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Abstract

A fundamental problem in software-based security is whether local security
checks inserted into the code are sufficient to implement a global security prop-
erty. This article introduces a formalism based on a linear-time temporal logic
for specifying global security properties pertaining to the control flow of the pro-
gram, and illustrates its expressive power with a number of existing properties.
We define a minimalistic, security-dedicated program model that only contains
procedure call and run-time security checks and propose an automatic method
for verifying that an implementation using local security checks satisfies a global
security property. We then show how to instantiate the framework to the security
architecture of Java 2 based on stack inspection and privileged method calls.

1 Introduction

A number of recently proposed programming languages provide language constructs
for enforcing security requirements. Examples include Telescript [23] with its facili-
ties for controlling permissions and resource consumption, and the recent versions of
Java [12] that provides constructs for granting permissions to code and for checking
the permissions of the code executing.

Various features of these languages have been studied in a formal setting with
the aim of providing semantically well-founded methods for verifying that a code is
secure. The connections between type systems and security have been investigated by
Leroy and Rouaix [20] who proved that well-typing can be used to guarantee that a
program will not corrupt memory. Volpano et al. [35, 36] have devised type systems
for ensuring secure information flow within programs. Dean [10], Jensen et al. [16]
and Liang and Bracha [21] provide formalisations of the dynamic loading of classes



in Java. and its influence on protection of code and data. Semantics and verification of
bytecode has been extensively studied by several groups (see e.g., [4, 28, 29, 31]).

Each of these contributions focuses on one specific aspect of a security architec-
ture. What is still missing, however, is the possibility of proving that a given code
is secure with respect to a global security property (such as the “segregation of duty”
property [13] for example). The programmer can use some of the above-mentioned
features to reduce the visibility of members of classes or to make security checks at
certain points in the code, but this does not guarantee per se that the overall behaviour
of the program will be secure. The task is complicated by the multitude of facets of
security. In Java for example, features like permission checking, privileged instruc-
tions, visibility modifiers for classes and their members, and typing all have an impact
on security. It is thus necessary to define a program model that is sufficiently general
to accommodate these features and yet simple enough to allow the proof of non-trivial
properties. The existing security models that we are aware of are quite different from
the models commonly used when defining the semantics of high-level programming
languages such as Java. Our goal in this article is precisely to tackle this problem
by showing how a semantic model for modelling control flow can be related to a for-
malism for specifying security properties, thereby providing a step towards a better
integration of abstract specifications of security properties and implementations using
lower level security mechanisms.

The contribution of the article is twofold:

e \We provide a formal framework for the definition of a class of programming
language based security properties. These are properties that depend only on the
control structure and the control flow graph of the program. We show how this
framework can be instantiated to verify security properties of applications built
using the security architecture of the Java Development Kit (JDK 1.2).

¢ \We propose a model checking technique for the verification of this class of se-
curity properties. This technique takes as input the control flow graph and the
property to verify and produces as output a finite state transition system such
that this finite system satisfies the property in question if and only if the original
program satisfies the property.

The construction of a control flow graph for a given program involves static analysis
[2, 14, 25] and will in general only yield a conservative approximation of the real con-
trol flow of the program. However, as stated above, the verification method in itself is
complete. All verifications can be carried out on the finite state system without running
the risk of rejecting a control flow graph whose (possibly infinite) behaviour satisfies
the given property. This is useful information for the user to understand why the veri-
fication of a property fails. In that case the only option for improvement is increasing
the precision of the control flow graph. This might then either lead to the verification
succeeding (given that the property holds) or provide control flow information that is
sufficiently precise to understand why the property does not hold.

The abstract model of programs with dynamic security checks and its operational
semantics are introduced in Section 2. In Section 3 we present a two-level temporal
logic for expressing security properties based on this operational semantics. We pro-
ceed (Section 4) with the definition of our technique for reducing an infinite transition



system to a finite and complete one (with respect to a given property). This framework
is applied to the Java Development Kit (JDK 1.2) in Section 5. In Section 6, we illus-
trate our model with a small example inspired by an electronic commerce application.
The verification technique is applied to prove that a global security property is ensured
and to detect redundant dynamic checks. Section 7 is devoted to related work and
Section 8 suggests avenues for further research.

2 Program model

In order to define a formal security framework which is not tied to one particular
programming language, we introduce in this section an abstract model that will serve
as the basis for the definition of security properties in the next section. The model
abstracts away all data flow and focuses on security checks and control flow i.e., which
procedures (or methods, or functions) are called during execution and in what order. A
program is abstracted by a flow graph with two kinds of edges: TG defines the transfer
edges (i.e., the usual intra-procedural control flow) and CG the call edges (binding call
sites to their potential entry points):

G = (NO, IS, ny, TG, CG).

So e.g. a code sequence such as my () ;ma() will result in two nodes ni and no,
representing the calls m; () and me (), and a TG-edge from n4 to ny. In addition there
will be a CG-edge from n to the node(s) at the beginning of method m; and from n,
to the node(s) at the beginning of method my. See figure 9 in Section 6 for an example
of such a graph.

The components of the flow graph have the following signatures:

IS : NO — {call,return,check (¢)}
ng : NO

TG : NO — P(NO)

CG : NO — P(NO)

The nodes (NO) can be seen as program points and ng is the entry point of the whole
program. If m € TG(n) (respectively m € CG(n)) we write n ¢ m (respectively
A node can be of the following three kinds, as indicated by IS
e An ordinary procedure (or method, or function) call.

e A return node.

e A check node, check (¢), where ¢ is a property on the state of the machine. The
check instruction represents the programming language feature for dynamically
enforcing security properties: execution reaching a check node will stop if the
current state does not satisfy property ¢. The syntax for defining properties is
presented in the next section.



This definition of flow graph is liberal and a reasonable translation from programs
to graphs would only yield graphs that satisfy some further well-formedness proper-

ties. In particular, there will be no transfer edges (ZE) coming out of return nodes and
it would be reasonable to eliminate a node from the graph if it is not reachable. Sim-

ilarly, for call edges n 9§ 1!, the source n must be a call node for the edge to make
sense. However, these well-formedness properties are not required for the verification
method to be correct and hence are not imposed here.

It should be noted that our minimalistic model does not contain common control
structure such as 1 ¥ and whi le since these can be modelled by non-determinism in
the flow relation TG. For example, if the calls in the statement

mQQ; if..then my() else m3()

are represented by nodes n1,ns, ng then there will be TG-edges from n; to ny and
from ny t0 ns.

For languages with dynamic method invocation or higher-order functions it is gen-
erally not possible to determine statically what method is invoked in a virtual method
call (or function call). The call edges CG describe for each call node n a safe ap-
proximation of the possible actual methods (or functions) that might be invoked by the
virtual method call (or function call). The approximation is safe in the sense that if at
any point during execution the call at node n will result in control being transferred to

node m then there will be an edge n % m. However, there might also be edges that do
not correspond to a call at execution. Such superfluous edges degrades the precision of
the control flow graph but do not jeopardise the correctness of the verification method
that we describe in the following.

For object oriented languages such as Java (that we will consider in Section 5) the
techniques for constructing the approximate control flow graph are based on data flow
analysis that for each variable determines the classes of those objects that will be stored
in that variable. These techniques are by now well understood and their correctness
has been proved (see e.g., the text book by Palsberg and Schwartzbach [26]). The
verification technique described in this paper is independent of the particular analysis
chosen. For now we just assume that a control flow graph is available and return to the
issue of constructing such a graph when discussing the application to Java in Section 5.

