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Université de Picardie Jules Verne, MIS laboratory, Amiens, France

{guillaume.caron, mouaddib}@u-picardie.fr

2
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Abstract

The current work addresses the problem of 3D model tracking in the
context of monocular and stereo omnidirectional vision in order to estimate
the camera pose. To this end, we track 3D objects modeled by line segments
because the straight line feature is often used to model the environment.
Indeed, we are interested in mobile robot navigation using omnidirectional
vision in structured environments. In the case of omnidirectional vision,
3D straight lines are projected as conics in omnidirectional images. Under
certain conditions, these conics may have singularities.

In this paper, we present two contributions. We, first, propose a new
spherical formulation of the pose estimation withdrawing singularities, us-
ing an object model composed of lines. The theoretical formulation and the
validation on synthetic images show thus the new formulation clearly outper-
forms the former image plane one. The second contribution is the extension
of the spherical representation to the stereovision case. We consider in the
paper a sensor which combines a camera and four mirrors. Results in various
situations show the robustness to illumination changes and local mistrack-
ing. As a final result, the proposed new stereo spherical formulation allows to
localize online a robot indoor and outdoor whereas the classical formulation
fails.
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1. Introduction

Pose estimation can be done using image features, i.e. points, lines, or
other geometrical features. When considering the availability of a partial
3D model of an object or a scene, these features need to be extracted from
images and associated to the 3D model. This association process is generally
done in a first image and features are then tracked over time, while the object
and/or the camera is moving.

When using a perspective camera, the spatial volume in which the object
can be moved, and still be perceived by the camera, is limited. Hence,
objects can appear partially in images. This is particularly the case when
the camera is moving within an environment of which a 3D model, even
partial, is tracked.

Omnidirectional cameras, thanks to their very wide field of view, allow
to track image features during a long period of time, when moving. This
is synonym of e�ciency, precision and robustness for the tracking and pose
estimation processes. Using such a camera allows to keep the object in the
image even if it moves in a wide spatial volume surrounding the camera.

A complementary way to increase robustness in a tracking and pose es-
timation process is to add perception redundancy using several cameras ac-
quiring synchronously images of the object. An interesting idea is thus to
use a vision sensor merging stereovision and omnidirectional vision. Di↵erent
omnidirectional stereovision sensors were designed [1, 2, 3, 4]. We propose to
use the Four On One sensor (FOO), a catadioptric sensor made of a unique
camera and four parabolic mirrors placed in a square at an equal distance
from the camera [5, 6] (Fig. 1).

The pose estimation problem using 2D-3D correspondences can be tack-
led by linear formulations for various features: points [7, 8, 9], lines [10, 11],
etc. A problem raised by these formulations is to deal with outliers. They
appear in presence of partial occlusions or specular reflections. RANSAC [12]
techniques allow to reject outliers in an iterative procedure. Although e�-
cient to reject outliers it is not really well suited to handle noise in image
measurements. Recent works a↵ect a weight to image measurements in lin-
ear methods to solve this issue [13, 14]. However, these methods currently
do not deal with outliers as e�ciently as non-linear optimization methods to
compute the pose.

The non-linear formulation of the pose computation issue leads to the
usual optimization methods such as steepest descent, Gauss-Newton or

2



Levenberg-Marquardt. These methods consider first order derivatives of a
cost function formalizing the error in the image between the observation and
the projection of some model for a given pose. The main idea is to align
the forward projection of the model to image measurements. Some more
recent works use derivatives of the non-linear function of a higher order [15].
Several works about non-linear pose computation has been proposed in the
optimization community [16, 17, 18]. As well as in the perspective vision
community, many works exist [19, 20, 21], where the main di↵erences rely on
the rotation parameterization (Euler angles, quaternion, vector-angle). Rea-
soning on the velocities of camera pose elements, the virtual visual servoing
(VVS) [22, 23], is a full scale non-linear optimization technique which can be
used for pose computation [24].

Some works have been done about 3D model based tracking and pose
estimation using VVS, for perspective camera [24], stereo perspective rig [25]
and even for monocular omnidirectional vision [26, 27]. These works also deal
with corrupted data, which is frequent in image feature extraction, using the
widely accepted statistical techniques of robust M-estimation [28], giving a
weight, dynamically computed, that reflects the confidence we have in each
measure [24, 27, 29].

As we are interested by indoor and outdoor mobile robot navigation, we
choose to consider straight lines as features because they are frequent (doors,
corridors, ...) and an omnidirectional vision sensor to recover the robot pose.
The main problem in the case of omnidirectional vision, is that 3D straight
lines are projected as conics in the omnidirectional image. This property
induces two issues: the conics extraction, which is not easy in noisy images,
and the conics representation, which has a singularity when the 3D lines are
in the same plane as the optical axis.

In this paper, we present two contributions. We, first, propose a new
spherical formulation of the pose estimation by VVS, using an object model
composed of lines, withdrawing singularities. The second contribution is an
extension of this scheme to an omnidirectional stereovision sensor, which is
made with four mirrors and a single camera.

