
Small Witnesses for Abstract
Interpretation-based Proofs

Frédéric Besson, Thomas Jensen, and Tiphaine Turpin

IRISA/{Inria, CNRS, Université de Rennes 1}
Campus de Beaulieu, F-35042 Rennes, France

Abstract. Abstract interpretation-based proof carrying code uses post-
fixpoints of abstract interpretations to witness that a program respects a
safety policy. Some witnesses carry more information than needed and are
therefore unnecessarily large. We introduce a notion of size of a witness
and propose techniques for reducing the size of such certificates. For
distributive analyses, we show that a smallest witness exist and we give
an iterative algorithm for computing it. For non-distributive analyes we
propose a technique for pruning a witness and illustrate this pruning on
a relational, polyhedra-based analysis. Finally, only the existence of a
witness is needed to assure the code consumer of the safety of a given
program. This makes possible a compression technique of witnesses where
only part of a witness is sent together with an encoding of the iterative
steps necessary to prove that it is part of a post-fixpoint.

1 Introduction

Proof-carrying code (PCC) is a software security infrastructure in which pro-
grams come equipped with certificates that allow a code consumer to check that
the program respects a given safety policy. There are several requirements to the
structure of such certificates which at the same time must be easy to produce
for the code producer, small relative to the code size, and simple to check by the
code consumer. Initial PCC works used as certificates a lambda-term encoding
of proofs [Nec97] to be type-checked by the Logical Framework (LF). To opti-
mise the size of these proofs, Necula and Lee proposed LFi a compressed proof
format for LF terms [NL98]. For a weaker logic, Necula and Rahul transmit as
certificate an oracle (a stream of bits) that guides a higher-order logic interpreter
in its proof search [NR01]. Wu, Appel, Stump [WAS03] show how to combine
these ideas with dedicated program logics in order to obtain foundational proof
checkers with small witnesses. Albert et al., [AAPH06] propose abstract interpre-
tation as a way to fully automate the generation of certificates. In this approach,
fixpoints (invariants) play the role of certificates and a checker will have to verify
a) that a proposed certificate is indeed a fixpoint of an abstract interpretation
of the program and b) that this fixpoint entails the safety policy.

An important issue is how to encode such certificates in a manner that keeps
the certificate small while still allowing efficient checking. This paper propose a
theory based on abstract interpretation for studying this issue. Given an abstract

interpretation F of program p over an abstract domain D of program properties,
and a safety policy expressed as a property φ in D, we study the set of witnesses
of φ with respect to p, i.e., the elements w ∈ D satisfying F (w) v wuφ. Section 2
formalises the notion of witness and discuss how to optimise the size of a witness.

For certain kinds of abstract interpretations it is possible to guarantee the
existence of a smallest witness for any abstract property. This is the case e.g., for
distributive data flow analyses [MJ81,MR90] and disjunctive-complete abstract
interpretations. In Section 3 we provide a fixpoint characterisation of the smallest
witness of a given abstract property for any distributive analysis and illustrate
how to obtain an effective algorithm for a class of set-based analyses. In the
general case, it is impossible to compute a smallest witness without resorting to
an exhaustive search. Instead we propose in Section 4 a technique for pruning
a witness to obtain a witness that is smaller relative to the initial witness. We
illustrate this by showing how to prune the result of a relational, polyhedra-based
abstract interpretation.

For the PCC application of fixpoint compression it is important to note that
it is the existence of a witness that matters. This makes further optimisations
possible because a code certificate now only have to convey the code consumer
with sufficient information to convince him that he is able to build a witness.
To make this idea concrete, we define in Section 5 certificates as strategies that
encode the steps that an iterative fixpoint solver will take in order to reconstruct
a complete fixpoint given the values at selected program points. This can be
seen as a generalisation of the Lighwteight Java Byte Code using stack maps
defined by Rose [Ros03] and used in the KVM Java virtual machine for embedded
devices. Section 6 discusses related work, notably the recent proposal by Albert
et al. [AAPH06] for reducing fixpoints produced by a generic fixpoint algorithm.

2 Obtaining witness from abstract interpretation

Central to PCC is the ability to generate checkable proofs of programs. Previ-
ous works have shown how to obtain a proof from abstract interpretations. The
key insight is that abstract interpretation does not return a yes/no answer but
a property which over-approximates the program behaviour. In abstract inter-
pretation terms, the notion of approximation is formalised by a Galois insertion
between the semantic (concrete) domain of the program and the abstract domain
of properties. A correct over-approximation of the program behaviour is a post-
fixpoint of the abstraction of the program. As a result, proving that a program
verifies a property, say φ, amounts to proving that there exists a post-fixpoint of
the abstraction of the program semantics, say ψ, which entails φ. Under these
conditions, this is a basic result from the theory of abstract interpretation [CC77]
that the least fixpoint of the program semantics satisfies the property.

(∃ψ, JpK](ψ) v ψ ∧ ψ v φ) ⇒ lfp(JpK) � φ

In a static analysis context, the abstract semantics (J.K]) and the ordering of
properties (v) are computable functions. Therefore, given the property ψ, check-
ing that a program verifies a property φ is a straightforward computation.