2.1 Trace semantics for control flow graphs

The operational semantics of a flow graph is defined as a transition system with a state
consisting of a control stack. Formally, the state of the system is an element of the set

Stack = NO*

We use the variables s, s1, so, . .. to range over such stacks.

Nodes model program points in our model, so the control stack is a stack of nodes.
A control stack n; : no : ng means that the call at node n; invoked a method during
whose execution node ny was reached. Node n in turn represents a call to a method,
m3 say, whose body contains a node ns which is the current point of control. Thus,
the top element of the stack is the “current program point” of our execution model,
indicating which node to execute next. The control stack is used to determine where
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to go to when executing a return node. Referring to the stack above, if ng is a
return node then execution of the call that was initiated at node 4 has terminated,
and execution continues with the nodes following n5 (cf. the semantic rule for return
below).

The operational semantics of a graph G is defined by a transition relation . Two
stacks s; and s are related by >, written s; > so, if execution can lead directly from s
to s9. The following three rules constitute an inductive definition [41] of this relation.

Definition 2.1 The transition relation > C Stack x Stack. In the following, s €
Stack and n,n',m € NO.

IS(n) = call nSm
s:nmpP>s:n:m

IS(m) = return nS o
s:m:mb>s:n

IS(n) = check (¢) s:nk¢ n-Sn

s:np>s:n
The relation F stating when a stack satisfies a property is defined in the next section.

For verification purposes we are interested in the set of stacks that execution can
lead to. Given a program G with a designated start node n, the operational semantics
gives rise to the following transition system:

Definition 2.2 The trace semantics of G = (NO, IS, ng, TG, CG) is the set of se-
quences of stacks (or ““execution traces’) reachable from the initial configuration.
Formally, the set of execution traces [G] C Stack™ is inductively defined by:

cG
ng — "N
(ng:n) € [G]

<30a e a5n> € [[G]] Sp D> Snt1
(805 - -+ 8n, Snt1) € [G]

Note that the elements of [G] are sequences of stacks i.e., sequences of finite se-
quences of nodes from the flow graph. For technical reasons it is convenient always to
operate on stacks with two or more nodes. For this reason, we assume that the graph
G is constrained so that CG(ny) is a singleton {n} where n corresponds to the main
method of the program and we let the initial stack in the trace be the stack sg = ng : n.
It is possible to dispense with the artificial entry node ng at the expense of slightly
complicating the correctness proof of the static analysis defined in Section 4.

3 Formal definition of security properties

The only way the operational semantics of the previous section is related to security
issues is through the check instruction. This instruction models a programming lan-
guage mechanism that enforce a security property at a given point in the execution.



Syntax:
¢ = NP | X$ | p1 U g | ¢ | 1 Ao | True

Semantics: (NP ranges over node predicates, s € Stack, T € Stack*, S C Stack™).

St¢ & VI'eS,VseT,sk ¢
sk NP & |s| > 1 and NP(sp)
sk Xo & |s|>lands't¢
sEp1Ugy & Vi<l|s|, s'F¢y or
3k, skt ¢y and
Vi <k, s'F ¢
sk ¢ & sk ¢
sEFPp1 NP2 & sk dpand sk ¢o
s+ True & true

Figure 1: Language for the definition of security properties

A difficult problem however is to be able to relate a collection of such local run-time
checks with a global security goal. It is well known that very strong security con-
straints on one software component can be defeated by subtle omissions in another
cooperating component. Another facet of the problem is that a defensive implemen-
tation, involving security checks before each procedure call for example, would be
extremely inefficient. So, it is desirable to be able to determine statically that certain
checks are not necessary to enforce the intended security property. The first step to
achieve the above goals is to provide a formalism for defining security properties. In
this section, we propose a language to express security properties as properties on sets
of execution traces (Section 3.1) and we illustrate its expressive power with a collec-
tion of well known security properties (Section 3.3).

3.1 A formalism for defining security properties

Since the semantics of a graph is defined as a set whose elements are traces of stacks
of nodes, there are three different kinds of predicates to consider:

1. Predicates describing single nodes.
2. Predicates describing stacks of nodes.
3. Predicates describing traces of stacks.

A node corresponds to a program point so the predicates on nodes characterise
basic security properties attached to a piece of code like its protection domain or site
of origin. These are the predicates that are ranged over by NP in Figure 1. Exactly
what predicates are needed depends on the actual security property to formalise so we
do not specify the set of node predicates further.

States were defined in the previous section to be stacks, i.e., finite sequences of
nodes. We write predicates on such sequences using a linear-time temporal logic
whose syntax and semantics are defined in Figure 1. The base predicates of the logic
are the node predicates and the set of logical connectors include conjunction, negation,



a next operator X and an until operator U. We lift node predicates NP to predicates
on sequences of nodes by stipulating that NP holds of all those sequences for which
the first node satisfies NP. Negation means that the negated predicate does not hold of
the sequence; in particular = NP means that NP is not a property of the first node in
the sequence. The formal semantics of the temporal logic formulae is given in Figure 1
and explained in Section 3.2 below.

Disjunction Vv, implication = and False can be derived from this minimal lan-
guage, using conjunction, negation, and True. As usual, we also introduce the derived
operator G¢ = ¢ U False to express that ¢ holds of all elements of a sequence and
F¢ = —(G(—¢)) to express that ¢ must hold for one element of a sequence.

Concerning the trace predicates, we have limited our work to safety properties.
This restriction is not uncommon in the domain of security properties—see e.g., the
work by Schneider [30] on enforceable security properties for a discussion on the topic.
The consequence of this restriction is that all trace predicates are global invariants on
the stacks in the traces i.e., for a stack property ¢ the predicates are of the form

¢ holds for all stacks in the trace.

Since stack predicates are lifted to trace predicates in a unique way, we overload the
satisfaction relation - between stacks and stacks predicates and write

Sk

to mean that the set of traces S satisfies the property induced by the stack predicate ¢.
Formally, this means that all stacks in all traces in S satisfy ¢.

3.2 Semantics of security properties

In Figure 1 we define the satisfaction relation s I ¢ that formalises when a sequence
s satisfies a predicate ¢. In the definition of - we use |s| to denote the length of a
sequence s, s; to denote the :*» element of s and s’ to represent the suffix of s starting
at s;. Thus s* is the empty sequence if |s| = i and s is undefined if |s| < 4. Note that,
from the definition of S F ¢, the semantics of a formula ¢ is defined with respect to a
(possibly infinite) set of finite sequences s (each of these sequences will correspond to
a possible execution stack of the program). The negation of a formula ¢ means that ¢
cannot be proved with the rules defining the semantics of the formulae. In particular,
the negation of a node predicate, = NP, holds of all those sequences where NP applied
to the first node of the sequence is false. We use a weak version of the until operator
¢1 U ¢4 in the sense that the definition does not require that ¢- eventually holds. This
choice is not significant however since the strong version can be derived from U and
the F operator defined above.

We are now in a position to define what we mean by “a program (modelled by a
graph) satisfies a security property”.

Definition 3.1 A graph G satisfies a security property ¢, which is denoted by G |= ¢,
if and only if [G] +- ¢.

This definition to only useful for verifying properties of a program P if the graph
G p modelling the program correctly reflects the control flow of P. Formally, we must



require that [G] contains all the possible execution traces of P. This is essentially the
correctness criterion of the control flow analysis used for constructing the graph G p
from the program P. We do not consider the issue of proving correctness of control
flow analyses in this article but refer the reader to articles specifically related to this
topic [2, 14, 17, 25].

3.3 Examples of security properties formalised in our framework

Our approach is dedicated to properties of the control flow of the application. This
allows us to formalise a number of commonly used properties as illustrated by the
following four examples.

