
QAPL 2006

Quantitative Static Analysis over semirings:
analysing cache behaviour for Java Card

Pascal Sotin
1

David Cachera
2

Thomas Jensen
3

Irisa, campus de Beaulieu

35 042 Rennes, France

Email: {sotin,dcachera,jensen}@irisa.fr

Abstract

We present a semantics-based technique for modeling and analysing resource us-
age behaviour of programs written in a simple object oriented language like Java
Card byte code. The approach is based on the quantitative abstract interpretation
framework of Di Pierro and Wiklicky where programs are represented as linear oper-
ators. We consider in particular linear operators over semi-rings (such as max-plus)
that have proven useful for analysing cost properties of discrete event systems. We
illustrate our technique through a cache behaviour analysis for Java Card.

Key words: Static analysis, resource usage, cache behaviour,
linear operators, semirings

1 Introduction

This paper is concerned with the semantics-based program analysis of quanti-
tative properties pertaining to resource usage. There exist numerous methods
for estimating resource usage, ranging from monitoring or simulating [SC99]
executions to the exact computation of the complexity of the program, pass-
ing by techniques for determining Worst Case Execution Time [PK89]. Our
approach is based on a recent framework called quantitative abstract inter-
pretation which leads to an elegant program model based on linear operators
over vector spaces and which is able to deal with several kind of quantities.
Quantitative semantic models, like their qualitative counterparts, are usually
not computable, so we devise an abstraction technique for computing a cor-
rect approximation of the property of interest. In the quantitative case, this is
usually an upper bound of the program consumption of a particular resource.

1 Irisa/CNRS/DGA
2 Irisa/ENS Cachan (Bretagne)
3 Irisa/CNRS

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Sotin, Cachera and Jensen

Di Pierro and Wiklicky [PW00] have proposed an abstract interpretation
for a probabilistic semantics in which probabilities are attached to transitions.
This naturally leads to a model where programs are modelled as linear opera-
tors represented by stochastic matrices. We follow up on the idea of expressing
programs as linear operators but we are interested in estimating the resource
consumption of a program where we can attach any numeric quantity to a
transition and not just a probability between 0 and 1�this forcibly takes us
beyond stochastic matrices. The costs of transitions can model for example
stack height evolution, the number of calls to a given method or can represent
benchmarked execution times. In this paper, we will focus on how to model
cache misses.

We rely on a standard small-step operational semantics expressed as a
transition relation s →q s′ between states s, s′ ∈ State with costs q ∈ Q
associated to each transition. There is a straightforward way to pass from
this rule-based semantics to a matrix representation, associating a cost to a
pair of states. We develop a technique for abstracting this semantics, in order
to return a computable approximation of the overall program cost. To do so,
we exploit the fact that the semantics of a program can be expressed as a
linear operator on QState, where Q is the domain of the considered cost. We
de�ne two notions of cost for a program: the global cost from initial to �nal
states, which is derived from the transitive closure of the semantics. When
cycles exist in the underlying graph, this closure does not exist, but we are
able to give the long run cost of the program, which is the average cost of a
transition in the cycle. The computation of this cost relies on a variant of the
Perron-Frobenius theorem on eigenvalues in idempotent semirings.

The paper is structured as follows. In Section 2, we de�ne a quantitative
semantics for the Java Card byte code language that explicitly models the
(non-functional) cache behaviour of a Java Card program. In Section 3, we
then de�ne the corresponding linear operator semantics. For a given resource,
we propose, in Section 4, to compute the global consumption of the resource
by the program executing from the beginning to the end. It is sometimes
impossible to compute this global cost, e.g. when the program is a reactive
program, that by de�nition does not �nish. In this case, we still give the
average consumption on a long run execution. In Section 5, we then discuss
how to approximate the overall behaviour of a program by projecting this
operator onto a smaller state space.