2.1 Witnesses

This motivates the definition of a proof witness for abstract interpretation.

Definition 1 (Direct witness). A direct witness for a property φ ∈ D and a
(monotone) abstract operator F : D → D is an abstract property w ∈ D such
that w is a post-fixpoint of F (F (w) v w); and w entails φ (w v φ).

This definition of a witness is the naive instantiation of PCC in the context
of abstract interpretation. We propose to study a larger class of witnesses that
are compact to encode and as fast to check. The key observation here is that
verifying a witness involves some unavoidable computation of F , the results of
which need not appear explicitly in the witness. To this end, Definition 2 relaxes
the notion of direct witness while preserving its role (the existence of a witness
entails the satisfaction of φ) and keeping the same verification cost.

Definition 2 (Witness). An abstract interpretation witness proof for a prop-
erty φ ∈ D and a (monotone) abstract operator F : D → D is an abstract
property w ∈ D such that F (w) v w u φ.

The following Lemmas affirms that witnesses are as good as direct ones for
proving φ, and that there are more of them than direct witnesses.

Lemma 1.

1. If w is a witness then F (w) is a direct witness.
2. If w is a direct witness then w is a witness.

Proof Sketch. Follows directly from the monotonicity of F , the definition of the
greatest lower bound operator (u) and the transitivity of the ordering v. ut

We focus on optimising the latter, more general version of witnesses.

2.2 On the size of witnesses

When choosing a witness, there are two criteria of interest: its size and its ver-
ification cost. In this paper we focus on the size of witnesses, but the results in
Sections 3 and 4 should be a good starting point for reducing the verification
cost, at least in terms of memory.

In the theory of abstract interpretation, the least fixpoint (lfp(F)) is the
strongest property that can be proved of a program and is therefore a poor choice
for a witness, because it contains information that is not needed for proving a
particular property. E.g., to prove a property at a specific program point (such
as absence of array accesses out of bounds or the absence division by zero) only a
few program variables and a few program points are relevant. For the others, no
information is needed. So, we will rather search for weaker witnesses which are
usually smaller because they encode the minimal amount of information needed
to prove the property. Notice that the program property to be proved is usually
not a witness because it is not a post-fixpoint of F .

To make this argument more precise, consider standard data flow analyses
that compute a property for each program point. These analyses operate on
a product lattice Dn where n is the number of program points, or even (if
we further refine the decomposition) the number of pairs (pp, v) where pp is a
program point and v is a variable. Lattice elements are n-tuples for which the
ith projection is, for example, a formula characterizing the property of the ith

program point. The ordering is point-wise

(ψ1, . . . , ψn) v (ψ′1, . . . , ψ
′
n) iff ψ1 v ψ′1 ∧ . . . ∧ ψn v ψ′n

and the size of the property of the whole program is the sum of the size of the
atomic formulae.

| (ψ1, . . . , ψn) |=| ψ1 | + . . .+ | ψn |
As argued above, for a number of program points these ψ’s can be set to > (and
hence left out) because they are not needed for proving the particular property.
This suggests that as a general rule, smaller witnesses are those that are weaker
(higher up) in the lattice ordering v. While not universally true, this is valid for
all analyses based on lattices obtained as meet-completions of sets of unordered
atomic properties and, for the present paper, we will adopt the principle that
the smaller witnesses are those that are higher in the lattice ordering.

3 Optimal witnesses for distributive analyses

In this section, we show that for distributive analyses it is possible to compute
the weakest witness which, as soon as our size assumptions are verified, is also
the smallest. We also provide an algorithm for computing such optimal witnesses
for a class of set-based distributive analyses which includes classical data flow
problems such as live variables and reaching definitions [MJ81,MR90].

3.1 Lattice of witnesses

We show that for distributive analyses, witnesses form a lattice. As a conse-
quence, there exists a weakest witness (provided the set of witnesses is not
empty). In the following, we consider a lattice of abstract properties D and
a distributive function F (i.e., such that ∀X 6= ∅, F

(⊔
x∈X x

)
=

⊔
x∈X F (x)).

Theorem 1. Let W be the set of witnesses for a distributive function F and a
property φ. If W is not empty then (W, lfp(F),t,v) is a complete lattice.

Proof. Because lfp(F) is the least fixpoint of F it is also the least post-fixpoint.
As a result, as the set of witnesses is not empty, it is also the least witness.

It remains to show that the least upper bound operators is well-defined i.e.,
the least upper bounds of witnesses is also a witness: ∀S ⊆ W,tS ∈ W . By
definition of a witness, we have that for all w ∈ S, F (w) v w u φ. Since F is
distributive, we have that F (

⊔
w∈S w) =

⊔
w∈S F (w) v

⊔
w∈S(wuφ) = tS u φ.

It follows that tS is a witness. ut
As a result, the weakest witness ww is the least upper bound of all witnesses
and is given by ww =

⊔
W .

3.2 Weakest witnesses as greatest fixpoints

In this section, we show that the weakest witness is the greatest fixpoint of the
function F̃ which given a x computes the weakest precondition wp such that
F (wp) v x u φ.