The segregation of duty is often required in financial applications where security
is ensured by imposing that a task cannot be completed unless at least two principals
are involved [13]. In our framework, a principal (or a subject) is defined by a property
which is satisfied only by the nodes corresponding to program points in its code. We
can further gather principals into larger groups like Manager, Accountant, etc. The
segregation of duty property imposing, for example, that a code of the category Critical
can only be executed if backed by a manager and an accountant can be expressed as

follows:
SD = (—Critical U Manager) A

(= Critical U Accountant).

From the semantics of the logic (Figure 1) we have that this property is satisfied if and
only if all the possible execution stacks satisfy the two following properties:

1. No node satisfying the property Critical occurs before the first node satisfying
the property Manager.

2. No node satisfying the property Critical occurs before the first node satisfying
the property Accountant.

Resource protection can impose that code from protection domain A can only call
code belonging to a domain C via code of protection domain B. ldentifying the name
of a protection domain D with the node predicate “n belongs to D”, this property is
specified as follows:

RP = G(—-AV (=C U B)).

In other words, if, for a stack s, A happens to be satisfied by a node n in s, then
—C'U B must hold at that point, which means that no node from protection domain C
can occur after n in the stack s before the first node coming from domain B.

The sandbox model was originally proposed as the security model for Java appli-
cations. The model implies that a dynamically loaded method originating from site
S can only call methods originating from the same site or local methods. Using the
property Local to characterise local nodes and Site g for nodes belonging to site S, this
property can be specified as follows:

SB = G (Siteg = X (Siteg V Local)).



Thus, for all nodes in the call stack, if the node called is from a non-local site then the
next call should either be to code from the same site or back to some local code (that
then can call other sites).

Stack inspection s the basis of the security mechanism of the Java Development
Kit JDK 1.2. In this setting, each piece of code is granted a set of permissions to
execute certain operations (for example, reading from and writing to a file). If a crit-
ical operation op is executed by method m 1, then m; must have permission to do so.
Furthermore, if m; itself was invoked by method m, then ms should also have per-
mission to execute op. In general, the stack inspection policy imposes that an operation
op can be executed only if all the code that leads to the execution of op has the cor-
responding right. Operationally speaking, this amounts to examining the call stack to
check that all the methods on the call stack have permission to perform the operation
in question. This policy prevents code from performing an operation on behalf of an
unauthorised code.

Requiring that all callers have a specific permission is in certain cases considered
too restrictive and can be circumvented by designating certain parts of the code as
“privileged”. Marking a method call, m2() say, in the body of method 4 as privileged
means that all callers (direct or indirect) of my will be given the permissions held by
mq as long as the call mo() is executing. For example, an operation in ms’s body is
executed as soon as the methods m1 and mo have the permission to do so—the callers
of m do not need to have this permission. In a sense, m takes sole responsibility for
what happens when the method call m4() is executed.

Stack inspection for a particular permission P in the presence of permissions and
privileged code can then be described operationally as follows. Examine the stack
starting from its top (which corresponds to the method currently executing), perform-
ing the following checks:

1. if the stack top does not have the permission P, the stack inspection stops and
returns failure,

2. if the stack top has the permission P and is marked as privileged then stack
inspection stops and returns success,

3. otherwise, if the stack top has the permission P but is not privileged, pop the top
element of the stack and continue the stack inspection on the remaining stack.

Assuming that privileged code satisfies the property Priv, the stack inspection
policy that checks for permission ¢ is characterised by the following formula in our
formalism:

JDK(¢) = G((X(F Priv)) V ¢).

The property imposes that for any execution stack s and any node n in s, either Priv
is satisfied by a node that follows n in s (that is to say X(F Priv)) or n must satisfy
¢. Note that the property JD K (¢) is formulated so that it enforces that the last node
satisfying Priv (the node not followed by another Priv node) also satisfies the property
¢. In other words, it amounts to forgetting the nodes traversed by the code before the
last node satisfying Priv occurs (if such a node occurs); this node and all the remaining
top nodes must then satisfy ¢.



There is a subtle difference in the stack inspection used by JDK and Internet Ex-
plorer (IE) on one hand and Netscape on the other [40]. The difference only manifests
itself on stacks in which all stack elements satisfy the property ¢ but none of them are
privileged. JDK and IE accepts such a stack (and JDK (¢) is true because ¢ holds
globally). Netscape rejects such a stack. Thus, the Netscape stack inspection policy
can be reformulated as: there must exists a privileged call such that the code containing
the call and all methods invoked (directly or indirectly) by that call have the property
¢. In terms of stacks this means that there must exist a privileged node in the stack
such that that node and all nodes higher up in the control stack have permission ¢. In
our formalism, this can be expressed in two ways. One solution is to add to the JDK
policy the extra requirement that there exists a privileged node in the stack. A more
compact formula expressing the same is:

Netscape(¢) = F (Priv A G ¢).

which states that there must exist a node satisfying Priv such that the node itself and
all the following nodes satisfy the property ¢.

The property JDK (¢) illustrates the fact that our language can be used both to
express global security properties and local properties that are checked at run time
(through the check (¢) instruction in our programming model). We describe an ap-
plication of this in Section 5.

4 \ferification

In this section we present a method for verifying that a program (abstracted by a con-
trol flow graph, as defined in Section 2) satisfies a given security property. Designing a
mechanical verification method is complicated by the fact that the operational seman-
tics of a control flow graph is a possibly infinite-state transition system. Here, infinity
arises from recursion in the program, leading to stacks that grow infinitely. Another
source of complexity in this context comes from the check(ry;) nodes whose effect is
to cut certain execution traces. In order to get a decision procedure for security prop-
erties, we propose a technique for mapping an infinite transition system into a finite
system which is equivalent to the original system with respect to a given property.

The core of the verification technique is a calculation of the set of reachable sta-
tes of an abstraction of the infinite transition system. The abstract transition system
is obtained by partitioning the infinite state-space into a finite number of equivalence
classes according to the global security property ¢ to verify and each of the proper-
ties -y; from the check nodes in the program’s control flow graph. The partitioning is
defined by an equivalence relation on stacks that equates two stacks if they satisfy the
same set of properties among the properties ¢, 1, - .. ,7v,. Thus, by construction, this
results in a finite number of equivalence classes. The main theorem to be proved here
states that a property holds of the original, unabstracted system if and only if it holds of
the finite, abstracted system. Hence reasoning with the finite system suffices to decide
whether the property holds.
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4.1 Finite automata representation of properties

The verification technique is based on a result due to Vardi and Wolper (see e.g.,
[34, 33]) which states that there exists a translation from formulae of linear tempo-
ral logic to deterministic finite-state automata such that a string satisfies a formula if
and only if the string is accepted by the corresponding automaton. The Vardi-Wolper
translation deals with temporal logics over infinite strings which are translated into
Biichi automata. Here, we interpret the formulae over finite strings. This changes the
acceptance conditions for the automata slightly but the translation technique remains
the same. Since the following results only depend on the existence of such a transla-
tion, and not on how it is defined, we omit a more detailed description and refer to [33].
Examples of formulae and their translation into automata can be found in Figure 10
and Figure 11.

The automata play a central role in the verification algorithm. The algorithm trans-
lates the global property ¢ and all locally checked properties ~y; into automata, written
Ag, Ay, 1t then proceeds by following all possible paths in the control flow graph,
letting the automata evolve simultaneously. When reaching a check(vy;) node it is
then immediate to decide whether -y; holds by checking whether the corresponding
automaton A.,, is in an accepting state. Similarly, the property ¢ holds globally if the
automaton A is in an accepting state all the time.

