
EAAI 2006

A PCC Architecture based on Certi�ed
Abstract Interpretation

Frédéric Besson and Thomas Jensen and David Pichardie

Irisa, Campus de Beaulieu, F-35042 Rennes, France

Abstract

Proof-Carrying Code (PCC) is a technique for downloading mobile code on a host
machine while ensuring that the code adheres to the host's security policy. We
show how certi�ed abstract interpretation can be used to build a PCC architecture
where the code producer can produce program certi�cates automatically. Code
consumers use proof checkers derived from certi�ed analysers to check certi�cates.
Proof checkers carry their own correctness proofs and accepting a new proof checker
amounts to type checking the checker in Coq. Fixpoint compression techniques
are used to obtain compact certi�cates. The PCC architecture has been evaluated
experimentally on a byte code language for which we have designed an interval
analysis that allows to generate certi�cates ascertaining that no array-out-of-bounds
accesses will occur.

1 Introduction

Proof-Carrying Code (PCC) is a technique for downloading mobile code on a
host machine while ensuring that the code adheres to the host's safety policy.
The basic idea is that the code producer sends the code with a proof (in a
suitably chosen logic) that the code is secure. Upon reception of the code, the
code consumer submits the proof to a proof checker for the logic. Thus, in
the basic PCC architecture, the only components that have to be trusted are
the program logic, the proof checker of the logic and the formalisation of the
safety property in this logic. Neither the mobile code nor the proposed safety
proof have to be trusted.

In his seminal work, Necula [15] axiomatises the program using a Hoare-like
logic. For a given safety policy, this logic comes together with a veri�cation
condition generator (VCGen) that generates lemmas, the proofs of which are
su�cient to ensure the property. For each lemma, a machine-checkable proof
term has to be generated by the code producer. One weakness of the initial
approach is that the soundness of the veri�cation condition generator is not
proved but taken for granted, having as consequence that �there were errors
in that code that escaped the thorough testing of the infrastructure� [16].

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Besson et al.

The foundational proof carrying code (FPCC) of Appel [2,3] gives stronger
semantic foundations to PCC by generating veri�cation conditions directly
from the operational semantics rather than from some program logic, but the
proofs are accordingly more complicated to produce. An alternative approach
is presented by Nipkow and Wildmoser [20] who prove the soundness of a
weakest precondition calculus with respect to the byte code semantics for a
reasonable subset of Java byte code. Veri�cation conditions are proved using a
hybrid approach that use both trusted and untrusted provers. An example of a
trusted prover is the byte code veri�er that Klein and Nipkow have formalised
and proved correct in Isabelle [10]. Untrusted provers are external static
analysers that suggest potential (inductive) invariants. These invariants are
then reproved inside Isabelle to obtain a transmittable program certi�cate.

Albert, Hermenegildo and Puebla have proposed to use the �xpoint gener-
ated by an abstract interpretation as the certi�cate. Their analysis-carrying
code approach [1] is a PCC framework for constraint logic programs in which
the checker veri�es that a proposed certi�cate is a �xpoint of an abstract
interpretation of the communicated program. This solves the problem of pro-
ducing the certi�cates automatically but is prone to the same objections as
those made against the initial PCC frameworki.e., how can the code consumer
be sure that the checker is semantically correct.

In this paper we show how to remedy this latter problem by developing
a foundational PCC architecture based on certi�ed abstract interpretation [5]
which is a technique for extracting a static analyser from the constructive
proof of its semantic correctness. The technique produces at the same time an
analyser and a proof object certifying its semantic correctness. We describe
how this leads to an infrastructure that allows to download customised proof-
checkers carrying their own correctness proof (Section 2). These proof checkers
are derived automatically in a functorial way from a certi�ed analysis.

An important issue in PCC is that of optimising (i.e., minimising) the
size of certi�cates. In the context of abstract interpretation-based PCC, this
amounts to the compression of �xpoints, as e.g. it is done in lightweight
byte code veri�cation. In Section 4 we propose a fully automatic �xpoint
compression algorithm that generates compressed certi�cates from the results
of untrusted static analysers.

We have evaluated the feasibility of the approach and the e�ciency of the
�xpoint compression on the problem of communicating proof that a byte code
program will not perform any illegal array accesses. As part of this experiment
we have de�ned (and certi�ed) an interval analysis for byte code that com-
bines the standard interval-based abstract interpretation with a modicum of
symbolic evaluation, resulting in a novel abstract domain of lattice expressions
(Section 3.3). This extension is required in order to have a su�ciently precise
analysis; at the same time it shows that complex analyses are within reach of
certi�cation and hence can be used for foundational, abstract interpretation-
based PCC.

2

Besson et al.