Definition 3. Let F be a distributive function and φ a property. F̃ : D → D is
the function defined by: F̃ (x) =

⊔
{y | F (y) v x u φ}.

Theorem 2 states that ww, if it exists, is the greatest fixpoint of F̃ .

Theorem 2. Let F be a distributive function and φ be an abstract property. If
the greatest fixpoint of F̃ is not undefined (gfp(F̃) 6= ⊥) then it is the weakest
witness of φ (ww = gfp(F̃).

Proof. We show that the witnesses of φ are exactly the pre-fixpoints of F̃ i.e.,
W = {x | x v F̃ (x)}.

– ⊆: Assume that w ∈W . By definition of a witness, we have F (w) v wuφ. It
follows that w ∈ {y | F (y) v w u φ}. By definition of the least upper-bound
operator, we obtain that w v

⊔
{y | F (y) v w u φ} = F̃ (w). Therefore,

w ∈ {x | x v F̃ (x)}.
– ⊇: Assume that w is a pre-fixpoint of F̃ : w v

⊔
{y | F (y) v w u φ}. By

monotony and distributivity of F , we get F (w) v F (
⊔
{y | F (y) v w u φ}) =⊔

{F (y) | F (y) v w u φ}. By definition of t, we also have
⊔
{F (y) | F (y) v

w u φ} v w u φ. By transitivity, we obtain that F (w) v w u φ i.e., w ∈W .

We conclude, since ww is defined as the greatest witness, that it is the greatest
pre-fixpoint of F̃ and therefore its greatest fixpoint. ut

As a result, if the lattice of properties satisfies the finite descending chain condi-
tion, the weakest witness can be computed by fixpoint iteration: ww = F̃∞(>).

3.3 Weakest witnesses for set-based analyses

The specification of the function F̃ is not directly executable. However, for set-
based distributive analyses, F̃ can be derived symbolically without resorting
to a naive tabulation. Canonical set-based distributive analyses are data-flow
analyses such as available expressions, busy expressions and live variables anal-
yses [MJ81,MR90]. We illustrate the symbolic computation of F̃ for data flow
problems which solution is expressed as the solution of a distributive function
F defined component-wise F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))
such that each Fi is defined by a set expression se of the following form

se ::= y | c | se1 ∩ c | se1 ∪ se2

where y is a variable, c is a constant set, ∩ is set intersection and ∪ is set union.
To compute F̃ symbolically, the key insight is the definition of a weakest

precondition operator wp. Given a set expression e and a upper-bound b for this

expression, it computes the greatest n-tuple (v1, . . . , vn) so that e(v1, . . . , vn) v b.
In other words, it computes the weakest precondition over the variables such that
the set expression is dominated by the upper-bound b.

Definition 4. The weakest precondition operator wp is inductively defined by

wp(xj)(b) = >n[j 7→ b]
wp(c)(b) = if c ⊆ b then >n else ⊥n

wp(e ∩ c)(b) = wp(e)(b ∪ c̄)
wp(e ∪ e′)(b) = wp(e)(b) u wp(e′)(b)

where c̄ is the complement of c and u is point-wise intersection of n-tuples.

Lemma 2 states formally that wp is a weakest precondition operator.

Lemma 2. Given a set expression e and a set bound b, the following holds:

wp(e)(b) =
⊔
{(x1, . . . , xn) | e(x1, . . . , xn) ⊆ b}.

Proof Sketch. The proof is by induction over the set expression e. The cases
e = xj and e = c are proved by definition of wp and ⊆. The remaining cases
e = e1 ∩ c and e = e1 ∪ e2 are proved by induction hypothesis using the facts
that e1 ∩ c ⊆ b iff e1 ⊆ b ∪ c̄ and that e1 ∪ e2 ⊆ b iff e1 ⊆ b ∧ e2 ⊆ b. ut

Theorem 3 states that F̃ can be computed using wp.

Theorem 3. Let F be a function defined by F (x) = (F1(x), . . . , Fn(x)) and
φ = (φ1, . . . , φn) be a tuple of set properties. We have that the inverse of F with
respect to φ (F̃) is alternatively defined by:

F̃ (x) =
l

i∈[1,n]

wp(Fi)(xi ∩ φi).

Proof. By definition, we have F̃ (x) =
⊔
{y | F (y) v x u φ}. Because F and

φ are tuples, this can be rewritten as: F̃ (x1, . . . , xn) =
⊔
{y |

∧
i∈[1,n] Fi(y) ⊆

xi u φi} =
⊔ ⋂

i∈[1,n]{y | Fi(y) ⊆ xi ∩ φi} =
d

i∈[1,n]

⊔
{y | Fi(y) ⊆ xi ∩ φi} (the

last equality holds because the sets are downward closed and because the Fi are
monotone). By Lemma 2, we finally obtain F̃ (x) =

d
i∈[1,n] wp(Fi)(xi ∩ φi). ut

4 Fixpoint pruning

In theory, for analyses that are not distributive, it would be possible to make
them distributive by disjunctive completion. However, this approach generally
leads to analyses of forbidding complexity. In this section, we develop a method
for pruning a computed (post-)fixpoint into a small witness of a given property,
by computing a sort of disjunctive completion relative to the initial post-fixpoint.
We will first develop the general pruning technique and then show how its work-
ings for a relational polyhedra analysis.