2 De�nition of a quantitative semantics

A quantitative semantics that describes non-functional properties still uses
states that contain classical information on the execution in order to be able
to compute the control �ow. They also contains extra information, that does
not a�ect the computation result, but may a�ect the property we deal with.
The cache memory of a computer is a good example, because even if the

2



Sotin, Cachera and Jensen

computation result and control �ow do not change in presence of a cache, the
execution time is strongly modi�ed.

We give the semantics for the Java Card language. Java Card is a subset
of Java, designed for programs embedded on smart cards. In this context
of low memory available and of interaction with the customer, extracted in-
formation about the program on both memory and time is of interest. The
mechanisms underlying Java Card are simpler than those underlying Java.
The non-functional behaviour of the JVM is enhanced by features such as
garbage collection, threads, and Just-In-Time compilers, which complicate
the analysis of quantitative, non-functional properties. In comparison, Java
Card mechanisms are fewer and simpler, so it is a better suited target for our
analyses.

2.1 Modeling cache behaviour in a JCVM

The state in our semantics for Java Card is of the form:

< H,� f, m, ip, L, S �:: fr , C >

where

• H stands for the heap of objects;

• f is the frame identi�er of the frame stack (i.e. procedure call stack) and
fr is the remainder of this frame stack;

• m is the current method and ip the instruction pointer in it. The current
instruction is given by the function InstrAt(m, ip);

• L is an array containing the local variables of the frame;

• S is the operand stack of the frame;

• C is a set of logical addresses, representing which values are in cache at this
point of the execution.

The set of logical addresses is managed similarly to the cache. For example,
the maximum size of this set will �t the size of the physical cache, and the
replacement policy will model the one done by the cache (e.g. LRU, FIFO).
The function update models the cache behaviour: it takes as parameters the
current state of the cache, and a list of typed accesses to logical addresses
accessed by the program or instruction, the �rst element of the list being the
�rst memory access. Logical addresses can be of three forms:

• heap.reference.short designates the �eld indexed by short of an object in
the heap whose reference is reference.

• local.frameId.short designates the local variable, indexed by short of the
frame frameId.

• stack.frameId.int designates the int-nth element in the operand stack zone
of the frame frameId. For example, if t is the current size of the operand
stack, t designates the element which is the current top of the stack, and

3



Sotin, Cachera and Jensen

t + 1 refers to the element one word over that top.

An access to one of these logical addresses can be either read τ (address) or
writeτ (address) which means that data of type τ is respectively read or written
at this address. The type information is important to compute the size of the
data items and how many of these items can be put simultaneously in the
cache. Addresses can be expressed with a translation based on the data size,
e.g. writeτ (address [+1]) is equivalent to writeτ (address + 1 ∗ sizeof (τ)).

For the semantics, we do not describe the 201 instructions of the JCVM
[JCV], but we rely on the modeling of the JCVM instructions through the
intermediate language Carmel [Mar01]. This language has a more manage-
able number of instructions, grouping together Java Card instructions with
similar behaviour. Below, we give as an example the rule describing the load
instruction. It corresponds to the Java Card set of instructions which loads a
typed local variable, indexed by i, on the top of the operand stack (e.g. iload,
aload).

InstrAt(m, ip) = load τ i ∧ L[i] = d

S ′ = d :: S ∧ size(S) = t

C ′ = update(C, [read τ (local.f.i);writeτ (stack.f.t[+1])])

< H,� f, m, ip, L, S �:: fr, C >→q< H,� f, m, ip + 1, L, S ′ �:: fr, C ′ >

In the example, q models the cost of the load transition. It needs to be
instantiated with the considered quantity. For example, if we model the stack
height evolution, q will be q = +sizeof(τ) for the load instruction. The value
of q varies from one instruction rule to another, and can be a function of the
state. We give below an instantiation of the quantities for all our semantics
rules, dealing with the number of reading cache misses.