Producer side

certi�ed
checker

untrusted
post-�xpoint solver

untrusted
post-

�xpoint
compressor

Consumer side

semantics
+ safety
policy

certi�ed
checker

certi�ed checker

(Coq �le)

Coq type checker
+ Coq extraction

extracted
checker Safe ?

post-�xpoint

program

certi�cate

Fig. 1. PCC architecture

2 Proof Carrying Proof Checkers

In the following, we propose an extensible PCC architecture that allows to
download dedicated, certi�ed proof-checkers safely. The architecture, sum-
marised in Figure 1, is bootstrapped by the code consumer with a general
purpose proof checker, here Coq [7]. The certi�cation of a program is done
using a two-step protocol between the code producer and the code consumer.
In the �rst step, the producer queries the consumer in order to know whether
it possesses the relevant proof-checker. If not, the producer sends the checker
together with its soundness proof. This soundness proof is then veri�ed auto-
matically by a general purpose proof checker (here, the Coq type checker) and
if veri�cation succeeds, the now certi�ed checker is installed. In this way the
architecture combines the advantages of both a trustworthy core proof checker
and �exible specialised proof checkers. Once the proof checker has been in-
stalled, the consumer is ready to download the program of the provider. As
it is customary in PCC, the code producer sends the program packaged with
a certi�cate to be checked by the previously downloaded proof checker.

The producer and consumer have to agree on a formal meaning of what it
means for a program to be safe. This is done by providing a Coq speci�cation
of the semantics (here, a small-step operational semantics) of the program
together with a semantic de�nition of the security property. We restrict our
attention to safety properties that must hold for all reachable execution states.
More precisely, the Coq speci�cation provides:

• the type of programs Pgm,

• a semantic domain State,

• a set of initial semantic states : S0 ⊆ State

3

Besson et al.

• for each program, an operational semantics →p⊆ State× State,

• for each program, a set of states that respect the security policy: Safep ⊆
State

As usual, we write →∗
p for the re�exive transitive closure of the transition

relation of the program p. The collecting semantics of a program p is de�ned
as the set of all reachable states by →p, starting from an element of S0

JpK =
{

s ∈ State | ∃s0 ∈ S0, s0 →∗
p s

}

De�nition 2.1 A program is safe if all its reachable states are safe.

JpK ⊆ Safep

Given a program p, the code producer has to provide a machine-checkable
proof that p is safe. These proofs can be tedious and time-consuming to
produce by hand. In this paper, we show how to use abstract interpretation
to construct program certi�cates in a fully automatic way. In this approach,
programs are automatically annotated with program properties (elements of
abstract domains) together with a reconstruction strategy (to be described in
detail in Section 4). A reconstruction strategy consists of a series of steps that
allow to verify that the program properties form a program invariant that
implies the security policy.

The certi�ed checkers implement the signature expressed by the Coq mod-
ule Checker in Figure 2. This module �rst contains a de�nition of the format
of certi�cates. The function checker takes two arguments: a program P and
a candidate certi�cate cert generated by an untrusted external prover. If the
checker function returns true, the companion theorem checker_ok ensures
that the program is safe, as de�ned in De�nition 2.1. Thus, the successful type
checking of a module against the signature Checker proves that the checker
is correct.

Module Type Checker.
Parameter certificate:Set.
Parameter checker : program → certificate → bool.
Parameter checker_ok : ∀ P cert,
checker P cert = true → JPK ⊆ (Safe P).

End Checker.

Fig. 2. Interface for certi�ed proof checkers

In this paper we propose a generic method to construct such a certi�ed
checker from a certi�ed static analysis. Section 3 presents the notion of certi-
�ed static analysis. In Section 4 we de�ne a Coq functor which constructs a
module of type Checker from any certi�ed analysis.

4

Besson et al.

3 Certi�ed abstract interpretation for PCC

The notion of certi�ed analysis is based on previous work on programming
a static analyser in Coq [5,17]. We recall the main components of such a
formalisation and explain how they are used for proof carrying code.

3.1 Certi�ed static analysis

A certi�ed analysis is a Coq function analyse ∈ Pgm → bool which for a given
program p either proves the safety of p (and returns true) or fails:

∀p ∈ Pgm, analyse(p) = true ⇒ JpK ⊆ Safep

The analyser and its Coq correctness proof are built following four main steps.
We stress that the following domains, functions and relations are all Coq ob-
jects that for presentational purposes are written using ordinary mathematical
notation.

(i) An abstract domain
(
State],v],t],u]

)
with a lattice structure is intro-

duced, v] modelling the relative precision of elements in State]. In the
concrete world, property precision is modelled with the partial order ⊆.
The concrete and abstract worlds are linked by a concretisation function

γ :
(
State],v],t],u]

)
→ (P(State),⊆,∪,∩)

An abstract object s] ∈ State] is said to be a correct approximation of a
concrete state s ∈ State if and only if s ∈ γ(s]) 1 .

(ii) An abstract semantics is then speci�ed as any post-�xpoint of a well-
chosen abstract function F]

p ∈ State] → State]. The correctness of this
speci�cation must be proved by establishing that all post-�xpoint are
correct approximations of the concrete semantics.

∀p ∈ Pgm, ∀s] ∈ State], F]
p(s

]) v] s] ⇒ JpK ⊆ γ(s])(1)

(iii) A post-�xpoint solver solve ∈ Pgm → State] is then de�ned, based on
�xpoint iteration techniques.

∀p ∈ Pgm, F]
p(solve(p)) v] solve(p)(2)

(iv) An abstract safety test Safe]
p ∈ State] → bool is de�ned in the abstract

world. For all programs p, if an abstract safety test succeeds on a correct
approximation of JpK, then p is safe.