4.1 General algorithm

Let w ∈ D be a witness of the property φ. Our only assumption is that the
property is expressed as a set of constraints (e.g., {x + y ≥ 0, x ≤ 42} for a
polyhedral analysis). In that case, we have that the powerset P(w) of w is a sub-
lattice of D when ordered by set inclusion. The idea of pruning is now simply
to look for smaller witnesses in this powerset. For flow-sensitive analyses, the
number of constraints is at least proportional to the size of the program and can
increase quickly if there are many variables. Therefore, a global minimization
of the witness by a direct search in the power set is not feasible. It is however
possible to adapt the algorithm from the previous section to minimize a witness.

The disjunctive completion D∨ of P(w) is the lattice that contains every dis-
junction of elements of P(w). As a unique representation, we choose to represent
its elements as sets of maximal disjuncts (sometimes called “crowns” [DP90]).

Lemma 3. Let F be a function and φ a property on a domain D of constraints
sets. Let D∨ = {X ⊆ P(w) | ∀x, y ∈ X,x v y =⇒ x = y}, and define
X v∨ Y by ∀x ∈ X, ∃y ∈ Y x v y. The disjunctive completion (D∨,v∨)
of P(D) is a complete lattice whose least upper bound operator satisfies X t∨
Y = {x ∈ X ∪ Y | ∀y ∈ X ∪ Y x v y =⇒ x = y}. Furthermore, letting
F∨(X) =

⊔∨
x∈X {

d
{y ∈ P(w) | y w F (x)}}, the existence of witnesses for F∨

with respect to the property {φ} ensures the safety of the program.

These are standard results. The second part follows from the existence of a
Galois connection between the concrete domain and D∨ that makes F∨ an over-
approximation of the semantics. ut

F∨ is distributive, so we can use F̃∨ (Definition 3) to compute an optimal
witness.

The problem is that this weakest witness is inD∨ and therefore its minimality
doesn’t implies that it is small. Intuitively, it contains all possible minimal proofs
of the security property and hence can be very large, if there are many disjuncts.
We thus take a slightly different way in order to keep witnesses in P(w). While
F̃∨ : D∨ → D∨ is defined by

F̃∨(X) =
⊔∨

{Y ∈ D∨ | F∨(Y) v∨ X u∨ {φ}}

we define on the same lattice D∨ a variant F̂ whose result is further constrained.

Definition 5. Let F be a function and φ a property on a domain D of con-
straints sets. The function F̂ : D∨ → D∨ for pruning w is defined by

F̂ (X) =
⊔∨

{{y} | y ∈ P(w) ∧ ∃x ∈ P(w) {x} v∨ X ∧ F (y) v xuφ ∧ y v x}.

We remark that F̂ is monotone and let Ŵ be its greatest (pre-)fixpoint.

In this definition, the quantification ∃x ∈ P(w) {x} v∨ X ∧ . . . can be
replaced equivalently by the more direct formula: ∃x ∈ X Since D∨ is of
finite height, Ŵ can be computed as Ŵ = F̂∞(>∨). The following theorem
establishes how F̂ and Ŵ are used for pruning.

Theorem 4. Ŵ is the set of maximal witnesses in P(w).

Proof. We proceed in three steps.

– We first prove that every w′ ∈ Ŵ is a witness. As Ŵ = F̂ (Ŵ), by definition
of F̂ and the property of t∨ (Lemma 3), there exists an x ∈ P(w) such that
{x} v∨ Ŵ ∧ F (w′) v x u φ ∧ w′ v x. Since w′ ∈ Ŵ we also know that
{w′} v∨ Ŵ and that w′ is maximal with respect to this property. Thus, from
{x} v∨ Ŵ and w′ v x, we deduce that x = w′. Therefore, F (w′) v x u φ, i.
e., w′ is a witness.

– ⊇: Let w′ be a maximal witness. We have that F (w′) v w′uφ∧w′ v w′. So,
{w′} is a pre-fixpoint of F̂ . We conclude by definition of Ŵ that {w′} v∨ Ŵ ,
that is, w′ v w′′ for some w′′ ∈ Ŵ As shown before, w′′ is a witness, therefore
w′ = w′′ (because w′ is a maximal witness) and w′ ∈ Ŵ .

– ⊆: We can now finish the proof of the first inclusion. Let w′ ∈ Ŵ , w′ is
therefore a witness. Let w′′ be a maximal witness greater than w′. From the
second inclusion, w′′ ∈ Ŵ , which implies that w′ = w′′ by definition of D∨

as a set of crowns. Thus w′ is a maximal witness. ut

The actual computation of the greatest fixpoint of F̂ is feasible if the disjunctions
have a reasonable number of disjuncts, but this might not always be the case
(theoretically, this number can be exponential in the number of constraints). In
this case, we can further approximate the optimal solution. We start with the fol-
lowing remark: a disjunction can be under-approximated by any of its disjuncts.
Therefore, we can make the pruning feasible by just choosing one disjunct at
each step, rather than keeping them all. This leads to the the definition of F̂
that is an (non-deterministic) under-approximation of F̂ .