Let q =

 nbRmiss(C, access) if the rule contains C ′ = update(C, access)

0 otherwise

The function nbRmiss(C, access) computes the number of reading cache
misses generated by the list of memory accesses access if the cache at the
beginning of the instruction is C. This function has to be implemented in
relation with the update function, because its result depends on the cache
policy for accesses beyond the �rst one. The computation of nbRmiss proceeds
as follows:

nbRmiss c [] = 0

nbRmiss c [a|r] = nbRmiss (update c a) r +


1 if

 a = read m

m ∈ c

0 otherwise

4



Sotin, Cachera and Jensen

This algorithm deals with cases where the �rst accesses change the pres-
ence or absence of the data for the remaining accesses, but it might be quite
expensive. For implementation e�ciency, it would be possible to make an
approximation of nbRmiss independent from the update function. Such an
approximation relies on the hypothesis that the cache does not unload values
which will be used in the current instruction.

In the case of the load transition rule, both algorithms have the same
result which is 1 if local.f.i ∈ C and 0 otherwise. It is a particular case due
to the fact that the only read access is the �rst of the access list so other
accesses cannot have side-e�ects on it.

3 Linear operator semantics

The small-step, quantitative operational semantics for Java Card induces a
labelled transition system over State with labels in Q and a transition relation
→.⊆ State×Q×State, written s →q s′. Such a transition states that a direct
(one-step) transition from s to s′ costs q.

These unitary transitions can be combined into big-step transitions, using
two operators which will form a semiring on Q. Costs could have been de�ned
in a more general way but this, arguably rather restricted, de�nition has
interesting computational properties.

The operator ⊗ on Q de�nes the global cost of a sequence of transitions,
s →q1 . . . →qn s′ simply as q = q1 ⊗ . . .⊗ qn. This is written s

x⇒
q

s′ where x
is the sequence of states.

(1) The operator ⊗ is associative and has a neutral element e. The quantity
e represents a transition that costs nothing.

(2) The operator ⊗ comes with a function called the nth root, written n
√

q or
q1/n , such that ⊗n

i=1
n
√

q = q. A sequence containing n transitions, each
costing n

√
q, will cost q. If ⊗ stands for ×, +, max or ∪, the nth root of

x will respectively be n
√

x, 1/x, x and x.

When there exist several ways to reach a state s′ from a state s, X =
{s x⇒

qx
s′}, the global cost between them is de�ned using the operator ⊕ on

Q to be q =
⊕

x∈X qx. This is written s ⇒q s′.

(3) The operator ⊕ is associative, commutative and ⊥ is its neutral element.
The quantity ⊥ means the impossibility of a transition.

(4) ⊗ is distributive for ⊕ and ⊥ is absorbant element for ⊗.
(5) ⊕ is idempotent i.e. q⊕ q = q, so if several transitions go from a to b for

the same cost q, the global cost is also q.

De�nition 3.1 A structure (Q,⊕,⊗) that ful�lls the conditions 1, 3 and 4 is
a semiring. With the condition 5, it is called an idempotent semiring.

We work with structures ful�lling the �ve conditions, i.e. with idempotent

5



Sotin, Cachera and Jensen

semirings equiped with an nth root operation, which we call semirings of costs.
For instance, (Time, max, +) is a semiring of costs and it leads to the de�nition
of the Worst Case Execution Time.

When two states can be joined by several sequences of transitions which
cost di�erent times, the worst time is taken. To compute the cost of a sequence
of transitions, we sum the costs of each transition.

Computations of costs, using an adequate semiring, are easily de�ned in
terms of computation on matrices in this semiring. The set of one-step transi-
tions can be equivalently represented by a matrix, called a transition matrix,
de�ned by:

M ∈MState×State(Q)

s →q s′ ⇔ Ms,s′ = q

Here, MA×B(C) stands for the set of matrices with rows in A, columns in B
and values in C.

This matrix may also be seen as a linear operator on the semimodule QState;
a semimodule being for a semiring what a vector space is for a ring.

Relation with trace semantics

Even if computations with matrices/linear operators are elegant and su�-
cient, we give their equivalent computation, in term of a more classical trace
semantics. For a program P , we consider its initial states, its �nal states and
its trace semantics, JP Ktr:
• The initial states I are the states in which the program can be started.

• The �nal states F are the states where the execution will be halted by the
machine. E.g. a state reached after the return instruction of the main

function of a Java program.

