configurators in an appli-
cation, starting from a set of input descriptions. In the third proposal, we use
custom connectors instead of simple connections between components to special-
ize communication at runtime and avoid the generation of multiple component
configurators.

In the following, we present the details of each proposal focusing on the issues
raised by the implementation of the bank account example.

4.1 Ad Hoc Implementation

The first proposal is the direct implementation of the ideas presented above.

Principles. Fig. 4 presents a configuration based on the pattern in
Fig. 3. This configuration involves two account instances (AccountX and
AccountY) and two corresponding component configurators (ConfigAccountX
and ConfigAccountY). The two component configurators are connected to two
internal ports (properties and payment) of BankApplication, which plays the
role of the banking application.
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Fig. 4. Pattern Based Configuration

In general, the BankApplication component instance will dynamically cre-
ate ConfigAccount subcomponents as needed. A ConfigAccount is responsi-
ble for instantiating and configuring its Account subcomponent. The ports and
associated methods declared by Account are the same as those declared by
ConfigAccount. The ports are connected using the glue primitive. All the out-
side requests to a port of ConfigAccount are delegated to the glued port in the
Account component. Methods in the ports declared by ConfigAccount do not
need to be implemented, they are just declared identically as those in the ports
of Account.

The two accounts are represented by ConfigAccountX and ConfigAccountY,
respectively. Each of them declares two ports:

– properties, to give access to the properties of the account instance,
– payment, to give access to the payment services.

To allow the dynamic connection of ConfigAccount instances we use the
dynamic connection facilities of ArchJava. We declare just once a connect pattern
for each port:

connect pattern payment, ConfigAccount.payment;
connect pattern properties, ConfigAccount.properties;

representing the pattern of connections between the internal ports of
BankApplication (properties and payment) and each port of the
ConfigAccount component class. After creating a ConfigAccount instance we
use connect expressions, for example: connect(payment, account.payment),
to actually connect the ports.

The implementation details of an Account component are presented in Fig. 5.
All the subcomponents representing variation points in Account (Currency,
PaymentFacilities) are connected to only one internal port in Account: the
port properties within AccountX. Currency publishes a port named type, con-
taining its specific methods. PaymentFacilities declares two ports: payment
and interncommunication. The first one represents the services (deposit,
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Fig. 5. Account Details

transfer, withdraw) provided by PaymentFacilities. The second one is only
used to communicate with the other subcomponents of Account (Currency in
our particular case). This communication is needed for checking the necessary
internal properties before answering payment service requests. The purpose of
connecting all these ports to the same internal port (properties in AccountX)
in their parent component is to centralize all the possible method calls coming
either from the outside or from the inside. This need becomes more evident when
we multiple subcomponents need to communicate together in order to reply to a
client. For example, PaymentFacilities needs to call methods in the Currency
port before validating client requests. Instead of declaring all the possible connec-
tions among the subcomponents, we choose to declare a kind of proxy port: the
internal port. Ports properties and payment are glued to the same internal
port.

Implementation. The configurability of components at runtime is the purpose
of this design and using a component configurator is the key to realize it in
ArchJava. The component configurator plays the role of a dynamic generator. To
create a specific Account instance at runtime, a client simply passes some input
description data to the ConfigAccount instance. This data includes the name of
the account component and parameters defining its variation points. A parent
component can only access public methods in its direct subcomponents. In this
case, Currency and PaymentFacilities are not visible from ConfigAccount.
To allow the configuration of a specific Account component (containing specific
Currency and PaymentFacilities subcomponents), ConfigAccount generates
the corresponding source code, compiles it and then instantiates it.

The actual mechanism used for specializing the Account component is in-
heritance. Firstly, we declare a general Account component class. Secondly, we
generate the source code for a specific Account component, let us say AccountX,
that extends the Account class. The effort of generating a specific account is
reduced due to the fact that we will generate only the needed functionality ac-
cording to input requirements. These requirements are transmitted to the con-
structor of ConfigAccount. When creating a new ConfigAccount instance with
these requirements, the constructor also creates the required Account instance.



It is also possible to reconfigure an existing Account component at run-
time. We simply pass the new configuration parameters to the correspond-
ing ConfigAcount. While it remains unchanged when regarded from outside,
ConfigAccount reinstantiates the required Account subcomponent. Notice that
the connections between ConfigAccount and its possible clients remain un-
changed, only inside glue connections need to be reestablished.