∀p ∈ Pgm,∀s] ∈ State], JpK ⊆ γ(s]) ∧ Safe]
p(s

]) = true ⇒ JpK ⊆ Safep(3)

1 Because we only focus on soundness of the abstract interpreters, the classic notion of
Galois connection [9] is not mandatory here. Instead we require γ to be a meet morphism,

i.e. γ(s]
1 u] s]

2) = γ(s]
1) u γ(s]

2). This assumption is equivalent to the existence of the

corresponding Galois connection when
(
State],v],t],u]

)
is complete and u] denotes the

general greatest lower bound (on sets instead of two values).

5

Besson et al.

Together, these proofs assert that Safe] ◦ solve is a correct analyser.

Step (2) constructs a post-�xpoint that serves as certi�cate for showing
that the program is safe. However, for our PCC context it is important to
observe that it is only the existence of such a post-�xpoint that matters for
proving safety. Formally, by combining (1) and (3) we have that :

∀p ∈ Pgm, (∃s] ∈ State], F]
p(s

]) v] s] ∧ Safe]
p(s

]) = true) ⇒ JpK ⊆ Safep(4)

In particular, this means that for a proposed certi�cate s] ∈ State], our PCC
checker only has to test F]

p(s
]) v] s] ∧ Safe]

p(s
]) = true.

3.2 Certi�ed analysis for memory invariants

We now present the Coq de�nition of certi�ed analysis for languages where
the semantic domain is expressed as a set of reachable states, composed of
a control point and a memory State = Ctrl × Mem. The abstract domain
State] = Ctrl → Mem] attaches memory invariants to each control point of a
program. The certi�ed analysis interface is presented in Figure 3.

Module Type CertifiedAnalysis.
Declare Module AbMem : Lattice.

Definition AbState := Ctrl → AbMem.t.

Record Constraint : Set :=
{ target : Ctrl; expr : list AbMem.t → AbMem.t;
sources: list Ctrl }

Definition Verif_cstr (C:Cstr) (s] : AbState) : Prop :=

AbMem.order (expr C (map s] (sources C))) (s] (target C)).

Parameter gen_cstr : program → list Cstr.

Parameter genAbSafe: program → list (Ctrl*(AbMem.t → bool)).

Parameter analysis_correct : ∀ P s],

(∀ c, In c (gen_cstr P) → Verif_cstr c s]) →
(∀ pc check,In (pc,check) (genAbSafe P) → check(s] pc)=true)→
JPK ⊆ (Safe P).
End CertifiedAnalysis.

Fig. 3. The Coq signature of certi�ed static analysis

The �rst element of this signature is the lattice structure containing Mem].
The Coq lattice signature provides the standard de�nition of lattices (par-
tial order, least upper bound, greatest lower bound with their properties).
The carrier of the lattice is represented by AbMem.t and the partial order by

6

Besson et al.

AbMem.order. A number of lattice operations exist for designing new abstract
domains. As part of our certi�ed static analysis project, we have developed a
lattice library in Coq, containing base lattices (�nite sets, intervals, . . .) and
domain constructors (sum, product, function) that permit to construct new
abstract domains by composing these basic blocks [17]. Most of the proofs
follow standard lattice theory.

The abstract function F]
p previously presented now operates on the domain(

Ctrl → Mem]
)
→

(
Ctrl → Mem]

)
. Because the number of control points for

a given program is �nite, post-�xpoints of F]
p can be represented as solutions

of a constraint system:

{m]
1 w f1(m

]
1, . . . ,m

]
n) , . . . ,m]

n w fn(m]
1, . . . ,m

]
n)}(5)

A constraint
(
m]

pc w f(m]
1, . . . ,m

]
n)

)
is coded by a record of type Constraint

with three �elds: target contains the control point pc targeted by the con-
straint; expr computes the right-hand side of the constraint and sources con-
tains the list of control points which appear in the de�nition of f . Verif_cstr
is a predicate which de�nes when an abstract state satis�es a constraint and
gen_cstr is the constraint generation function which collects all constraints
of a program.

Because abstract states State] are of the form Ctrl → Mem], we can split
the abstract safety test Safe]

p into several local tests of the form

(pc, check) ∈ Ctrl× (Mem] → bool).

Each test is attached to a speci�c control point pc and ensures that no error
state can be reached by a one-step transition out of the state at control point
pc. For example, a safety test of array bounds checks would check the value of
the index on top of the operand stack before each array access instruction of a
byte code program. The check generation is realised by a function genAbSafe
which returns, for a given program, a list of local tests.

The last element of the signature is a proof analysis_correct that states
the global correctness of the constraint generator gen_cstr and the abstract
test generator gen_AbSafe. It is a direct specialisation of the property (4)
for our context. If an abstract state s] veri�es all the constraints generated
by gen_constr (i.e. is a post-�xpoint of F]

p) and ful�lls all safety checks

generated by gen_AbSafe (i.e. Safe]
p(s

]) = true), then the program is safe.

3.3 Case study: interval analysis for byte codes

To demonstrate the workings of our PCC framework and to test its feasibil-
ity we have developed an interval analysis for a simple byte code language.
The analysis is based on existing interval analyses for high-level structured
languages [8] but has been extended with an abstract domain of lattice ex-
pressions to obtain a similar precision at byte-code level. We give a succinct
description of the analysis and refer the reader to a companion technical re-
port [4] for a detailed description.