Definition 6. The partial (non-deterministic) function F̂ : P(D) → P(D) for
approximatively pruning w is defined by

F̂ (x) = choose a weakest y v x s.t. F (y) v x u φ.

It is easy to see that every pre-fixpoint of F̂ (formally, every x such that x v F̂ (x)
for some choice) is a witness. We get a small one by computing F̂∞(>). Also,
every optimal witness can be reached by applying the approximated pruning.

4.2 Polyhedra analysis

We illustrate the pruning algorithm on a convex polyhedra analysis. This anal-
ysis infers linear invariants that can be used to prove among other properties
the absence of integer overflows and illegal array accesses. The domain of con-
vex polyhedra has been used in various contexts, notably to analyse imperative
programs [CH78] and synchronous programs [Hal93]. To focus the presentation,
we consider the case of linear transition systems.

Definition 7. A linear transition system is defined by :

– a finite set S of locations
– a finite set V of integer variables
– a finite set E of edges of the form s

p−→ s′ where s, s′ ∈ S and p is a convex
polyhedron of RV ∪V ′

(with V ′ = {v′ | v ∈ V } a primed copy of V)
– a function I that maps every location to a convex polyhedron of RV .

The operational semantics is as follows: if there is an edge s
p−→ s′ then

the system performs a transition from the location s with a valuation σ ∈ RV

of the variables to the location s′ with valuation τ ∈ RV iff σ + τ ′ ⊆ p where
σ + τ ′(v) = σ(v) and σ + τ ′(v′) = τ(v). p can describe assignments and guards
with linear expressions. I(l) represents the possible valuations of the initial states
whose location is l, and is typically false for all but one location.

The abstract semantics of a linear system is defined over the product lattice
D = Pol(V)S (where Pol(V) is the lattice of convex polyhedra of RV) as the
least fixpoint of the function F : D → D defined by:

F (x) =

s′ 7→ I(s′) tPol(V)
⊔

s
p→s′∈E

Pol(V)
JpK(x(s))

where the abstract semantics JpK : Pol(V) → Pol(V) of a particular transition
polyhedron p is defined by

JpK(x) = projV ′

(
x× RV ′

uPol(V ∪V ′) p
)

[∀v v/v′] .

Here, projV ′ : Pol(V ∪ V ′) → Pol(V ′) is the polyhedra projection on the RV ′

subspace, and [∀v v/v′] is the substitution that “unprimes” every variable.
If we consider that the elements of Pol(V) are represented as sets of con-

straints then the whole abstract domain can be defined as a sets of constraints
by the coding x �

⋃
s∈S {s} × x(s).

So, given an abstract property w ∈ Pol(V)S we can compute the weakest pre-
condition operator F̂ : P̃(w) → P̃(w) as described above. This can be formulated
in terms of basics operations on sets and polyhedra.

F̂ (X) =
⊔

x∈X
Ivx

P̃(w) l

s∈S

P̃(w) l

s
p

→s′

P̃(w) ⊔
C⊆w(s)

JpK(C)vx(s′)

P̃(w)
{{s} × C}

The meaning of this formula is that, starting from a set of witness candidates, we
keep those that are satisfied by the initial condition, compute the set of weakest
preconditions in one step for each of them, merge the result and keep only the
weakest of the computed properties, i.e., those that do not imply any other such
precondition (outermost t). For each candidate, the computation of maximal
preconditions can be done state by state (outer u), taking the cross-product :
note that this u can be implemented as a kind of product (a cartesian product
where (a, b) is replaced by a∪b) because the terms are independent (they operate

on different states). Finally, for every state we take the set of maximal properties
that are preconditions of every successor (ut).

The non-optimal version of pruning can also be applied to polyhedra analysis:
instead of keeping a set of maximal witness candidates, we only keep one. The
outer t thus disappears. For every transition, only one weakest precondition
of the constraints in its successor state is choosen, removing the innermost t.
Therefore, no disjunctions are created anymore, and every gratest lower bound
{a} u {b} can be replaced by {a ∪ b}. We obtain the simplified partial operator
F̂ : D → D with the following inplementation:

F̂ (x) =

⋃

s∈S {s} ×
⋃

s
p

−→s′

choose a weakest C ⊆ w(s)
s.t. JpK(C) v x(s′) if I v x

undefined otherwise

We have tested this algorithm to reduce linear invariants produced by the
linear systems analyser StInG [SSM04]. For a given property, we iterate the wit-
ness optimisation function F̂ until a fixpoint is reached. For the choice function,
we use a greedy heuristics which minimises (locally) the constraints to be added
to the witness.

As a first example we consider a simple version of bubble sort whose code
is shown in Figure 1. We want to prove that array accesses are safe. Therefore,

for i = 0 to |t| - 2

for j = 0 to |t| - 2

exchange t[j] and t[j+1] if needed

Fig. 1. Linear transition system for a simple bubble sort

the property is that 0 ≤ j ≤ |t| − 1 must hold in the body of the inner loop
: φ = {(swap, 0 ≤ j), (swap, j ≤ |t| − 1)}. The program is represented by the
linear transition system of Figure 1. The effect of pruning is shown in Table 1.
Basically, we find that the upper bound of j is unnecessary to keep because it is
implied by the guards. On the other hand, the lower bound can only be proved
by induction.