• JP Ktr =

s1 →q1 . . . sn−1 →qn−1 sn

s1 ∈ I,

si →qi si+1,


4 Computing global and long run costs

In this section, we express the cost of a given program in terms of matrix
computations. Two kinds of costs can be computed:

• if the program terminates, we can compute a global cost that represents its
cost from initial to �nal states.

• for a non-terminating program, we can compute a long run cost , that ex-
presses an average cost over cycles of transitions.

In the following, we work with a cost semiring (Q,⊕,⊗).

Let M be a matrix representing a quantitative semantics for a program
P . M contains the transition costs induced by one step of the operational

6



Sotin, Cachera and Jensen

semantics. Mk, where the product of matrices is taken in the considered
semiring, summarizes the transition costs of all paths of length k. Global and
average costs are de�ned starting from this idea, by computing the successive
iterates of the transition cost matrix until a �xpoint is reached. If such a
transitive closure M+ exists, it contains all the transitions costs from any
state to any state.

M+ =
∞⊕
i=1

M i

If the transition graph associated to the semantics contains cycles or in�nite
paths, this transitive closure might not be de�ned. In this case, we will prefer-
ably refer to an average cost as de�ned below.

De�nition 4.1 Let I be the initial states of the program i.e. entry points
and F be the exit states of the program. The global cost of P is de�ned as

gc(P ) =
⊕

{M+
i,f |i ∈ I, f ∈ F}

The global cost is related to the standard trace semantics by:

Theorem 4.2

gc(P ) =
⊕

{
f−1⊗
j=1

qj|σ1 →q1 . . . →qf−1 σf ∈ JP Ktr, σf ∈ F} (1)

Proof

⊕
{

f−1⊗
j=1

qj|σ1 →q1 . . . →qf−1 σf ∈ JP Ktr, σf ∈ F}

=
⊕

{
f−1⊗
j=1

qi|σ1 →q1 . . . →qf σf ∈ (→.)+, σ1 ∈ I, σf ∈ F}

=
∞⊕

n=1

(
⊕

{
n⊗

j=1

qj|σ1 →q1 . . . →qn σf ∈ (→.)n, σ1 ∈ I, σf ∈ F})

=
⊕
σ1∈I
σf∈F

(
∞⊕

n=1

(
⊕

{
n⊗

j=1

qj|σ1 →q1 . . . →qn σf ∈ (→.)n}))

7



Sotin, Cachera and Jensen

We derive the other de�nition in a similar form:

gc(P ) =
⊕

{M+
σ1,σf

|σ1 ∈ I, σf ∈ F}

=
⊕
σ1∈I
σf∈F

M+
σ1,σf

=
⊕
σ1∈I
σf∈F

∞⊕
n=1

Mn
σ1,σf

Equality (1) is veri�ed under the following condition, which is easily proved
by induction on n:

Mn
a,b =

⊕
{

n⊗
j=1

qj|a →q1 . . . →qn b ∈ (→.)n}

2

Long run cost

If the transitive closure M+ does not exist, we will consider the eigenvalue
of the matrix. In the case where M is irreducible, this value is unique and it
is de�ned by:

ρ(M) =
∞⊕

k=1

(tr Mk)1/k

where tr M =
⊕n

1 Mi,i. This follows from the Perron-Frobenius theorem
(more precisely, its instantiation to idempotent semirings, as developed in
[Gau99]) which states that the spectral ray of an irreducible matrix A is the
eigenvalue of A and that the associated eigenspace is a one-dimensional vector
space generated by a vector with strictly positive components.

In the case where the matrix is reducible, we can partition it in the form of
a triangular, by blocks, matrix. With this matrix, we can obtain in a similar
way a unique eigenvalue. In the case where all maximal traces of program P
are �nite, the notion of long run does not make sense. In this case, the above
formula yields an eigenvalue equal to ⊥.