The following definitions fix the notation used for automata.

Definition 4.1 A deterministic finite state automaton A is a quintuple (Q, %, F', §, qo)
where Q@ is a finite set of states ranged over by ¢, g; ..., X is a finite alphabet ranged
over by a,a;, ..., F C Q is the set of final states, d4 the transition function, and g, the
initial state.

A is overloaded to denote the function

A: Y= Q

that maps each string w € X* to the state reached by the the automaton after reading
w. Let a; denote the ith element of a string o. The function A is defined by

Afag : ...:aj) = 6(A(ag : ... 1 aj—1),q;)
A(ao) = (g0, ao)

Notice that the function A is well defined because the automaton A is deterministic.

An automaton recognising the set of strings satisfying a linear temporal logic for-
mula +) will be written A,,. We stress that this automaton is not uniquely determined
but we assume for the rest of the article that a particular translation for each property
is chosen.

Definition 4.2 Let ¢ be a linear time temporal logic formula as defined in Figure 1.
We use A, = (Q¥, S, F¥, 6%, ¢¥) to denote a deterministic finite state automaton that
accepts the set of strings satisfying the property +. Formally, A, must satisfy that for
all w € ¥*,

whky iff Ay(w) € F¥
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We extend the notation to tuples I' = (41, -- -, %, ¢) of properties. Formally, Ay is
defined to be the product automaton Ay, x ... x Ay, X Ag. For w a finite string we
obtain the associated function

Ar : Z*—>(Q1X...XQn)
Ar(w) = (Ay, (w),..., Ay, (w)).

where Q; is the set of states of the automaton A, .

4.2 The equivalence relation on stacks

Next, we define an equivalence relation on stacks that partitions the set of stacks into
a finite number of equivalence classes. The equivalence relation is based on the au-
tomata representation of security properties and the finiteness of the set of equivalence
classes will form the basis of a decision algorithm for security properties, outlined in
Section 4.3. The key idea behind the equivalence relation is that equivalent stacks
will have the same behaviour against check(-y;) statements and the global property ¢.
Concretely, equivalent stacks will take each of the automata corresponding to -y; and
1 into the same state.

This equivalence is refined in order to incorporate some additional control flow
information into the equivalence classes. In order to be able to match call and return
statements, we require that the two top elements of the stacks must be identical in order
for two stacks to be equivalent.

Definition 4.3 Let I' = (~1,---,7, ¢) be a finite tuple of properties where ¢ is the
global safety property to ensure and -y; the safety property associated with the 3* check
statement. The equivalence relation ~C Stack x Stack is defined as follows:

stmin ~ s''min iff  Ap(sim) = Ap(s':m)

An essential property of the equivalence relation is the finite symbolic representa-
tion of an equivalence class as a triple

(M, m,n) € (Qy, X ... X Qy, X Q) x Node x Node.
The number of equivalence classes is finite because:
o the number of nodes of the flow graph is finite;

¢ the number of safety properties (properties in check nodes and the global secu-
rity property to verify) is finite;

¢ and the number of states of each corresponding automaton is finite.

Definition 4.4 The stack s = s’:m:n belongs to the equivalence class (Ar (s’ : m), m,n).
We write [s] for the equivalence class of s.

Intuitively, a triple (M, m,n) contains the following information. Execution is at
node n which belongs to a method invoked at node m. At the moment of invocation at
node m, the control stack (of form s’:m) satisfied that

Ar(s':m) = M.
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M is a tuple of automata states where a component is an accepting state if and only
if the stack s:m satisfies the corresponding security property. Hence, an equivalence
class (M, m,n) satisfies the global property ¢ if the component of M corresponding
to the A4 automaton reaches a final state after executing ». We shall overload the
symbol - to mean both that a stack and an equivalence class satisfy a property.

Definition 4.5 For a given graph G and a global property ¢ (with associated automa-
ton Ag), we write
(M7 m7 n) l_ (/)

when
M= (q",... ,q'y’c,qd’) and 5¢(q¢,n) € Fy.

Similarly, an equivalence class (M, m,n) satisfies a property -; if the i» component
of M corresponding to the A, automaton reaches a final state after executing n.

Lemma 4.6

[s]F¢ & st ¢.

Proof Let s = s’:m:n be a string and [s] = (M, m,n) its equivalence class. By
definition, M = Ar(s":m) = (¢",...,q"*,q%). We have

Ag(s":min) = 64(Ag(s":m),n) = 64(¢%,n).

It follows that s - ¢ if and only if A, (s":m:n) € Fy) if and only if 54(¢%,n) € F, if
and only if [s] - ¢ and Lemma 4.6 is verified.

4.3 Reachability Analysis

We now define a set [G]# of “reachable” equivalence classes that is used to decide
whether all the reachable stacks in the program modelled by G satisfy the global prop-
erty ¢. The set [G]# is defined inductively by the rules described in Fig 2. Here, ng
is the initial node of the graph G and n the unique node called from the initial node
ng. Since ng:n is the first reachable stack, its equivalence class [rg:n] is the initially
reachable equivalence class. Its symbolic representation is:

(6((q317 - aqgka qg))ano)anoan)

Because the set of equivalence classes is finite, it is decidable whether an equiv-
alence class belongs to [G]#. Together with the following theorem this provides a
procedure for deciding whether a program satisfies a global property.

Theorem 4.7
[GlF¢ < VEe[G]*.EF ¢
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(of€;
ng —n

(6((q317 .. 7qgk7Q(¢)))7n0)7n07n) S |[G]]#

IS(n) =call n $Cm (P,p,n) € [G]*
(6(P,n),n,m) € [G]#

IS(m) =return n S n' (P,p,n) € [G]#¥ &P,n)=N (N,n,m) € [G]#
(P,p,n') € [G]#

1S(n) = check(yi) n 'S n' (Pp,n)€[G* (Pp,n)F
(P.p,) € [G]#

Figure 2: Inductive definition of the set of reachable equivalence classes

Proof: The proof is divided into two parts that can be viewed as a correctness (the
“«<") and a completeness (the “=-") part of the analysis. Section 4.4 shows that the
“abstract” transition system on equivalence classes is a safe approximation of the con-
crete transition system while Section 4.5 shows that the set of reachable equivalence
classes covers sufficiently many stacks to account for all possible behaviour of the
program with respect to the global property ¢. Formally, we prove the following two
properties:

50 >* s = [s] € [G]* (1)

Ec[G]* = 3s' € Esg>*s' (2)

We can then prove the theorem as follows. For correctness, assume that all equivalence
classes E € [G]# satisfies E - ¢ and let s € [G] i.e., so >* s. From (1) we get
that [s] € [G]* and hence that [s] - ¢. Lemma 4.6 then implies that s - ¢. For
completeness, assume that [G] - ¢ i.e., that for all s such that so >* s we have s F ¢.
Let E be an equivalence class in [G]#. By (2) there exists a s’ € E such that so >* 5.
By assumption, s’ - ¢ and and Lemma 4.6 then implies that E = [s'] - ¢.

4.4 Correctness

We prove that the abstract transition system is a safe approximation of the concrete
one in the sense that for all reachable stacks s, the corresponding equivalence class [s]
belongs to [G]*.

Lemma 4.8
50 >* 5 = [s] € [G]*

We prove the lemma by induction over the derivation length. Suppose that s >* s;, =
[s] € [G]*; we show that if sg >F si, > s11 then [sx11] € [G].

The transition s; > sg41 IS determined by the type of node on top of s;. We
consider each possibility in turn.