7

Besson et al.

The byte code instruction set contains operators for stack and local vari-
able manipulations and for integer arithmetic. Instructions on arrays permit
to create, obtain the size of, index and update arrays. The �ow of control can
be modi�ed unconditionally (with Goto) and conditionally with the family
of instructions If_icmpcond which compare the top elements of the run-time
stack and branch according to the outcome. Finally, there are instructions for
inputting and returning values. This language is su�ciently general to illus-
trate the novelties of our approach and perform experiments on code obtained
from compilation of Java source code. An extension to the object-oriented
layer would follow the lines of the certi�ed analysis for object-oriented (Java
Card) byte code already developed by Cachera et al. [5]. The formal semantics
of the language is standard and can be found in [4].

pgm ::= (pc instr pc)∗

instr ::= Nop | Ipush i | Pop | Dup | Ineg | Iadd | Isub | Imult

| Iload x | Istore x | Iinc x n | Newarray | Arraylength

| Goto pc | If_icmpcond pc cond ∈{eq,ne,lt,le,gt,ge}

| Iinput | Ireturn | Return

Interval analysis uses the set Intvl of intervals over Z = Z ∪ {−∞,∞}
to approximate integer values. The other kind of values are the references
to arrays. We abstract arrays by their size which is also represented by an
interval. The abstract domains for the analysis are de�ned as follows:

Intvl =
{

[a, b] | a ∈ Z, b ∈ Z, a ≤ b
}

Num] = Ref] = Intvl⊥

Val] =
(
Num] + Ref]

)>
⊥

Exp[Val]] = const n | var x | absval v] | unop op e| binop op e1 e2

Stack] = (Exp∗)>⊥

LocVar] = Var → Val]

State] = Ctrl →
(
Stack] × LocVar]

)
For each abstract domain de�ned above we build the corresponding Coq

lattice structure by simply combining lattice functors. We use here the lattice
library proposed in [17].

The novelty 2 of this analysis is the use of an abstract domain Exp[Val]] of
syntactic expressions over the base abstract domain Val] of abstract values. An
example of such an abstract element is binop + (var j) (const 42) which when
evaluated will result in the interval obtained by applying interval arithmetic
to the interval associated with local variable j and the constant 42. The

2 For structured languages, a similar technique was recently proposed by Antoine Miné [12].

8

Besson et al.

order imposed on Exp[Val]] is the order of the underlying lattice extended to
expressions by stipulating that two expressions are in the order relation if they
have the same term structure and if abstract values at a given place in the
term are related. The exact de�nition can be found in [4].

instrAtP(p1, Ipush n, p2) m]
p1

= (s]
p1

, l]p1
)

m]
p2 w

(
(const n) :: s]

p1 , l
]
p1

)
instrAtP(p1, If_icmplt p, p2) m]

p1
= (e2 :: e1 :: s]

p1
, l]p1

)

m]
p w

(
s]

p1 , Je1 < e2K]
test(l

]
p1)

)
instrAtP(p1, If_icmplt p, p2) m]

p1
= (e2 :: e1 :: s]

p1
, l]p1

)

m]
p2 w

(
s]

p1 , Je1 ≥ e2K]
test(l

]
p1)

)
Fig. 4. Constraint generation rules (examples)

Several constraint generation rules are presented in Figure 4. Among these,
constraints which model test-and-jump instructions are of particular interest
because they make use of the notion of backward abstract interpretation of
expressions [8]. It allows to restrict the destination state of the jump according
to the information obtained by the test. When a guard of the form e1 c e2

is veri�ed (with c a comparison operator and e1 and e2 some expression), the
current abstract environment l] is re�ned by Je1 c e2Ktest(l

]). The operator
J·K]

test ∈ LocVar] → LocVar] over-approximates the set of environments (l, h)
which ful�ll the guard e1 c e2.

Using the abstract domain Exp[Val]] of syntactic expressions over lattice
Val] has a signi�cant impact on the precision of the analysis (and hence on the
certi�cates that can be generated) because it allows to preserve information
obtained through the evaluation of conditional expressions. At source level,
a test such as j+i>3 provides information about the possible values of i
and j that can be exploited in the branches of a conditional statement. At
byte code level, this link between variables i and j is lost (even when these
corresponds to local variables in the byte code) because these values have to be
pushed onto the stack before they can be compared. Using lattice expressions
to abstract stack content enables the analysis to keep information such as that
a value is the sum of two variables. For details of the backwards analysis and
the lattice of lattice expressions, see [4].

4 Certi�cates for Static Analyses

A valid certi�cate is any object from which a checker can construct a proof
that there exists an abstract state s] ∈ State] which satis�es all the constraints
and passes all the abstract security tests. Given such an abstract state s], the
simplest certi�cate is the abstract state itself. The task of the checker is then

9

Besson et al.

reduced to verifying that s] satis�es all the constraints and passes all abstract
security tests. For a �xed number of program variables, such certi�cates are
linear in the number of program locations and can thus be checked in linear
time.