Table 1. Pruning a witness for bubble sort

Location Initial polyhedron Remaining constraints

start j = 0, |t| ≥ 0 j = 0
loop j ≥ 0, |t| − j ≥ 0 j ≥ 0
swap j ≥ 0, |t| − j − 2 ≥ 0 j ≥ 0

Other examples have been processed in the same way. For instance, for a
variant of the classic “train beacon” [Hal98], our witness for proving that trains
cannot collide only keeps 7 of the 18 linear invariants generated by StInG. Not
all the programs we have tested show a dramatic reduction of the number of
constraints. However, these examples are very abstract and only model aspects
relevant to the property. For more realistic applications, we expect that more
pruning would be possible.

5 Certificates

As stated in the introduction, it is the existence of a witness that matters, not
its actual content. Based on this observation, we propose to define a certificate
and an algorithm for checking such certificates such that if the algorithm ac-
cepts the certificate then the existence of a witness is guaranteed. We propose
a format of certificates, define the algorithm for decoding such certificates and
prove the correctness of the algorithm. Then we show how to generate those
certificates from a witness, whose reconstruction costs no more than aplying F
once, checking v once and checking φ on an abstract property.

Recall that static analyses which attach a property per program point operate
over a product lattice Dn where D is the domain of properties and n the number
of program points. Note that we could also have a product of different domains,
which is equivalent to taking a “sum” lattice for D. The abstract semantics
function F : Dn → Dn exhibits static dependencies between program points
and if we note x = (x1, . . . , xn) then F has the form:

F (x) = (F1(xi1,1 , . . . , xi1,k1
), . . . , Fn(xin,1 , . . . , xin,kn

)).

Intuitively, properties attached to a particular program point only depends
on a subset of the other program points. Typically, for intra-procedural analy-
ses, Fj is only defined with respect to the predecessors of j in the control flow
graph. In the following, we write Πj(x1, . . . , xn) = (xij,1 , . . . , xij,kj

) for the ar-
guments of Fj . In the next section, we propose an algorithm which exploits such
dependencies to rebuild a witness from sparse certificates.

5.1 Certificate format and checking algorithm

Existing witness reconstruction algorithms [Ros03,BJP06,AAPH06] are using
as certificate a sparse direct witness (Definition 1). The current algorithm is
more flexible: it relies on a more relaxed definition of witness (see Definition 2)
and allows to iterate the Fjs more than once. Together, these properties can
be exploited to obtain smaller certificates. Definition 8 presents the format of
certificates for a product domain Dn.

Definition 8. A certificate is a pair (K,S) where K : [1, n] 7→ D is a partial
mapping from program points to properties and S ∈ [1, n]∗ is a sequence of
program points.

The meaning of a certificate (K,S) is that, starting from an abstract state defined
by K (with all undefined program points interpreted as >), and recomputing
the program points in S using the Fjs should result in a direct witness.

The algorithm for checking a certificate (K,S) is formally defined in Fig-
ure 2. We first prove an invariant that entails the correctness and allows for an
optimization of the algorithm.

check(K, S) =
check that every j defined in K appears at least once in S (1)

let w ∈ Dn be defined as w =

»
j 7→

K(j) if K(j) is defined
> otherwise

–
for each j in S in sequence do

compute w′
j = Fj(Πj(w))

check that w′
j v wj (2)

wj ← w′
j

done
check that w v φ (3)

Fig. 2. Checking algorithm

Lemma 4. Let (K,S) be a certificate. When computing check(K,S), at each
iteration of the loop, Fj(Πj(w)) v wj holds for every j that has already been
visited once.

Proof. We show that this property is an inductive invariant. Let wk ∈ Dn be
the content of the variable w after the k-th iteration of the loop.

– The property is obvious at the beginning, since no j has been visited.
– Assume the invariant just before the k-th iteration. We need to prove that it

holds just after. Let j ∈ [1, n] such that j has been visited during iterations
[1, k]. First we remark that wk v wk−1, because of the test w′j v wj in
line (2). Thus, as Fj is monotone we have Fj(Πj(wk)) v Fj(Πj(wk−1)) and
to show Fj(Πj(wk)) v wk

j it is enough to prove Fj(Πj(wk−1)) v wk
j . We

consider two cases.
• If j was visited during the k-th iteration then the assignment in the loop

implies that wk
j = Fj(Πj(wk−1)) and we conclude.

• Otherwise j had been visited before. The invariant before iteration k thus
implies that Fj(Πj(wk−1)) v wk−1

j and we also know that wk
j = wk−1

j

because j was not visited at this iteration. ut

This suggests the following optimization: the test w′j v wj in the loop only needs
to be done for the first occurence of j in S.

The following theorem establishes the correctness of the algorithm.

Theorem 5. Let (K,S) be a certificate. If check(K,S) succeeds then the pro-
gram satisfies the associated security property φ.

Proof. We prove that when exiting from the loop, Fj(Πj(w)) v wj holds for
every j ∈ [1, n].