14



call node
IS(n) =call and n % m.

Suppose that sg > s, = s':p:n. By induction hypothesis, [sx] = (P,p,n) € [G]#
where P = Ap(s':p). By the rule for call nodes in the operational semantics (Def-
inition 2.1), s > s":p:n:m. Similarly, by the rule for call nodes in the definition of
[G]# (Figure 2) we have E = (6(P,n),n,m) € [G]#. Furthermore,

E = (8(Ar(s":p),n),n,m) = (Ar(s":p:n),n,m) = [s":p:n:m)]

Hence, [s":p:n:m] € [G]# and the property holds for call nodes.

return node
TG
IS(m) =return n —n

Suppose that sg >* s, = s:n:m. It is straightforward to see that the transition relation
> is prefix-closed in the sense that for all prefixes w of sj there exists I < k such
that so > w. It follows that sg > r = s:n = s':p:n with I < k. By applying twice
the induction hypothesis, we obtain [si] = (N,n,m) € [G]* and [r] = (P,p,n) €
[G]* where N = Ar(s’:p:n) and P = Ar(s:p). By the return rule, si > s":p:n’.
Moreover, the precondition 6(P,n) = Ar(s':p:n) = N holds and by the return rule,
E = (P,p,n") € [G]*. By definition of the equivalence relation,

[s":p:n'] = (Ar(s":p),p,n') = (P,p,n') = E.

Hence, [s":p:n'] € [G]# and the property holds for return nodes.

check node

IS(n) = check(y;) smbvy n-Sn/
Suppose that sg >* s, = s:n = s":p:n. By induction hypothesis, [sx] = (P,p,n) €
[G]# where P = Ar(s':p). From Lemma 4.6, we have [sg] - ;. By the check rules
s> s"pn! and (P, p,n') € [G]*. Since (P,p,n') = [s":p:n'] we have [s":p:n'] €
[G]# and the property holds for check nodes.

4.5 Completeness

The completeness part of Theorem 4.7 states that for each reachable equivalence class,
there exists at least one reachable representative:

Ec[G]* = 3te E.so>*t

The proof is given in Section 4.5.2. In order to prove this result, we need the follow-
ing lemma. Intuitively, it states that method calls present in the set of abstract states
correspond to calls at the concrete level.

Lemma 4.9
(P,p,n) € [G]#
(6(P,n),n,m) € [G]# } = so>* siprnm
so >* s:pin € (P, p,n)
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6(6(P,n),0),0,q

s:p:n:m

Figure 3: Lemma 4.9 and return nodes

45.1 Proof

The proof of the lemma is by induction over the deduction of (§(P,n),n, m) € [G]*.
In the following, a figure describes the situation for each of the derivation rules. The
conventions are:

o Filled nodes represent equivalence classes given by the induction hypothesis.

e The white node is a newly deduced equivalence class.

Dashed arrows, labelled by lemma, figure out use of induction hypotheses.

Bold arrows link equivalence classes (P, p,n) and (6(P,n),n, m).

Simple arrows are labelled by transition rules call,return,check.

Base case The proof of the property for the rule concerning the initial node nq can
be reformulated as follows.

(P,p,mo) € [G]#
(6(P,ng),no,m) € [G]* } = so>* s:ping:m
s0 >* s:ping € (P, p,ng)

This is vacuously true since there is no p such that (P,p,ng) € [G]#. This latter fact
is seen by inspecting the rules defining the set [G]7.

Induction step

call node Let (§(P,n),n,m) € [G]* be deduced from a call rule. As a result,
there exists a node in the flow graph such that:

IS(n) =call n % m

Suppose that (P,p,n) € [G]# such that so >* s:p:n € (P,p,n). By call rule,
s > s:p:n:m. Hence lemma 4.9 holds for call nodes.
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Figure 4: Lemma 4.9 and check nodes

return node Let (6(P,n),n,m) € [G]* be deduced from a return rule. The

hypotheses of this rule yields that there exists a node 1.5(q) = return, an edge o ¢
m in the flow-graph and two deductions:

(6(P,n),n,0) € [G]* (0)
(6(3(P,n),0),0,q) € [G]* (1)

The other hypotheses from the lemma are:

(P,p,n) € [G]* (2)
so >* sipin € (Pyp,n)  (3)

Lemma 4.9 is now applied twice in order to prove the property. First, from (2),(3),(0)
we deduce that so >* s:p:n:0. Second, this fact together with the facts (0) and (1) imply
that sg >* s:p:n:o:q. By the return rule, sq >* s:p:n:m. Hence Lemma 4.9 holds for
return nodes.

check node Let (6(P,n),n,m) € [G]* be deduced from a check rule. Thus

there exists a node 1S(o) = check(y;), a transfer edge o IS m and a deduction
(6(P,n),n,0) € [G]#(0) such that (§(P,n),n,0) F ~;. The other hypotheses of the
lemma are

(P,p,n) € [G]* (1)

so >* sipin € (Pyp,n)  (2).

By Lemma 4.9, from hypotheses (1), (2), (0), we deduce that
so >* s:pmnzo € (6(P,n),n,o).

By the construction of the equivalence classes and the fact that (6(P,n),n,0) F ;
we get that s:p:n:o F ;. As a result, by the check rule, s:p:n:o >* s:p:n:m. Hence,
Lemma 4.9 holds for check rules.

45.2 Completeness Proof

The completeness proof now proceeds by induction on the derivation of E € [G]#.
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call node Let (§(P,n),n,m) € [G]*# be deduced by call rule. Hence, there

exists a node 1S(n) = call and an edge n “Cm belonging to the flow-graph. and
a deduction (P,p,n) € [G]#. By induction hypothesis, there exists a reachable stack
so >* s:pin € (P,p,n). By the call rule, s:p:n >* s:p:n:m. By definition of the
equivalence relation

[s:pin:m] = (Ar(s:p:n),n,m) = (§(P,n),n, m)

We conclude that the property holds for call nodes.

return node Let (P,p,n’') € [G]* be deduced by the return rule. Then, the
following node and edge belong to the flow-graph:

IS(m) =return n ¢
Moreover, there exist two deductions

(P,p,n) € [G]*
(6(P,n),n,m) € [G]*

and by induction hypothesis a reachable stack so >* s:p:n € (P,p,n). By lemma
4.9, there exists so >* s:p:n:m representative of (§(P,n),n, m). By the return rule
s:p:n:m > s:p:n’. By definition of the equivalence relation, [s:p:n] = (P, p,n) and the
property holds for return nodes.

check node Let (P,p,n') € [G]# be deduced by the check rule. The following
node and edge belong to the flow-graph:

IS(n) = check(y;) n -§n'

Moreover, there exists a deduction (P,p,n) € [G]# such that (P,p,n) F v;. By
induction hypothesis, there exists a reachable stack so >* s:p:n € (P,p,n). Since
(P,p,n)  ~; it follows from Lemma 4.6 that s:p:n F ;. As a result, by check rule
s:p:n > s:p:n’ and by equivalence definition, [s:p:n'] = (P,p,n’). We conclude that
the property holds for check nodes. This concludes the completeness proof.

4.6 Complexity of the verification method

Definition 2 directly translates into an iterative algorithm that calculates [G]# by re-
peatedly applying the inference rules until no new abstract state can be added. The
number of iteration steps for constructing [G]# is bounded by the size of the set of
abstract states. An upper bound on the size of this set can be determined as follows.