The average cost is related to the trace semantics in the following way: ρ is
the sum (under ⊕) of the geometric average of all cycles appearing in a trace
of P . For instance, if we work in the semiring (Time, max, +), ρ(M) is the
maximal average of time spent per instruction, where the average is computed
on any cycle by dividing the total time spent in the cycle by the number of
instructions in this cycle.

8



Sotin, Cachera and Jensen

5 Abstraction of a quantitative semantics

The transition matrix representing a program is in general of in�nite dimen-
sion, so neither transitive closure nor eigenvalues can be computed in �nite
time. To overcome this problem, we de�ne an abstract matrix�smaller than
the concrete one and preferably �nite�that can be used to approximate the
computations with the in�nite original matrix. We consider the necessary
conditions so that approximation is correct. E.g., if we compute the minimum
memory needed to run a program, a correct approximation of this quantity
must be greater than the e�ective minimum.

Abstraction

Let M be the linear operator on the concrete domain C, over the idem-
potent semiring (Q,⊕,⊗), corresponding to the transition system of the pro-
gram. The zero of the semiring is written ⊥ and the unit is written e.

M ∈MC×C(Q)

Given an abstraction function from concrete states C to a set of abstract
states D, we can lift this function to a linear abstraction operator α : QD×C

on the semiring as follows.

αd,c =

 e if α(c) = d

⊥ otherwise

Let M ] ∈ MD×D(Q) be a linear operator in the abstract domain D. The
correctness condition on the abstraction α is:

α ◦M ≤D M ] ◦ α

where ≤Q is the ordering induced by the semi-ring operation ⊕ (q1 ≤Q q2 ⇔
q1 ⊕ q2 = q2) and ≤D is its matrix extension (N ≤D P ⇔ ∀i, j.Ni,j ≤Q Pi,j).

Correctness

The correctness condition implies that the computation of the global and
long run cost is correct, i.e., is an overapproximation of the concrete cost. It
derives from the linearity of α, M and M ].

Theorem 5.1 If M+ and (M ])+ exist, i.e. converge in �nite time, then

α ◦M ≤D M ] ◦ α ⇒ α ◦M+ ≤D (M ])+ ◦ α (2)

If ρ(M) and ρ(M ]) exist, i.e. if M and M ] are not reducible, then

α ◦M ≤D M ] ◦ α ⇒ ρ(M) ≤Q ρ(M ]) (3)

9



Sotin, Cachera and Jensen

Proof We prove (2) by �rst showing that:

∀n ≥ 1, α ◦M ≤D M ] ◦ α ⇒ α ◦Mn ≤Q (M ])n ◦ α (4)

It is proved by induction on n. The case where n = 1 is trivial. We then
assume that α ◦M ≤D M ] ◦ α and α ◦Mn ≤D (M ])n ◦ α. We have:

α ◦Mn ≤D (M ])n ◦ α

(α ◦Mn) ◦M ≤D ((M ])n ◦ α) ◦M (5)

α ◦Mn+1 ≤D (M ])n ◦ (α ◦M) (6)

α ◦Mn+1 ≤D (M ])n ◦ (M ] ◦ α) (7)

α ◦Mn+1 ≤D (M ])n+1 ◦ α

(5) is correct because ⊕ and ⊗ preserves the order ≤Q de�ned as a ≤Q b ⇔
a ⊕ b = b, respectively thanks to associativity and idempotency of ⊕, and to
distributivity of ⊗ over ⊕. Going from (6) to (7) uses the �rst hypothesis.
We then sum (4) for n in one to in�nity, and factorise by α on both sides.

α ◦ (M1 ⊕M2 ⊕ . . .) ≤D ((M ])1 ⊕ (M ])2 ⊕ . . .) ◦ α

α ◦M+ ≤D (M ])+ ◦ α

We now prove (3). Let c and d be such that α(c) = d. We �rst show that
Mc,c ≤Q M ]

d,d.