– If j appears in S, Lemma 4 applies.
– Otherwise, the line (1) of the algorithm ensures that j is not defined in
K. Therefore, the initial value of wj was >. As wj was never updated, the
constraint is trivially satisfied.

This proves that the tuple w obtained at the end of the reconstruction is a post-
fixpoint of F . Line (3) ensures that this is also a direct witness for φ. ut

This verification scheme has the following benefits, compared to the naive
solution of sending/verifying the whole witness:

– Abstract states need to be sent only for a subset of the program points.
– Some program points may not need to be evaluated, if they are not necessary

to prove the property.
– Comparisons between abstract states are only needed for the program points

for which an abstract state is sent.

5.2 Certificate generation

For a witness w, we are looking for a good certificate for the verification algorithm
described above. The simplest one is (w,S) where S can be any strategy that
evaluates every program point once (in any order). But, if for example F is a
forward analysis and S follows the control flow graph, then most of the wj will
be overwritten before being used and therefore can be omitted. Keeping only the
loop headers allows for much smaller certificates, with simple strategies. This is
the core idea of the compression technique proposed in [BJP06].

We slightly generalize this setting in two ways: First, the control flow graph
is more than we really need: what is required is the dependencies between the
wj which may form a sparser graph. We opt for an intermediate solution: the
“static” dependency that are induced by the projections Πj , restricted to the
program points for which w has a non-> value. Second, rather than anottating
loop headers, what we really want to do is to break every cycle of this dependency
graph with at least one program point for whichK is defined, which for some loop
nestings requires stricly less of them. While it does not exploit all the generality
of the checker, this strategy is optimal for generating certificates that evaluate
every wj at most once.

Definition 9. The dependency graph of w is the directed graph DPw = (Jw,→)
whose set of vertices is Jw = {j ∈ [1, n] | wj 6= >} and such that i → j iff
“i ∈ Πj(w)”, formally Πj(x1, . . . , xn) = (xij,1 , . . . , xij,kj

) with ij,l = i for some
l. The following theorem (whose proof is omitted) formalizes the intuition that
it is sufficient to break the cycles in DPw to obtain a certificate.

Theorem 6. Let (K,S) be a certificate such that

– ∀j ∈ Dom(K) K(j) = wj and

– ∀i, j i, j ∈ S ∧ j → i =⇒ j first appears before i in S ∨ K(j) = wj and
– ∀j K(j) is defined =⇒ j ∈ S.

Then check(K,S) succeeds.
Therefore, generating a smallest certificate for w amounts to finding a minimal
subset K of [1, n] that “breaks the cycles”. This is known as the feedback node
set problem. While it is NP-complete in the general case, some polynomial al-
gorithms [LL88,Koe05] exists for the particular case of reducible graphs, which
is the case of structured control flow graphs. They run in O(m log(n)) where m
is the number of edges and n the number of vertices. Note that this applies to
weighted graphs as well, so that it would be possible to take into account the
concrete coding size needed by each program point for a particular witness.

The graph obtained from DPw by removing the exiting arcs of every vertex
in some feedback node set K naturally forms a partial order, and it is easy to
see that every total order S on Jw satisfying this order meets the necessary
conditions for Theorem 6 to apply, thus implying the validity of the certificate
(K,S). We haven’t explored the possible representation of the order S. A possible
solution is to let the code consumer deduce such an order from the K part,
which is trivial as soon as the user has sufficient ressources to build the reverse
dependency graph.

Applying this principle to the bubble sort example of the previous section,
we take the loop state that split the whole graph, ending with the certificate
({loop → j ≥ 0}, [loop, swap]), compared to the initial polyhedron and pruned
witness that are shown in Table 1.

Finally we can justify the choice for the definition of witnesses that we tried
to optimize in the previous sections. As we are sending parts of this abstract
property, it is best if its size is already minimized, hence the weakened condition
F (w) v φ rather than w v φ in the (relaxed) definition of witnesses. But we
remark that the condition can be further generalized in, say F k(w) v φ, k ≥ 0,
the limit being given by our certificate generation and verification algorithms:
as the checker permits to iterate more than once, valid certificates could be
obtained with the condition F k(w) v φ, k ≥ 0 for witnesses. However, letting
k = 1 ensures a very simple certificate generation (Theorem 6). Note that the
other constraint that w must be a post-fixpoint is crucial for the verification to
succeed and cannot be weakened.

6 Related work

Albert et al. [AAPH06] describe a technique for reducing fixpoints produced by
a generic fixpoint algorithm. The fixpoint algorithm is presented in the setting
of logic program analysis but the underlying algorithmics of queues and de-
pendence graph is common to workset-based analyses. The reduction technique
monitors the fixpoint iteration to detect which program points improves other
program points. The reduced certificate then consists of the fixpoint value at
these program points plus data to start the fixpoint iteration. The checker takes

as argument a reduced abstract property and an iteration strategy for the fix-
point algorithm and use the generic algorithm for generating the full fix-point.
Thus, the certificates have the same structure as ours. The main difference is that
their certificates are obtained by observing the behavior of an iterative fixpoint
solving while our algorithm works by using the dependencies in the post-fixpoint
once it has been produced. This means that our algorithm also allows us to com-
press a witness that is already much smaller than the least fixpoint whereas their
approach only allows to compress the least fixpoint.