Discussions. The ideas presented in the example above can be fully applied to
any other application that requires the creation, specialization and dynamic con-
nection of ArchJava components at runtime. This is an important requirement
for product-line applications requiring the specialization of composite component
at runtime.

The example presented above considers only one configuration component
(ConfigAccount) because we have only one composite component in the appli-
cation. In a product-line approach, however, there are usually a large number
of possible composite components. Applying this proposal requires to manually
define a generic component class and a specific configuration component class,
for each composite component.

The effort of building the assets (component and component configurator
classes) for this proposal in the phase of Domain Engineering for a product
line is usually huge. Since the components are manually defined, the code can
easily become error prone. When trying to evolve a component in a product-line
application, we also need to modify the corresponding component configurator,
for instance by inheriting from the older one. When adding new components, new
configuration components have to be created, too. Doing all this work manually
is not an easy task. The next proposals try to address this shortcoming.

4.2 Using Component Configurator Generators

The second proposal aims to reduce the effort of building the components by
using generators.

Principles. The idea is to automatically generate all the component con-
figurators. Instead of manually implementing a component configurator (e.g.
ConfigAccount in Fig. 4) for each composite component in the application, a
generator is made responsible for automatically creating the configurators. The
generator takes a description of all the composite components in the applica-
tion and generates the corresponding component configurators. The generator
is made as general as possible. It encapsulates all the knowledge for generating
the different component configurators needed in different product lines.

The generator represents an additional tool that comes with the product-
line software. It is created during the Domain Engineering phase and it could
be reused each time component configurators are required (either at Domain or
Application Engineering time).



To properly generate component configurators, the generator needs a de-
tailed description of the corresponding components. Another idea is to make
the generator as general as possible to allow the generation of as many different
component configurator structures as possible.

Deployer

Generator

provide(XML
 description)

Parser

parse()

ConfigAccountA

return_information()

generate()
ConfigAccountZ

generate()

Fig. 6. Generator Scenario Sequence Diagram

Implementation. While generators are usually very complex tools, in our case
the generator is a simple Java program. We used it to test the creation of com-
ponent configurators for the bank account example. It takes a description of
our general components and generates the corresponding component configura-
tors. This description includes the names of the general (abstract) components
serving as a base for the creation of new specific generated components. In addi-
tion, for each general component, there is a list of ports and the corresponding
requires/provides methods that the specific component will contain. This in-
formation is also used to create the ports (glued to the actual specific component)
in the component configurator.

To simplify as much as possible the component descriptions, we choose to
use XML and additional technologies [32]. The generator takes a .xml file con-
taining a structured description of components. It uses a parser to extract the
information and then generates the component class files (see Fig. 6).

At the implementation level, the XML file conforms to a predefined XSL
schema. This schema describes how the .xml documents are structured. To fa-
cilitate the use of XML files in Java applications, we rely on JAXB (Java XML
Binding) technology [19].



Discussion. The generator generates components starting from a general (com-
mon) architecture and by adding functionality. In our case, this common archi-
tecture is related to the fact that all the generated configuration components
deal with the same kind of account. In other applications, it is the structure
of the configured component that dictates the common architecture of all the
configuration components.

Based on the first proposal, the second one is more appropriate to the
product-line approach. The generator is very general, it could be reused across
many product-line applications. The effort during the application deployment is
reduced to the simple definition of an XML file containing the descriptions of
the components, to be passed as an argument to the generator.

Another benefit of using generators is that the resulting code is more reliable
than handmade code. In particular, code complexity and performance can be
controlled by using generators. A generator encapsulates the logic for creating
and optimizing the code. Once developed and tested, a generator guarantees the
quality of the resulting generated applications.

At runtime, the application remains as configurable as in the first proposal. A
component is configured using another corresponding component configurator.

The asset that is reused the most in this approach is the generator. The fact
that it is made as general as possible, encapsulating the logic for creating any
kind of component and its corresponding configuration component, makes the
generator a first order asset in a product-line application. It is reused for each
component type necessary in an application.

The evolution of existing components, seen as assets of the product line, is
a simple step: we just change the descriptions of the desired components and
the generator creates the corresponding component types. After this step, the
resulting assets (component and component configurators types) can be reused
in any kind of product-line application that requires their presence.

4.3 Using Custom Connectors.

The third proposal is based on connectors, as described in [4].