Let Node be the number of nodes in the control flow graph, Call be the number of
call nodes in the flow graph and Check be the number of check nodes in the program.
Let furthermore GP be the size of the automaton describing the global property to
verify. Then the number of possible (abstract) states is bounded by

Calls x Nodes x 2"k « G P.
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The exponential factor comes from the fact that there are two states in the automaton
corresponding to a check node in the program and that each check node gives rise to an
automaton that tells whether the given property at that check node is satisfied or not.
A first reduction of the state space would be to have one automaton for each check
property such that check nodes with the same property share the same automaton.
Furthermore, it should be noted that the number Check of check nodes is usually
much smaller than the size of the program. The example that we present in Section 6
shows that the upper bound given above is not very accurate. It predicts in the order of
ten thousand states for the example whereas the real number is twenty-six. Thus even
a relatively security-intensive program as the one used in the example (see Figure 9)
only explores a relatively small part of the state space.

The number of states in [G]# reflects quite accurately the number of different com-
binations of permissions that different parts of the program have. In the extreme case
of all code having the same set of permissions, the exponential factor in the formula
above can be replaced by 1 since none of the automata change state. As the program
traverses more and more protection domains (and hence the set of held permissions
changes more frequently) more and more of the abstract state space will be explored.
Thus a program with a rich security structure will be more complex to verify, as one
would expect.

5 Application to the Java Development Kit

The Java Development Kit JDK is one of the most prominent proposals for language
based security management. In this section we show how the JDK 1.2 security mecha-
nisms can be described in our framework. The next section provides an illustration of
the model through an electronic commerce example.

The JDK 1.2 security model assigns protection domains to code based on its sig-
nature and defines the security property as a global assignment of permissions to pro-
tection domains. The virtual machine does not verify the permissions itself, but the
standard library provides the special class AccessControl ler with a number of
security related methods. Of these, checkPermission verifies that a given permis-
sion is granted in the given context, and throws an exception if not. For a permission to
be granted, all the methods on the call stack must have the permission granted. As this
is too restrictive in general, the ability is provided to mark certain calls as privileged,
which temporarily discards all of the previous callers from a permission checking point
of view.

The assignment of a protection domain to a given piece of code means that each
node in the corresponding graph belongs to a protection domain. We stipulate that
a node satisfies the property “has permission P” if it belongs to a protection domain
with permission P. Furthermore, a node corresponding to a privileged call is assigned
the special property Priv. However, being privileged or not is a dynamic property in
Java 1.2 [12, 15], enabled with the method call beginPrivileged and disabled
with the method call endPrivileged whereas in our model it is a static property
of the code. We make the assumption (true of all the examples we have seen) that we
can statically identify the privileged code, thus disallowing calls to endPrivi leged
under dynamic control. Calls to beginPrivilegedand endPrivileged disap-
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pear in our model, but the nodes delimited by the two are recorded as satisfying the
property Priv).

In the latest version of the JDK (2.0), the begin-/endPrivileged pair has been dep-
recated and replaced by the method doPrivileged. The doPrivileged method
is a safer way of designating parts of code as privileged compared to the earlier be-
gin/endPrivileged blocks where special care had to be taken to make sure that end-
Privileged was always called appropriately (notably in the presence of excep-
tions). A call to doPrivileged takes as argument an object of a class that im-
plements the interface PrivilegedAction. This interface contains one method,
run, which is responsible for calling those methods that are to be executed in priv-
ileged mode. In order to handle a call doPrivileged(0) where O is of class C
which implements the interface Privi legedAction, the initial control flow anal-
ysis must represent such a call by a privileged call node (i.e., a call node having the
permission Priv) that has a call edge to the run method of class C.

A call to checkPermission(Perm) from class AccessControl ler can
then be modelled by the instruction check(JDK (Perm)) with JDK as defined at the
end of Section 3.3.

5.1 Constructing the control flow graph

To obtain the graph corresponding to a Java program, its code is transformed into basic
blocks and everything but method calls is abstracted away. As indicated in Section 2,
the construction of the call edges in the control flow graph uses a data flow analysis
that for each variable finds an over-approximation of the classes of the objects that are
being stored in the variable. For each call node n corresponding to a virtual method
call of the form X_.m() and for each possible class C of the objects stored in X we

introduce an edge n o¢ m 10 the entry nodes of the method named m in C. A number
of such analyses have been proposed. The simplest analysis approximates the set of
possible classes by all the subclasses of the declared type for the variable. A simple
improvement, called rapid type analysis [2] was proposed by Bacon and Sweeney. It
consists in intersecting the set of subclasses with an approximation of the set of classes
that are actually being instantiated during execution. This analysis can deal with large
programs and is generally considered to give acceptable results. These analyses do
not consider the data flow of the program. This aspect is taken into account in the
constraint based analysis proposed by Palsberg and Schwartzbach [26, 25]. In its basic
formulation, the analysis does not take the sequential control flow of the program into
account since it only calculates one global approximation for each variable. Thus its
precision can be further improved by distinguishing between different occurrences of a
variable, rendering the analysis flow-sensitive as proposed by Pande and Ryder [27]. A
prototype implementation of the verification technique [32] has been developed using
the flow-insensitive constraint based analysis, adapted to take the visibility modifiers
of Java into account. The next section describes a small example that was analysed
automatically by this prototype.
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1 public class ControlledVar {

2 private float var;

3 void wite(float new) {

4 AccessControl | er.checkPermnm ssion(Wite);
5 var = new,

6 }

7 float read() {

8 AccessControl | er. checkPerni ssi on(Read) ;
9 return var;

10 }

1 '}

Figure 5: The system code (System domain)

6 Electronic commerce example

In this section we illustrate the concepts involved through an electronic commerce
example. Four protection domains (corresponding to four principals) are involved.
They are called System, Provider, Client, and Unknown:

e \We assume the system (Figure 5) supplies code to implement a controlled float-
ing point variable. This variable has entry points for read and write op-
erations, protected with a check for the respective permissions. The system
also supplies a main method (not shown), serving as an initial entry point to the
application.

e Using the controlled variable, the service provider builds an account manager
(Figure 6) with a deb it transaction and a boolean query method canpay. For
this to work, we assume that the provider is granted the Write, Read, Debit,
and the Canpay permissions. The debit and canpay methods call read
and write in a privileged mode because they can be called by clients which do
not have the permission to call read and write directly (i.e., which are not
granted the Read and Wr i te permissions).

e Completing the application, the client builds an application on top of the account
manager (Figure 7). We do not detail the application, but the idea is one of an
interactive front-end to the account. The client is assumed to be granted the
Debit and the Canpay permission.

e To illustrate the handling of illegal code, trying to execute unauthorised opera-
tions, we include an “intruder” (Figure 8) without any permission.

6.1 Translation of the example into our model

From the code for the above example, we derive the graph G g¢ as outlined in the
previous section. The result is shown in Figure 9. Although the methods have no
representation in the graph, we have clustered the nodes in boxes according to their
method of origin. Furthermore, boxes are coloured according to the protection do-
mains to which its nodes belong. The dotted edges are transfer edges (TG), while the
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14
15
16
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20
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

public class Account Man {

}

private Controll edVar bal ance;
public bool ean canpay(fl oat amount) {
AccessControl | er. checkPer n ssi on( Canpay) ;
bool ean res = fal se;
try {
AccessControl | er. begi nPrivil eged();
res = bal ance.read() > anount;

} finally {
AccessControl |l er.endPrivil eged();

}

return res;

}

public void debit(float anount) {
AccessControl | er.checkPern ssion(Debit);
if (this.canpay(anmount)) {

try {
AccessControl | er. begi nPrivil eged();

bal ance. wri te(bal ance.read() - anmount);

} finally {
AccessControl |l er.endPrivil eged();
}
} else ...