We have α ◦M ≤D M ] ◦ α

in particular (α ◦M)d,c ≤Q (M ] ◦ α)d,c

that rewrites into
⊕
c′∈C

(αd,c′ ⊗Mc′,c) ≤Q

⊕
d′∈D

(M ]
d,d′ ⊗ αd′,c)

We decompose both summations, this yields:⊕
c′∈α−1(d)

(αd,c′ ⊗Mc′,c)⊕
⊕

c′ /∈α−1(d)

(αd,c′ ⊗Mc′,c)

≤Q

⊕
d′=α(c)

((M ]
d,d′)⊗ αd′,c)⊕

⊕
d′ 6=α(c)

((M ]
d,d′)⊗ αd′,c)

Given the properties of α, that simpli�es into:⊕
c′∈α−1(d)

Mc′,c

⊕
c′ /∈α−1(d)

⊥ ≤Q M ]
d,d

This concludes the proof. Thanks to idempotency, we deduce that for any d,⊕
c∈α−1(d)

Mc,c ≤Q M ]
d,d

10



Sotin, Cachera and Jensen

By summing over d, we �nally get:⊕
c∈C

Mc,c ≤Q

⊕
d∈D

M ]
d,d

Similarly, since for any k ≥ 1, we have α ◦Mk ≤D (M ])k ◦ α, we show that:⊕
c∈C

Mk
c,c ≤Q

⊕
d∈D

(M ])k
d,d

trMk ≤Q tr(M ])k

(trMk)1/k ≤Q (tr(M ])k)1/k

∞⊕
k=1

(trMk)1/k ≤Q

∞⊕
k=1

(tr(M ])k)1/k

ρ(M) ≤Q ρ(M ])

2

This concludes the proof of Theorem 5.1.

Given a correct abstraction based on M , M ] and α, we can classify it
according to the existence of M+ and (M ])+.

M+ exists M+ does not exist

M ]+ exists Overapproximation of
the global cost

∅

(M ])+ does not exist

Approximation giving
information on the
global cost by a long

run cost

Overapproximation of
the long run cost

5.1 An example of abstraction

Consider the following fragment of a program in JavaCard bytecode:

1: iload x

2: istore t

3: iload y

4: istore x

5: iload t

6: istore y

7: ...

The quantity we deal with is the maximum number of read misses in the
cache. Managing the whole state and whole cache would in general make
the exact computation too costly, so we abstract the state and cache to only
contain the instruction pointer and last data accessed, and write the abstract

11



Sotin, Cachera and Jensen

state as (ip, var) where ip is the instruction pointer and var is the logical ad-
dress of the last data accessed. We model the maximum number of read misses
using the semiring (N∪{⊥},max, +). If n is the e�ective maximum number of
cache misses, a correct abstraction delivers n] such that max(n, n]) = n], i.e.,
n < n]. In this case, we say that the abstract semantics over-approximates
the concrete one.

To construct the abstract transition matrix, we compute the transitions
costs in the abstract semantics. For example, we can compute q] of the tran-
sition (1, y) →q]

(2, 1) by the following case analysis.

• For ip = 1 we have InstrAt(m, ip) = load τ x.

• For any transition s →q s′ such that ip = 1 in s, such that the last element
accessed in the cache is y and such that l.f.x ∈ C, we can show that q = 0
and that s (resp. s′) is abstracted by (1, y) (resp. (2, 1)).

• For any transition s →q s′ such that ip = 1 in s, such that the last element
accessed in the cache is y and that l.f.x /∈ C, we can show that q = 1 and
that s (resp. s′) is abstracted by (1, y) (resp. (2, 1)).

• The value q] such that (1, y) →q]
(2, 1) is de�ned by

⊕
{q|s →q s′ ∧ α(s) =

(1, y) ∧ α(s′) = (2, 1)} and so is equal to 0⊕ 1 = max{0, 1} = 1.

The matrix M ] representing the abstract semantics is given below. Values
are computed similarly to the above example.

M ] =



. . . 2, 1 . . . 3, t . . . 4, 1 . . . 5, x . . . 6, 1 . . . 7, y . . .