Both the running time and space consumption of this naive checking can
be improved considerably, notably by a better handling of basic blocks. For k
bytecodes, the certi�cate would contain k abstract memories, the checking of
which requires the computation of k transfer functions and k tests with the
v] order relation. For basic blocks, our optimized algorithm only requires a
single abstract memory (updated in-place) and saves the v tests. To achieve
this, the core of our optimised checker is not a post-�xpoint checker but a
post-�xpoint reconstruction algorithm which interprets certi�cates that encode
post-�xpoint reconstruction strategies consisting of lists of commands. Upon
success, the reconstruction returns a tagged abstract state which witnesses
the program safety. The Coq datatypes for strategy commands and tags are:

Inductive TagMem : Set :=
| Undef
| Hint (m:AbMem.t)
| Checked (m:AbMem.t)
| Done.

Inductive command : Set :=
| Assign (c:Ctrl) (m:AbMem.t)
| Eval (c:Ctrl)
| Drop (c:Ctrl).

The reconstruction starts from the unde�ned abstract state. It updates
tags and triggers local veri�cation conditions according to the current com-
mand:

• The command Assign(pc,mem) proposes an (untrusted) abstract memory
mem for control point pc. If pc is tagged Undef and mem veri�es the abstract
security checks, pc is tagged by Hint(mem).

• Eval pc commands to set the tag of pc. To do so, one computes the (least)
abstract memory mem which veri�es the constraints on control point pc.
· If pc is tagged Undef and mem veri�es the security tests, pc is updated
with the tag Checked(mem).

· If pc is tagged Hint mem’, and mem v mem’ then pc is updated with the
tag Checked(mem’).

• The command Drop(pc) marks pc with a Done tag as long as pc was
tagged Checked before. This allows to discard (garbage collect) abstract
memories not needed for the rest of the computation.

In any other case, the reconstruction fails. This algorithm is coded as a
Coq function reconstruct which takes as arguments a set of constraints, a
set of safety checks and a certi�cate, and returns a tagged abstract state if
the reconstruction succeeds. Otherwise, it fails. Because the reconstruction
algorithm is analysis independent, certi�cate checkers can be constructed in
a generic fashion from any certi�ed static analysis. This is expressed as a
functor

Module AIChecker (CA:CertifiedAnalysis) : Checker.

10

Besson et al.

...
Definition certificate := list command.
Definition checker (p:program) (cert:certificate):bool:=
reconstruct (CA.gen_cstr p) (CA.gen_AbSafe p) cert 6= Fail.
...

End AIChecker.

which takes as argument a CertifiedAnalysis (cf. Figure 3) and returns a
Checker, the interface of which was de�ned in Figure 2.

The success of our scheme depends on how easy it is to automate the
generation of certi�cates. In our setting, we use a standard chaotic (post)-
�xpoint iterator back-end of abstract interpretation based analysers to produce
a post-�xpoint. To obtain a certi�cate from a post-�xpoint, a reconstruction
strategy has to be devised. Our present strategy takes advantage of the graph
structure of the control �ow graph:

• Sequential graphs corresponding to basic blocks allow a straightforward
strategy which works in constant memory and alternates an Eval command
and a Drop command of the predecessor control point.

Assign(p0, m0); Eval(p1); Drop(p0) . . . Eval(pn); Drop(pn−1)

• For a directed acyclic graph (DAG), a strategy based on topological traversal
of the graph does not require any Assign command. It is possible to further
optimise this strategy by picking a traversal that allows to insert Drop

commands as early as possible, improving the memory usage of the checker.

• Reducible graphs allow a strategy that minimises Assign commands by
putting them at loop-headers. Given these loop-headers, the rest of the
graph can be decomposed into DAGs for which the DAG strategy applies.

The language of strategy commands can encode the lightweight byte code
veri�er of Rose [18]. In her algorithm, the evaluation order of the control
points is hard-coded so that control points are evaluated in increasing order
and values of the �xpoint are explicitly given for all loop-headers. The byte
code comes equipped with the value of the �xpoint at all program points that
are the target of a back-edge in the control graph. For an applet with n control
points of which q1, . . . , qk are targets of back-edges, the lightweight byte code
veri�cation strategy can be expressed in our strategy language as

Assignq1
; . . . ; Assignqk

; Eval1; . . . ; Evaln.

5 Implementation and experiments

In this section, we give some details of how the PCC architecture has been
programmed in Coq and Caml together with some benchmarks for certi�cate
generation done with this implementation. On the code producer side, nothing
needs to be certi�ed since the only obligation is to produce a certi�cate for the
given program. It is nevertheless natural to share the constraint generation

11

Besson et al.

function with the certi�ed checker. To get a working byte code analyser, it
su�ces then to solve the constraints with any (un-certi�ed) highly optimised
iterative �xpoint solver.

On the consumer size, the constraint generation function and the �xpoint
reconstruction algorithm belong to a module of type Checker as de�ned in
Section 2. It is in principle possible to execute the Coq de�nitions of the
checker within Coq but it would be rather slow. Instead, we use the Coq
program extraction mechanism to extract Caml functions from its Coq de�-
nition. This yields a Caml checker function to be applied to a program p

and a certi�cate cert. The use of the Coq extraction mechanism requires a
little care since the Coq extraction of functions is correct only if the extracted
function is evaluated on arguments that are well-typed in Coq (see [11] for a
formal statement). To avoid this pitfall, a certi�cate is coded up as a simple
bit-stream which is then parsed into a Coq structure by a Coq-type-checked
parser (details omitted).