}

Figure 6: The account manager code (Provider domain)
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37 public void spender() {

38 float spend = ...;

39 i f (account. canpay(spend)) {
40 account . debi t (spend) ;

41

42 spender () ;

43 }

Figure 7: The application code (Client domain)

44 public void clyde() {

45 account . debi t (50000000) ;
46 clyde();
47 }

Figure 8: An uncertified application (Unknown domain)

solid edges are call edges (CG), obtained through a class analysis. The three encircled
nodes correspond to code executed as privileged.
The four protection domains partition the set of nodes as follows:

Client = ng, N4, N5

Provider = mng,...,N15

System = ng, n1, N2, N1, N7, N18, N9
Unknown = mng, ny

Each node in the graph G g satisfies a property corresponding to its protection do-
main, plus the property Priv if it appears within a privileged section. We use the fol-
lowing conventions for naming node properties: belonging to a Java protection domain
Dom means satisfying the property D pom,, having a Java permission Perm means sat-
isfying Pperm. Furthermore, we write E,,.;, for the property which is true only for
nodes of the Java method meth. The properties associated with each protection do-
main are:

D ciient = Ppepit N PC(mpay
DProm'der = PDebit A PCanpay A
Pread N Pwrite
DSystem = PDebit A PCanpay A
Pread N Pwrite
Dynknown = True

In addition, the nodes ng, n13, and n14 are privileged i.e., satisfy the property Priv.

6.2 Verification of security properties

As a global statement about the security of the system, we state that all the calls lead-
ing to a modification of the balance must possess the Debit permission and all the
calls leading to disclosure of the balance must possess the Canpay permission. This
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n0: cal |

mai n
nl: call
spender el yde
V4 RN
n3: pall n6:_caH
v\ 1’\
n4:.caII n7: cal
A\ 7
n5: call
canpay debi t

y 4
n8: check(JDK(PCanpay))

"K\\\\\\\\

™~

A
nl0: return

RN .
nll: check(JDK(PDebit))

nl2: call

nl5: return

r ead

wite

/
nl6: check( JDK(PRead))

nl7: return

n18: check(JDK(PWite))

nl9: return

Figure 9: The Derived Graph Gg¢
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true

—“Ewrite

Figure 10: Automaton associated with (G(=Eyyrite) V (Ppebit U Eyrite))

—Perm

e —(Priv A Perm)

Perm Priv A Perm

Figure 11: Automaton associated with JDK (Perm) = G((X(F Priv)) V Perm)

property is expressed as follows in our language:

QS = (G(_'Ewrite) \ (PDebit U Ewrite)) A
(G(_‘Eread) \ (PCanpay U Eread))-

In other words, either there are no writes (resp. reads) or all the code leading to the
write (resp. the read) has the Debit (resp. Canpay) permission. The first conjunc-
tion of the property is modelled by the four-state deterministic automaton given in
Figure 10. All the checks occurring in Gg¢ are of the form check(JDK (Perm))
with Perm a permission. JDK (Perm) was defined in Section 3 as

JDK (Perm) = G((X(F Priv)) V Perm).

Such a property is modelled by the two-state deterministic automaton in Figure 11.
The equivalence classes in the automaton [G gc]# are of the form

((S CanPay> S Debit> S Read» S Writes Spuyriter S¢read)’ m, n)

where e.g., the component s cqnpay IS a state in the automaton modelling the property
JDK (P canpay). For example, the equivalence class

((1’ 17 1, 17 2, 2),n6,n11)

belongs to the set [Grc]#, meaning that it is possible to reach node n1; via node
ng With the automata corresponding to the check nodes in the states (1,1,1,1) and the
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automata corresponding to each of the conjuncts of the global security property both
in the state 2. All in all, the set [Grc]* contains 26 equivalence classes that all satisfy
the property ¢ according to Definition 4.5. These equivalence classes are listed in
Appendix A.

This program is too defensive though, and can be optimised by eliminating the
check in canpay because no path leading to node ng pass through code without the
Canpay permission. Likewise, the checks in write and read are redundant: since
all traces leading to n1g (the entry node of wr ite) must end in a stack of the following
form (using regular expressions to express the infinite set)

n1:n5*:n4:n14:n18|n2:n7*:n6:n14:n18.

Now, the condition checked at nig is JDK (Pwrite) = G((X(F Priv)) V Pwrite)-
Pwiie is trivially satisfied for all the above nodes, except ng and nz, but since the
node n14 is privileged X (F Priv) is satisfied for node ng and n7 in the possible traces
above. Furthermore, an inspection of the equivalence classes reaching node n1g shows
that this check does not cut any execution path (the JDK (P yyit) @utomaton remains
in an accepting state). Thus it is safe to optimise the program by removing this check.
Finally, the analysis can show that the check in debit is necessary since the
unauthorised user possesses a link to the method and may potentially try to use it.
Formally, analysing the program without this check will find an equivalence class

((07 2a 2)a ng, an)

which violates the property. The stack ng;n1 : ng : n12 : ng : nig IS a representative
of this equivalence class and corresponds to the illegal path ng : n1 : ng : n11 : N2 :
ng : ng : nig arising from the unauthorised user trying to invoke the deb it method.

7 Related work

7.1 Specifying security properties

Schneider [30] argues that enforceable security properties should be identified with
safety properties over sets of traces and proposes security automata as a formalism
for defining security properties. Security automata are a class of Biichi automata that
define what are the legal sequences of actions that a system can take. In the work cited
above, Schneider uses them to monitor an executing system such that an action about
to be executed can be prevented if it is deemed illegal by the security automaton. This
is a different usage of the security automata compared to the work reported here since
Schneider uses the security automata for the dynamic monitoring of programs whereas
we are interested in proving statically that a property is verified.

Two recent articles deal with incorporating security automata into programs. Col-
combet and Fradet [7] consider the problem of inserting operations on a security au-
tomaton into a program such that the automaton monitors the execution and hence can
enforce that the program respects the policy described by the automaton. In partic-
ular, they show how to optimise these operations in order to minimise the overhead
associated with enforcing the security policy.
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Walker [37] proposes a program logic in the shape of a dependent type system for
proving that a program instrumented with security automaton-operations and run-time
checks respects a given policy. The primary purpose of this logic is to certify programs
(in the sense of proof-carrying code [24]) by providing sufficiently many type annota-
tions for a type checker at a foreign host to be able to verify that an imported program
respects a given policy. Such a type-based approach is likely to be better suited for the
kind of modular verification that is needed for verifying mobile code although some
initial work on annotating programs with information for directing a flow analyser in-
dicates that this is feasible approach to “analysis-carrying code”. [29]. It should be
noted, though, that the type inference problem for the type system proposed by Walker
still requires to be solved (Walker doesn’t provide an algorithm). In contrast, our flow
analysis is implemented by standard iterative fixpoint algorithms.

7.2 Formalising Java stack inspection

There is a substantial body of work on formally understanding Java and its virtual
machine but the literature on security mechanisms of Java, and especially JDK 1.2 is
sparse. Wallach, Balfanz, Dean, and Felten [39] provides an informal but thorough
treatment of the security architectures proposed for Java. In a later paper Wallach and
Felten [40] formalise the Java stack inspection using a belief logic. The paper is based
on the security mechanisms as implemented in Netscape, which can be seen as an ex-
tension of the JDK 1.2 mechanisms, allowing to grant specifically named permissions
to a piece of code. Granting permission P to code C; adds the belief statement Ok (P)
to the set of beliefs held in the current stack frame, and calling code C5 records the
beliefs of the earlier stack frames by adding the statement C says Ok(P) to the be-
lief set for the stack frame for Cs. In this way, the belief set of a stack frame encodes
the control stack together with all the permissions granted to the stack frames in it.
Deciding whether Ok (P) holds at a given stack frame is done by a decision procedure
that searches the stack frame for a statement C; says C» ... C,, says Ok(P) where
all of the C; have the permission Ok(P).