Principles. Instead of manually building or automatically generating all the
configuration components as in the first and second proposal, why not have only
one component configurator that is as general as possible (see Fig. 7).

A component has its ports connected to a single port of the ConfigComponent.
Instead of a classical connection we choose to employ a custom connector. The
role of the connector is to intercept all the invocations coming either from inside
the component instance or from outside the ConfigComponent. Once intercepted,
the requests are transformed to match the signature of the target method in the
specified port. A component instance in a product line could have a number
of ports not known when building the configuration component. Moreover, the
number of components in the architecture is not constant during the life cy-
cle of the product-line application. In this context, it is important to define a
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generic port that can potentially be connected to any other port. To allow such
flexibility, there are two major difficulties:

– the definition of the port (general port in Fig. 7) in the ConfigComponent
component, and

– the definition of the the custom connector that codes/decodes the requests
between the ports.

When intercepting calls from methods in component ports, the connector first
encodes all the information about the request: required method signature and
calling parameters. Then, it calls the methods in ConfigComponent port with
this information. From there, the information is decoded by another custom
connector instance and transmitted to the final port. The connector represents
a communication channel that is invisible to the ports at its edges. It has no
knowledge of the specific ports it connects. Its job is just to code/decode and
forward the requests.

Implementation. Unfortunately, the actual version of the prototype compiler
of ArchJava is not fully operational with respect to the connector specifications.
For this reason we could not test whether the ideas presented above could be
successfully applied to create a specific custom connector.

Discussion. The use of custom connectors in ArchJava simplifies the previ-
ous proposals. When assembling a product-line configuration we simply plug



in a well-defined custom connector between the ports we need to connect. The
step of creating the configuration components for each component type in the
application is omitted. A general custom connector is created during Domain
Engineering. Then, it is reused each time we need to connect a component in-
stance to its configurator or each time we connect the configurator port to the
general application ports. The code encapsulated in the general connector is
very complex. It takes into account all the possible communication possibilities
between the edges it connect. For the same reason and because in ArchJava
connectors are implemented using a reflective mechanism, the performance of
such a connector component is limited. It is a kind of “interpreted” version of
the previous “compiled” proposal using generators.

The advantage is that the connector, as the generator in the second proposal,
is reusable across all the specific products in the product line. We simply plug in
the connector between two components. The connector will eventually perform
exactly the same in all the cases.

5 Related Work

5.1 Implementing Product-Line Variabilities with Components

In [5], Anastasopoulos and Gacek survey a number of techniques making it
possible to produce code for generic product-line assets. This includes a wide
range of techniques going from conditional compilation to aspect-oriented pro-
gramming, but component-oriented programming is not considered. However,
component-oriented programming has some very interesting properties with re-
spect to the list of qualities that Anastasopoulos and Gacek consider for assessing
the implementation techniques: scalability, traceability, and separation of con-
cerns. Indeed, scalability is one of the main objectives of component-oriented
programming, which is designed to program in the large. Traceability is im-
proved by keeping the architecture explicit in the implementation. Actually, this
goes beyond traceability as conformance of the implementation to the architec-
ture of the product line is provided. Finally, component-oriented programming
facilitates the separation of architectural concerns and global reasoning from
behavioral concerns and local reasoning.

5.2 Koala

In the middle of the 90’s, Philips had some in-depth experience in developing
a large range of televisions worldwide. The hardware was reasonably modular,
but the software parts were developed using a classic approach. To handle di-
versity the approach mainly used compiler switches, runtime options and code
duplication with changes. But the new coming products needed more and more
functionalities and combinations of these functionalities. The company had to
integrate different pieces of software coming from different areas and developed
at different times. Since, at this time, the existing component technology was
not suited to the existing constraints, the Koala language was designed [30].



Koala was inspired by the Darwin language [22] dedicated to distributed sys-
tem architectures. Koala is a component programming language that provides
interfaces (provided, required), first-class components, configurations and that is
targeted to the C language. Most of the connections are known at configuration
time, but the language also defines switches or code to dynamically bind compo-
nents. It offers an easy-to-use graphical notation and an elegant parameterization
mechanism. Interface diversity is a specific kind of interface to manage configura-
tion from outside of the component, providing better independence from context.
Partial evaluation is used to optimize static configuration. A compiler has been
developed but also a user interface and component web-based repositories. Koala
was designed for resource-constrained systems, it makes it possible to apply the
component technology at a small grain and with no significant overhead.