1, ∅ 1 ⊥ ⊥ ⊥ ⊥ ⊥

1, x 0 ⊥ ⊥ ⊥ ⊥ ⊥

1, y 1 ⊥ ⊥ ⊥ ⊥ ⊥

1, t 1 ⊥ ⊥ ⊥ ⊥ ⊥

1, 1 1 ⊥ ⊥ ⊥ ⊥ ⊥
...

2, 1 ⊥ 0 ⊥ ⊥ ⊥ ⊥

3, t ⊥ ⊥ 1 ⊥ ⊥ ⊥

4, 1 ⊥ ⊥ ⊥ 0 ⊥ ⊥

5, x ⊥ ⊥ ⊥ ⊥ 1 ⊥

6, 1 ⊥ ⊥ ⊥ ⊥ ⊥ 0

7, y ⊥ ⊥ ⊥ ⊥ ⊥ ⊥


This matrix contains many occurrences of the value ⊥. Furthermore,

columns and rows not shown are only ⊥, so sparse matrix algorithms can
be used to compute the transitive closure of M ] in (N ∪ {⊥},max, +): From
this matrix it is possible to extract the global cost of transition, cg, between
the states with ip = 1 and those with ip = 7 by the following matrix operation:

cg = I.(M ])+.F = 3⊕ 2⊕ 3⊕ 3⊕ 3⊕⊥⊕ . . .⊕⊥ = 3

12



Sotin, Cachera and Jensen

where

• I is the row vector with value 0 for all abstract states having 1 as its in-
struction pointer and ⊥ otherwise.

• F is the column vector with value 0 for all abstract states having 7 as its
instruction pointer and ⊥ otherwise.

The given abstraction o�ers good results for computing the maximum read
misses, i.e. returns a value reasonably close to the e�ective maximum read
misses. It is due to the fact that most of the time, the result of one instruction
is immediately used by the next instruction.

(M ])+ =



. . . 2, 1 . . . 3, t . . . 4, 1 . . . 5, x . . . 6, 1 . . . 7, y . . .

1, ∅ 1 1 2 2 3 3

1, x 0 0 1 1 2 2

1, y 1 1 2 2 3 3

1, t 1 1 2 2 3 3

1, 1 1 1 2 2 3 3
...

2, 1 ⊥ 0 1 1 2 2

3, t ⊥ ⊥ 1 1 2 2

4, 1 ⊥ ⊥ ⊥ 0 1 1

5, x ⊥ ⊥ ⊥ ⊥ 1 1

6, 1 ⊥ ⊥ ⊥ ⊥ ⊥ 0

7, y ⊥ ⊥ ⊥ ⊥ ⊥ ⊥



6 Conclusion

We have proposed an extended operational semantics for the Java Card lan-
guage, that models transition costs between states. This semantics is de�ned
in a generic way, in order to express various kinds of costs. The semantic
domains and transitions integrate a cache model, well suited to evaluate costs
that do not only depend on the input-output behaviour, in particular execu-
tion time. As an example of instantiation, we give the costs attached to the
computation of cache misses.

Expressing the semantics as a linear operator on semimodules allows to
compute it through matrix operations. We have de�ned two distinct notions
of cost attached to a program: whenever possible, the global cost from initial
to �nal state is computed using the transitive closure M+ of the semantics.
If the underlying graph of transitions contains cycles, we are able to de�ne
a long run cost that gives an average of cost along transition cycles, using a
variant of the Perron-Frobenius theorem for idempotent semirings.

Most of the time, the matrix de�ned by the operational semantics is of in-
�nite dimension. To overcome this problem, we haved de�ned a framework to

13



Sotin, Cachera and Jensen

abstract this semantics into a computable one. A correctness relation between
concrete and abstract semantic matrices ensures that the result computed from
the abstract semantics is an overapproximation of the concrete one.

Finally we have presented an example of abstraction that computes for a
given program a safe approximation of the number of cache misses.