We have tested our PCC framework on a number of array-manipulating
algorithms to check how the certi�cate generation behaves on byte codes gen-
erated by compilation of Java source programs. The whole Coq development,
including a working checker, is available for download 3 . The test programs
have been chosen because they are all array manipulation-intensive and hence
require precise certi�cates in order to show that they respect the security
policy. We have generated and checked certi�cates for three classical sorting
algorithms (bubble sort, heap sort and quick sort), the Floyd-Warshall algo-
rithm for shortest past computation, and algorithms for polynomial product
and vector convolution. For each algorithm, the improved interval analysis
described in Section 3.3 is su�ciently precise to be able to verify that all ar-
ray accesses are safe. Figure 5 presents some measurements pertinent to the
certi�cation: the size of the source and byte code, the size of the certi�cates,
the time for checking the certi�cates and the ratio between the number of con-
straints that an analyser had to evaluate to construct the certi�cate and the
number of constraints that the checker had to evaluate. It should be stressed
that the analyser used to construct the certi�cates uses e�cient iteration algo-
rithms based on widening and narrowing operators to accelerate convergence.
Appendix A give details of the analysis of bubble sort.

Two things are worth noting here. First, the size of the certi�cates is much
(sometimes an order of magnitude) smaller than the code it certi�es. Second,
the ratio between the number of evaluations of constraints used by the anal-
yser by far exceeds the number of evaluations used by the checker to verify the
certi�cate�sometimes by order of magnitudes. The six programs are moder-
ate in size but are su�ciently complex to show that the PCC infrastructure
can be used to generate compact, non-trivial program certi�cates which can
be checked more e�ciently than they can be produced.

3 http://www.irisa.fr/lande/pichardie/PCC/

12

http://www.irisa.fr/lande/pichardie/PCC/

Besson et al.

Program .java .class certi�cate checker analyser/

(bytes) (bytes) (bytes) (sec.) checker

BubbleSort 440 528 32 0.015 440/110

HeapSort 1044 858 63 0.050 8001/381

QuickSort 1078 965 124 0.060 8910/405

Convolution 378 542 52 0.010 460/92

FloydWarshall 417 596 134 0.020 23114/163

PolynomProduct 509 604 87 0.010 150669/133

Fig. 5. Experiments on various algorithms

6 Related Work

The VeryPCC project conducted by Nipkow et al. aims at providing a founda-
tional PCC framework veri�ed within the Isabelle/HOL theorem prover [20].
The core of the framework is a generic VCGen based on a weakest precon-
dition calculus proved correct with respect to the operational semantics of a
Java-like bytecode language. An important di�erence from our work is that
the VCGen works on programs annotated with loop invariants that have to
be re-proved in Isabelle. In this scheme, proof terms are Isabelle proof scripts
that have to be rerun. Tactics can boil down to proof search so the complexity
of the proof checking can be high. In contrast, by using an abstract interpre-
tation certi�ed within Coq, the analyser directly produces a proof (namely, a
post-�xpoint) that can be communicated and veri�ed e�ciently by the proof
checker.

The Mobile Resource Guarantee (MRG) project has also designed an Is-
abelle based PCC infrastructure. It aims at proving properties which guar-
antee that the resource consumption (e.g, space and time) of a code does not
exceed a given bound. To do that, they have proved inside Isabelle the sound-
ness of a powerful resource-aware type system. Once again, certi�cates are
Isabelle scripts. This work shares with ours the idea of installing a dedicated
proof checker that comes with its own correctness proof which can be veri�ed
with respect to an operational semantics. The approach described in [14] does
not propose a methodology for producing such proofs however, whereas we
are able to propose a methodology based on certi�ed abstract interpretation.
The actual certi�cate checking in [14] is done within Isabelle using dedicated
proof techniques and is not e�cient. Our use of post-�xpoints and their for-
malization in constructive logic allowed to obtain a proof checker that is both
certi�able and e�cient.

The Open Veri�er Framework [6] is a proposal to strengthen the trust in
the infrastructure without sacri�cing e�ciency. The soundness depends on

13

Besson et al.

a core (trusted) condition generator. For �exibility, specialised (untrusted)
condition generators can be downloaded and imported to enrich the platform.
The core is generating strongest postconditions; specialised components gen-
erate a weakening together with a machine-checkable proof that it is correct.
Our proof checkers can be understood as compiled specialised components.
Because their soundness is established once for all, it has the advantage that
these trusted components execute without any runtime penalty.

Albert, Hermenegildo and Puebla have proposed to use abstract interpre-
tation for automatically producing analysis-carrying code. In [1] they develop
a PCC framework for constraint logic programs in which a CLP abstract in-
terpreter calculates a program invariant (a �xpoint) that is su�cient to imply
a given security policy. The certi�cate is a �xpoint that is checked by a single
step of the abstract interpreter. The most notable di�erence with respect to
our approach is that their analysis is not certi�ed and hence must be trusted
by the code consumer. Our analysers are not part of the trusted computing
base because our FPCC architecture requires that the code producer transmits
proofs of their correctness.