The main criticism that can be made to Koala is that it deals exclusively with
static architectures. Once created, a configuration already deployed cannot be
modified in the final product (in C code). Any modification requires to change
the configuration, possibly the definitions of components and interfaces, and
then to recompile all the application. This perfectly fits the domain of consumer
electronics where the architecture of internal components, once deployed, will
not change. However, there are applications requiring a dynamic architecture,
an architecture that makes it possible to create new components and connections
or to change existing ones during the lifetime of the product. In its actual form,
Koala is not usable to describe and implement such a dynamic architecture.

On the other hand, ArchJava, inspired from the same Darwin [22] language
as Koala, was especially designed to support dynamically changing architectures.
Even if Koala proved its benefits in developing software product lines in the do-
main of consumer electronics, ArchJava seems to be more suited to implementing
software products with a dynamic structure.

5.3 Components and Generators

The idea that generators are an effective way of automating component cus-
tomization and assembly in the context of program families is not new (see for
instance [8, 18, 13, 12]). However, generators are usually presented as operating
at compile time only. From a description of the configuration of the product to
be built, they customize and assemble prefabricated generic components in one
stage. Our case study has hopefully made clear that, although this approach re-
mains valid when dynamic configuration must be taken into account, it has to be
generalized to a two-stage approach. This means that, apart from dealing with
static customization and assembly, the (static) generator has also to prepare dy-
namic generation. This can be done in two different ways: an interpretive way,
relying on connectors, or in a more specific and efficient way, using a (dynamic)
generator.



6 Conclusion

In order to assess the benefits of using a component language to implement
software product lines, we have experimented with different implementations
in ArchJava of a well-known example from the literature. When implement-
ing component-based applications, software architectures in ArchJava are much
more explicit than architectures in a standard object-oriented language, like
Java. Using components makes the architecture application architecture easier
to understand, implement and evolve.

However, trying to implement a software product-line application in Arch-
Java is not an easy task. Even if the language is well suited to dealing with
architectural concepts, communication integrity turns out to be a constraint.
This important consistency property in ArchJava guarantees that the imple-
mentation components only communicate directly with the components they are
connected to in the architecture [3]. The drawback is that, due to this property,
a component instance cannot be passed as an argument through ports, an im-
portant requirement for a composite component that has to be specialized (or
configured) at runtime.

There is no direct relation between the software product-line approach, which
is the organization of some activities to achieve reusable software architectures,
and communication integrity, which is an architecture implementation property.
Despite this remark, the modality of integrating this property into the ArchJava
language does not allow the easy creation of software product lines with dynamic
architectures.

Our main contribution was to design and develop a pattern allowing the
implementation of software components in ArchJava that can be dynamically
specialized at runtime. In addition to this advantage, the pattern also keeps the
communication integrity property as proposed by ArchJava.

All our implementation proposals are based on this pattern. The basic pro-
posal uses what we call a component configurator. This is actually a dynamic
generator used to create/configure component instances at runtime. The sec-
ond proposal automates the ad hoc building of component configurators using
static generators. These generators are used to automatically generate all the
component configurators. The third proposal replaces the generation of com-
ponent configurators by the use of a unique custom connector. While the first
proposal was fully implemented in ArchJava, the second one was only partially
implemented in order to solve our specific case study. The implementation of
the third proposal is still waiting for the ArchJava prototype compiler to come
to maturity.

While initially developed to solve the problem of specializing component in-
stances at runtime for our case study, the pattern could be successfully used
to solve any problem requiring dynamic creation, specialization and connection
of composite component instances at runtime. While the first proposal involves
a great development effort, the connector-based proposal raises some efficiency
problems. Based on two-stage generators, the second proposal is the most inter-
esting in terms of generality and efficiency.



The question is then whether such a pattern could not be better supported
within a general-purpose component programming language. We have seen that
static configuration is well-covered in Koala through the combination of diver-
sity interfaces, used to define configuration information, and partial evaluation,
used to do the actual configuration, without the explicit manipulation of gener-
ators. This should be extended to dynamic configuration. As far as ArchJava is
concerned, one could imagine to introduce a notion of diversity port that would
be less restrictive than regular ports. A more general direction would be to pro-
vide linguistic and tool support for the two-stage generator approach. Another
important issue that we have not addressed here is to explicitly support the
specification of various forms of variabilities.
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