Related work

The present work is based on the quantitative abstract interpretation
framework developed by Di Pierro and Wiklicky [PW00]. We have followed
their approach in modeling programs as linear operators over a vector space,
however, we have generalised this to consider operators that are semimodules
over semirings. The reason for this generalisation is that such structures nat-
urally arise in cost analyses. Another di�erence with respect to the body of
work by Di Pierro and Wiklicky is that we consider a low-level object-oriented
programming language rather than the idealized declarative languages (prob-
ablistic concurrent constraint programming and the lambda calculus). This
allows us to study a variety of (low-level) quantitative properties such as cache
behaviour but requires the incorporation of state abstractions that di�er from
the kind of abstraction used for analysing declarative languages.

Alt, Ferdinand, Martin, and Wilhelm [AFMW96] have proposed a cache
behaviour prediction by abstracting interpretation. We work at a di�erent
level, given that their paper is centered on modeling the cache and abstract it
properly. In our proposition, all the cache model is hidden behind the function
update, which still has to be de�ned. There are three points of their work that
we could use almost directly in our framework: the various cache models (e.g.
direct-mapped, A-way associative) to implement our update function, their
abstract domain, in order to design our quantitative abstractions and their
observations about caches and writing, in order to develop an accurate model.

Future work

The example computations of costs given in the paper have been done by
hand. Future work includes the implementation of the operators of transitive
closure and eigenvalue with lazy computation in sparse matrices, which will
allow an e�ective and e�cient computation of program cost.

Computing a correct abstraction is an issue, as it is in general for quan-
titative abstract interpretation. We need to develop a framework that allows
to de�ne abstractions on states (either by classical abstraction functions or by
equivalence relations) and then automatically obtain the �nite, abstract ma-
trix. The de�nition of abstraction using the Moore-Penrose pseudo-inverse has
appealingly strong theoretical foundations but its use in actually computing
an abstraction needs to be studied.

Another issue for further work is to relax the correctness criterion so that
the abstract estimate is �close� to (but not necessarily greater than) the exact

14



Sotin, Cachera and Jensen

quantity. This is possible since we have a metric on the abstract property space
and hence can estimate the distance of the concrete and the abstract operator.
Furthermore, for evaluating the impact e.g. of a program transformation, this
kind of information would appear to be su�cient.

Finally, it would be worth investigating how to integrate our framework
with the notion of resource algebra as de�ned by Aspinall et al. [ABH+].

Acknowledgement

Thanks are due to Guillaume Dufay for his thorough comments on an earlier
draft of this paper, and to the referees for their valuable feedback.

References

[ABH+] D. Aspinall, L. Beringer, M. Hofmann, H-W. Loidl, and A. Momigliano.
A program logic for resources. Theoretical Computer Science, to appear.

[AFMW96] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard
Wilhelm. Cache Behavior Prediction by Abstract Interpretation. In
SAS'96, Static Analysis Symposium, volume 1145 of Lecture Notes in

Computer Science, pages 51�66, September 1996.

[Gau99] Stéphane Gaubert. Introduction aux systèmes dynamiques à évenements

discrets. INRIA Rocquencourt, 1999.

[JCV] Virtual Machine Speci�cation for the Java Card Platform.
http://java.sun.com/products/javacard/specs.html.

[Mar01] R. Marlet. Syntax of the JCVM Language To Be Studied in the SecSafe
Project (v1.7). Technical report, April 2001.

[PK89] Peter Puschner and Christian Koza. Calculating the Maximum
Execution Time of Real-Time Programs. Journal of Real-Time Systems,
1(2):159�176, Sep. 1989.

[PW00] Alessandra Di Pierro and Herbert Wiklicky. Concurrent constraint
programming: towards probabilistic abstract interpretation. In
Principles and Practice of Declarative Programming, pages 127�138,
2000.

[SC99] Timothy Sherwood and Brad Calder. Time Varying Behavior of
Programs. Technical Report CS99-630, UCSD, August 1999.

15


	Introduction
	Definition of a quantitative semantics
	Modeling cache behaviour in a JCVM

	Linear operator semantics
	Computing global and long run costs
	Abstraction of a quantitative semantics
	An example of abstraction

	Conclusion
	Acknowledgement 
	References