Lightweight Bytecode Veri�cation developed by Rose [18] includes a com-
pression scheme for stack maps (that corresponds to our certi�cates). Their
stack map compression allows to evaluate certi�cates on the �y as constraint
generation proceeds. This leads to a hard-coded evaluation order that might
not be optimal. Our strategy-based algorithm is more �exible and accommo-
dates strategies that in certain cases are more e�cient.

7 Conclusions and Further Work

We have developed a foundational PCC architecture based on certi�ed static
analysis. Compared to other PCC proposals, this approach allows to employ
static analyses as certi�cate generators in a seamless and automatic manner,
without having to re-prove proposed invariants inside a given theorem prover.
The strong semantic foundations of the theory of abstract interpretation and
its recent formalisation inside the Coq proof assistant enables the construction
of a certi�ed proof checker from the certi�ed static analyses. Such certi�ed
proof checkers can then be installed dynamically by a code consumer who can
check the validity of the checker by type checking it in Coq.

Instead of sending explicit representations of certi�cates with a mobile
code, we encode certi�cates as strategies that the code consumer executes in
order to reconstruct a suitable post-�xpoint that will imply the given security
policy. Such strategies are generated from certi�cates and can be further tuned
to minimise memory consumption of the checker. Indeed, proof checkers only
need to verify the existence of a suitable post-�xpoint, without having to
re-create it in its entirety. This takes advantage of the garbage-collecting
strategies that we have de�ned.

The architecture has been implemented and tested with a certi�ed inter-

14

Besson et al.

val analysis of array-manipulating byte code in order to generate certi�cates
attesting that a given code will not attempt to access an array outside its
bounds. The interval analysis uses a novel kind of abstract domains in which
lattice expressions are mixed with abstract values. This symbolic represen-
tation allows to keep track of the expression used to compute a particular
abstract value�an information which is otherwise lost when compiling from
high-level languages to byte code. The lattice expressions add just enough
relational information to the otherwise non-relational interval analysis to deal
properly with the propagation of the information obtained from conditional
instructions. This analysis technique (which was already brie�y sketched in
[19]) should be of general interest to the analysis of low-level code. Further
along, it would be interesting to develop a certi�ed, truly relational analysis
based e.g., on octagons [13].

References

[1] Elvira Albert, German Puebla, and Manuel Hermenegildo. Abstraction-carrying
code. In Proc. of 11th Int. Conf. on Logic for Programming Arti�cial Intelligence
and Reasoning (LPAR'04), Springer LNAI vol. 3452, pages 380�397, 2004.

[2] Andrew W. Appel. Foundational proof-carrying code. In Proc. of 16th IEEE
Symp. on Logic in Computer Science (LICS '01), pages 247�258. IEEE, 2001.

[3] Andrew W. Appel and Amy P. Felty. A semantic model of types and machine
instructions for proof-carrying code. In Proc. of the 27th ACM Symp. on
Principles of Programming languages (POPL'00), pages 243�253. ACM, 2000.

[4] Frédéric Besson, Thomas Jensen, and David Pichardie. A PCC architecture
based on abstract interpretation. Technical Report RR�5751, INRIA, Nov. 2005.

[5] David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting
a data �ow analyser in constructive logic. In Proc. of 13th European Symp. on
Programming (ESOP'04), pages 385�400. Springer LNCS vol. 2986, 2004.

[6] Bor-Yuh Evan Chang, Adam Chlipala, George C. Necula, and Robert R.
Schneck. The open veri�er framework for foundational veri�ers. In Greg
Morrisett and Manuel Fähndrich, editors, Proc. of 2nd International Workshop
on Types in Languages Design and Implementation (TLDI'05). ACM, 2005.

[7] The Coq Proof Assistant. http://coq.inria.fr/.

[8] Patrick Cousot. The calculational design of a generic abstract interpreter. In
M. Broy and R. Steinbrüggen, editors, Calculational System Design. NATO ASI
Series F. IOS Press, Amsterdam, 1999.

[9] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed lattice
model for static analysis of programs by construction of approximations of
�xpoints. In Proc. of 4th ACM Symp. on Principles of Programming Languages,
pages 238�252. ACM Press, 1977.

15

http://coq.inria.fr/

Besson et al.

[10] Gerwin Klein and Tobias Nipkow. Veri�ed Bytecode Veri�ers. Theoretical
Computer Science, 298(3):583�626, 2002.

[11] Pierre Letouzey. Programmation fonctionnelle certi�ée � L'extraction de
programmes dans l'assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

[12] A. Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In VMCAI'06, volume 3855 of LNCS, pages 348�363. Springer, 2006.

[13] Antoine Miné. The octogon abstract domain. In Proc. of the 8th Working
Conference On Reverse Engineering (WCRE 01), pages 310�320. IEEE, 2001.

[14] Alberto Momigliano and Lennart Beringer. Certi�cation of resource
consumption: from types to logic programming. Assoc. for Logic Programming
Newsletter, 18(2), May 2005.

[15] George C. Necula. Proof-carrying code. In Proc. of 24th ACM Symp. on
Principles of Programming Languages (POPL'97), pages 106�119. ACM, 1997.