The belief logic of Wallach and Felten has its origin in a calculus of principals pro-
posed by Abadi et al. [1]. Despite this previous application to the modelling of access
control security, it is not evident that this is the ideal formalism for reasoning about
stack inspection and [40] does not argue this point. The logic does complicate the cor-
rectness proof—indeed the authors can only conjecture that their decision procedure
is complete for the logic. Furthermore, its correctness is only argued with respect to
an informal operational semantics. It would be interesting to investigate whether it is
possible to use an abstract operational semantics in the style that we have presented
here to prove that this models exactly Java stack inspection. Using an abstract seman-
tics should make the proof easier compared to using a concrete, complete semantics.
A step towards this is taken in chapter 7 of Wallach’s thesis [38]. Wallach’s thesis con-
tains a formal proof of equivalence but it is still with respect to an informal operational
semantics.
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7.3 Reduction of infinite-state transition systems

We can distinguish two main approaches to the reduction of infinite-state transition
systems. The first one was proposed by Wolper [42] who shows that for data-independent
reactive programs (i.e. programs that only move data around without performing any
operations on them) over infinite data domains, it is possible to reduce an infinitary
propositional LTL property to a finite property expressed over a finite data domain.
The data independence of the program guarantees that validity of the reduced property
implies validity of the original property. Jonsson and Parrow [18] show that bisimula-
tion between infinite-state CCS terms is decidable if these terms are data-independent
and have finite-state control components. Dam [8] proves that model checking a modal
mu-calculus property over an infinite-state pi-calculus agent only needs to explore a fi-
nite (property-dependent) part of the state space, provided that the agent has finite con-
trol (no parallel composition in recursively defined processes). In comparison, when
these works assume that the programs to be checked have a finite number of control
states, we prove that for a given property the infinite set of control states (stacks) can
be abstracted to a finite set on which the property can be verified without loss of pre-
cision. Furhtermore, these works do not apply directly to our framework due to the
specific check operations of our model and the two-level nature of our logic.

The second approach does not impose restrictions on the programs to be verified
but considers the preservation of a whole fragment of the logic used, and provides
properties that an abstraction must satisfy in order for model checking on the reduced
model to be complete. Loiseaux et al. [22] provide criteria for deciding when an ab-
straction on the states in a transition system preserves formulae in particular fragments
of the mu-calculus. More precisely, they show how an abstraction function on the set
of states (formalised as a Galois connection) can be used to obtain an abstract tran-
sition system with the property that every formula in the O-fragment of the modal
mu-calculus can be checked on the abstracted system. Cleaveland, lyer and Yankele-
vich [6] introduce democratic Kripke structures that can be obtained from ordinary
Kripke structures by replacing the transition relation by two transition relations: a
liberal (overestimating the possible transitions) and a conservative (underestimating
the possible transitions). These permit to obtain a safe checking algorithm for CTL*-
formulae by using the liberal relation when checking universal path properties and the
conservative relation when verifying existential properties. The same idea underlies
the work of Dams, Gerth and Grumberg [9] that present an abstract interpretation-
based framework for reducing transition systems while preserving validity of the full
mu-calculus.

Compared to the approach reported in this article, the main difference is that these
works consider abstractions that preserve whole fragments of formulae. Furthermore,
the main emphasis is to provide principles for the safe abstraction of transition systems
in model checking. Our method, on the other hand, provides a concrete abstraction
that is dependent both on the program to be analysed and the property to be verified.
While less general, the advantage of this is that we obtain a method that is both sound
and complete, whereas the above cited works only obtain abstractions that are sound.
It should be noted that the logics studied in the works cited above are more expres-
sive that the logic considered in this article. The extension of our technique to these
stronger logics remains to be done.
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8 Conclusions

We have presented a security-related program model and a formalism for specifying
control flow related security properties. As shown in Section 3, the framework is ex-
pressive enough to specify a variety of well-known security properties; in particular, it
can express the sandbox model of the original Java security architecture as well as its
extension based on stack inspection. Furthermore, we have proposed a fully automatic
method for verifying that a particular program satisfies a given security property. The
method is based on a reachable-states analysis of an abstraction of the program. The
distinctive feature of this verification method is that it is complete for the set of prop-
erties considered here. The soundness and completeness of the verification method
has been proved formally. Combined with a safe control flow analysis such as rapid
type analysis [2] or the constraint based analysis of Palsberg and Schwartzbach [26]
this provides a complete proof of the verification technique. We have then shown how
this verification method can be applied to analysing programs written using the new
Java 2 security architecture. Our work thus contributes to bridging the gap between
abstract specifications of global security properties and their implementations using
the security-checking facilities of a programming language.
There are several directions in which this work should be extended:

e The results described here are limited to security properties expressed in terms of
the control flow and the call graph of the program. Hence, there are a number of
properties that cannot be formalised in this setting. Among these are properties
concerning the flow of classified information [11, 36] and the detection of covert
channels [19]. One direction in which we intend to extend this work is to include
data flow as well as control flow information in our abstract model of programs.
For Java programs, the control flow analysis is essentially a data flow analysis,
so some of this information is already available in that case. This would allow us
to lift the restriction to purely control flow related properties, but the verification
algorithm has to be extended to deal with data flow dependencies.

e Some properties are more naturally expressed in terms of the complete execu-
tion trace (rather than embedded calls). This is the case for example with the
Chinese wall property [5] that dynamically prohibits certain accesses depending
on accesses performed in the past. It would be worth examining how to extend
the reduction underlying the verification technique presented here to incorporate
this kind of properties.

e The program model assumes that all methods are available from the beginning.
This means that dynamic class loading can be handled only by re-analysing
every time a new class is loaded. It would be desirable to modularise the verifi-
cation such that it can be done in an incremental fashion. Modular control flow
analysis is needed for this, and some progress has been done in this area [3] but
this remains largely an open area of research. The key insight to achieve this
goal could be to derive a set of constraints that are required to ensure a given
property (rather than a yes/no answer).

Acknowledgements: Thanks are due to Thomas Colcombet for numerous discussions
about automata-based model checking.
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Analysis of the electronic wallet

The analysis of the electronic wallet example calculates the following set [G pc]* of
equivalence classes of reachable states:
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((0,0,0,0,0,0),n9,m1)
((17 ,1,1,2, 2)7”6777’11)7
((O, 0, O, 0, O, 0),n9,n16),
((07 0,0,0,0, 0),7’11,7’15),
((O, 0, ]., 1, O, 0),’)?,4,’)7,11),
((O, 0, 1, 1, O, 0),7’L4,7’L12),
((O, 0, ]., 1, O, 0),’]7,12,7110),
((0,0,0,0,0,0),n13,n17),
((07 05 07 05 07 0)7 N4, n19)7

((0,0,0,0,0,0),n1,m6),
((0’ 0,1,1,0, O)a n37n8)a
((0,0,0,0,0,0),n9,n17),
((O’ 0,0,0,0, O)a n17n4)a
((0, O, 1, 1, 0, O), n5,n5),
((O, 0, 1, 1, O, 0), nlz,ng),
((0, 0, 1, 1, 0, O), n4,n13),
((0,0,1,1,0,0), n4,m14),
((0’ 0,1,1,0, O)a n47n15)1
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