Rose [Ros03] proposes a fixpoint reconstruction algorithm for lightweight
data flow graphs. The Java byte code verifier of the KVM is using this approach
to check sparse certificates. The lightweight bytecode verifier is an instance of our
algorithm for which the S part of the certificate specifies that the program points
have to be processed in increasing order. This specialisation has the disadvantage
that the number of program point in the K part of the certificate might be larger
than needed. Also, the least fixpoint (i.e., the stronger one) is rebuilt, while there
could be a much smaller witness that ensure the same property.

Besson, Jensen and Pichardie [BJP06] show how to certify checkers for ab-
stract interpretation-based analyses. They propose a fixpoint reconstruction al-
gorithm using the notion of direct witnesses i.e., post-fixpoints that verify the
property. Because our current algorithm is based on a more relaxed definition
of witnesses (Definition 2), our certificates can be sparser. Moreover, Besson et
al., do not investigate how to optimise witnesses.

7 Conclusions

We have developed a general theory showning how invariants, issued as post-
fixpoints of abstract interpretations, can be compressed to provide witnesses of
particular program properties, as required e.g., in proof-carrying code. In the
case of distributive analyses, we have shown how an optimal (smallest) witness
can be computed. For the non-distributive case (notably convex polyhedra anal-
ysis) we have shown how to compute a good approximation of minimal witnesses.

It is important to note that we are essentialy changing (pruning) the proof
that we send to the code consumer, while the other compression mechanisms
proposed so far keep all the informations produced by the original analysis.

The witnesses can be further compressed by only sending enough information
to enable their reconstruction and hence verify their existence, as in [BJP06]. It
would be interesting to apply lower level compression techniques to this setting,
for example, sending only enough bits of information to resolve the “choices”
that a checker has to make when rebuilding a witness, in the spirit of [NR01].

The pruning technique has been tested on invariants issued by a convex
polyhedra analysis for proving simple security properties, namely the safety of
array accesses in small programs and the absence of colisions in a system for
controling trains. Even for those simple case studies, there is an improvement in
the size of certificates.

References

[AAPH06] E. Albert, P. Arenas, G. Puebla, and M. Hermenegildo. Reduced certificates
for abstraction-carrying code. In Proc. of the 22nd Int. Conf. on Logic
Programming, pages 163–178. Springer LNCS vol. 4079, 2006.

[BJP06] F. Besson, T. Jensen, and D. Pichardie. Proof-Carrying Code from Certified
Abstract Interpretation and Fixpoint Compression. Theoretical Computer
Science, 364:273–291, 2006.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximations of fixpoints.
In Proc. of the 4th ACM Symp. on Principles of Programming Languages,
pages 238–252. ACM Press, 1977.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. of the 5th ACM Symp. on Principles of
programming languages, pages 84–96. ACM Press, 1978.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In Proc. of 5th
Int. Conf. on Computer Aided Verification, volume 697 of LNCS, pages
333–346. Springer-Verlag, 1993.

[Hal98] N. Halbwachs. About synchronous programming and abstract interpreta-
tion. Science of Computer Programming, 31(1):75–89, May 1998.

[Koe05] H. Koehler. A contraction algorithm for finding minimal feedback sets. In
Proc. of the 28th Australasian Conf. on Computer Science, pages 165–173.
Australian Computer Society, Inc., 2005.

[LL88] H. Levy and D. W. Low. A contraction algorithm for finding small cycle
cutsets. J. Algorithms, 9(4):470–493, 1988.

[MJ81] S.S. Muchnick and N.D. Jones. Program Flow Analysis: Theory and Appli-
cation. Prentice Hall Professional Technical Reference, 1981.

[MR90] T. Marlowe and B. Ryder. Properties of data flow frameworks. Acta Infor-
matica, 28:121–163, 1990.

[Nec97] G. Necula. Proof-carrying code. In Proc. of the 24th ACM Symp. on
Principles of programming languages, pages 106–119. ACM Press, 1997.

[NL98] G. Necula and P. Lee. Efficient representation and validation of proofs. In
Proc. of the 13th IEEE Symp. on Logic in Computer Science, pages 93–104.
IEEE Computer Society, 1998.

[NR01] G. C. Necula and S. P. Rahul. Oracle-based checking of untrusted software.
In Proc. of the 28th ACM Symp. on Principles of programming languages,
pages 142–154. ACM Press, 2001.

[Ros03] E. Rose. Lightweight bytecode verification. J. Automated Reasoning, 31(3-
4):303–334, 2003.

[SSM04] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-
relations analysis. In Proc. of the 11th Static Analysis Symposium, volume
3148 of LNCS, pages 53 – 68. Springer-Verlag, 2004.

[WAS03] D. Wu, A. W. Appel, and A. Stump. Foundational proof checkers with small
witnesses. In Proc. of the 5th ACM Int. Conf. on Principles and Practice
of Declarative Programming, pages 264–274. ACM Press, 2003.