[16] George C. Necula and Robert R. Schneck. A sound framework for untrusted
veri�cation-condition generators. In Proc. of 18th IEEE Symp. on Logic In
Computer Science (LICS 2003), pages 248�260, 2003.

[17] David Pichardie. Interprétation abstraite en logique intuitioniste : extraction
d'analyseurs Java certi�és. PhD thesis, Université de Rennes 1, Sept. 2005.

[18] Eva Rose. Lightweight bytecode veri�cation. J. Autom. Reason., 31(3-4):303�
334, 2003.

[19] Martin Wildmoser, Amine Chaieb, and Tobias Nipkow. Bytecode analysis
for proof carrying code. In Proc. of 1st Workshop on Bytecode Semantics,
Veri�cation and Transformation, Electronic Notes in Computer Science, 2005.

[20] Martin Wildmoser and Tobias Nipkow. Asserting bytecode safety. In Proc. of
the 15th European Symp. on Programming (ESOP'05), 2005.

A A full example: bubble sort

Below is listed the source code of the program BubbleSort. The result of the
analysis run on the corresponding byte code program is given in comments.
The symbol U represents an initialised value and topV the top of abstract
values. The compiled version of BubbleSort.java is 69 bytecodes long.
From 70 abstract memories computed, the post-�xpoint compressor keeps only
3 stackmaps. The stackmaps are automatically chosen at the heads of the
for loops (lines 3, 7 and 8) which correspond to back-edge in the byte code
program. 256 bits are then necessary to encode these stackmaps into a bit
stream format. Two iteration strategies are able to compute a correct post-
�xpoint which is su�ciently precise to prove the safety of BubbleSort. The
�rst strategy is the classic iteration from bottom, without acceleration. If this
computation terminates it computes the least post-�xed point of the constraint

16

Besson et al.

system. This iteration strategy is not ensured to terminate and requires about
n2 iterations (of each constraints) to terminate in the example of BubbleSort,
with n the (static) size of the array t. The second strategy uses chaotic
iteration with widening and narrowing. It only needs 3 iterations of each
constraints to reach a safe post-�xpoint.

class BubbleSort {
public static void main(String[] argv) {
int i,j,tmp,n;

// [j : U ; n : U ; i : U ; t : U ; tmp : U]
0: n = 20;
// [j : U ; n : [20 , 20] ; i : U ; t : U ; tmp : U]

1: int[] t = new int[n];
// [j : U ; n : [20 , 20] ; i : U ; t : i n t [2 0 , 20] ; tmp : U]

2: Input.init();
// [j : U ; n : [20 , 20] ; i : [0 , 2 0] ; t : i n t [20 ,20] ; tmp : U]

3: for (i=0;i<n;i++) {
// [j : U ; n : [20 , 20] ; i : U ; t : i n t [2 0 , 20] ; tmp : U]

4: t[i] = Input.read_int();
// [j : U ; n : [20 , 20] ; i : [0 , 1 9] ; t : i n t [2 0 , 20] ; tmp : U]

5: };
// [j : U ; n : [20 , 20] ; i : [2 0 , 20] ; t : i n t [20 , 20] ; tmp : U]

6: Tab.print_tab(t);
// [j : U ; n : [20 , 20] ; i : [0 , 2 0] ; t : i n t [2 0 , 20] ; tmp : U]

7: for (i=0; i<n-1; i++) {
// [j : topV ; n : [20 , 20] ; i : [0 , 1 8] ; t : i n t [2 0 , 20] ; tmp : topV]

8: for (j=0; j<n-1-i; j++)
// [j : [0 , 1 8] ; n : [20 , 20] ; i : [0 , 1 8] ; t : i n t [2 0 , 20] ; tmp : topV]

9: if (t[j+1] < t[j]) {
// [j : [0 , 1 8] ; n : [20 , 20] ; i : [0 , 1 8] ; t : i n t [2 0 , 20] ; tmp : topV]

10: tmp = t[j];
// [j : [0 , 1 8] ; n : [20 , 20] ; i : [0 , 1 8] ; t : i n t [2 0 , 20] ; tmp : topV]

11: t[j] = t[j+1];
// [j : [0 , 1 8] ; n : [20 , 20] ; i : [0 , 1 8] ; t : i n t [2 0 , 20] ; tmp : topV]

12: t[j+1] = tmp;
// [j : [0 , 1 8] ; n : [20 , 20] ; i : [0 , 1 8] ; t : i n t [2 0 , 20] ; tmp : topV]

13: }
// [j : [1 , 1 9] ; n : [20 , 20] ; i : [0 , 1 8] ; t : i n t [2 0 , 20] ; tmp : topV]

14: };
// [j : topV ; n : [20 , 20] ; i : [1 9 , 19] ; t : i n t [2 0 , 20] ; tmp : topV]

15: Tab.print_tab(t);
// [j : topV ; n : [20 , 20] ; i : [1 9 , 19] ; t : i n t [2 0 , 20] ; tmp : topV]

}}

17

	Introduction
	Proof Carrying Proof Checkers
	Certified abstract interpretation for PCC
	Certified static analysis
	Certified analysis for memory invariants
	Case study: interval analysis for byte codes

	Certificates for Static Analyses
	Implementation and experiments
	Related Work
	Conclusions and Further Work
	References
	A full example: bubble sort