The paper is organized as follows. First, the sensors used in experiments
are described and their projection models recalled in section 2. Then the new
formulation of this feature and its consequences are presented in section 3.
Both formulations are fairly compared on synthetical images (section 3.7).
The extension to stereoscopic systems is finally presented and results on real
images show the achievement of the proposed approach in section 4. Several
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problematic cases are studied and they highlight the superiority of the new
formulation for omnidirectional vision and stereovision, particularly in pose
estimation experiment of a mobile robot. A discussion in section 5 analyzes,
sums up the contributions of the paper and concludes on perspectives of the
work.

2. Sensors and models

In this work, an orthographic camera combined with a paraboloidal mir-
ror, in the monocular case, and with several paraboloidal mirrors, in the
stereo case, are considered. This configuration has single viewpoint property
and is also called a central camera [30].

2.1. Unified central projection model

We propose to use the unified projection model for central cameras [31].
According to this model, a single viewpoint projection can be modeled by a
stereographic projection involving a unitary sphere. This is equivalent to ad
hoc models of central cameras but has the advantage to be valid for a set of
di↵erent cameras [32]. Hence, a 3D point X = (X, Y, Z)T is first projected on
this unitary sphere as XS , thanks to the spherical projection function prS(.):

XS =

0

@
XS
YS
ZS

1

A = prS(X) with
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>:

XS = X

⇢

YS = Y

⇢

ZS = Z

⇢

(1)

where ⇢ =
p
X

2 + Y

2 + Z

2. Then, XS is projected in the normalized image
plane as x by a perspective projection, i.e. x = pr(XS), thanks to a second
projection center for which the sphere has coordinates (0, 0, ⇠)T. The direct
relationship between X and x defines the projection function pr

⇠

:

x = pr

⇠

(X) with

(
x = X

Z+⇠⇢

y = Y

Z+⇠⇢

(2)

x is a point of the normalized image plane and is transformed in pixelic
coordinates u thanks to the intrinsic matrix K: u = Kpr

⇠

(X) = pr

�

(X),
where � = {↵

u

,↵

v

, u

0

, v

0

, ⇠} is the set of intrinsic parameters.
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The projection from the sphere to the image plane is invertible, allowing
to retrieve a spherical point from an image point:

XS = pr
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⇠
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(3)

2.2. The stereo sensor : Four On One

Our stereo sensor is composed by a unique camera equipped with a tele-
centric lens and four parabolic mirrors placed in a square to have their axes
parallel to the camera main optical axis. They are at the same distance from
the camera (Fig. 1). It is nicknamed the FOO (Four On One sensor) [5].

A virtual omnidirectional camera, modeled by the stereographic model,
can be associated to each mirror, rigidly combined. Each “camera” handles
a set of intrinsic parameters �

j

. Four pairs of ↵
u

and ↵

v

are thus used. This
is not the minimal parameters set for the FOO since only one real camera is
used and, at least, the ratio of the width of a pixel over its height should be
unique for the four virtual cameras. However, this modeling is considered to
propose a method which is generic to other kinds of omnidirectional stereo
rigs.

To model the FOO stereo rig, the first camera/mirror is fixed as the stereo
frame origin. The three other cameras are placed relatively to the first one

Figure 1: The omnidirectional stereo sensor we used: orthographic camera, parabolic
mirrors, 90 cm height

5



and their relative poses to the first camera are noted as homogeneous matrices
c2
M

c1 ,
c3
M

c1 and c4
M

c1 . These poses and the four intrinsic parameters sets
model the full stereo system. One can note this model is expendable to more
cameras/mirrors, knowing each �

j

and cj
M

c1 .

3. Model based tracking on the

equivalent sphere

The pose estimation method optimizes the pose of the camera relatively
to an object, minimizing the error between the forward projection of the
object 3D model and image measurements (Fig. 2).

In this work, we consider that indoor and urban outdoor environments are
made of 3D segments. Figure 3 details the model of a 3D line, its projection
on the equivalence sphere as a portion of great circle (intersection between
P

1

and S) and then its projection on image place, as a conic. In our previous
work [34], we minimized the point-to-conic distance in the omnidirectional
image plane. The error is computed between the latter conic and sample
points like in [27]. The main drawback of this approach is the degeneracy
of the conic when its 3D line forms a plane with the optical axis of the
camera [31]. These lines project as radial straight lines in omnidirectional
images. A solution could be to combine two representations, the conic and
the line in the image, but the problem is still present when a 3D straight
line is near the singular case. Indeed, in that case, the conic is very bad
conditioned, leading to perturbations in the computation of the distance
(algebraic measure), between a point and the conic.

Figure 2: Looking for the corresponding edge along normal vectors (blue) to the conic
(green) in each sample (red) of the projected 3D model using the moving edge method [33].
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Figure 3: Projection of a 3D straight line, defined by the intersection of planes P1 and P2,
as a great circle on the sphere S.

Finally, computing a geometric distance between a point and the pro-
jection of a 3D straight line, rather than an algebraic one, is more e�cient
when the conic is badly conditioned and is more discriminant since it is a
true distance [35].

To solve these issues, we propose to reformulate the point-to-line feature
on the sphere of the unified projection model. This solves the first singularity
problem of the projection of a 3D line as a conic. Indeed, even if a 3D
straight line forms a plane with the camera axis, its projection on the sphere
is not singular. Furthermore, minimizing the point-to-line distance on the
equivalent sphere, which is now a point-to-great circle distance, rather than in
the image plane allows to easily use a geometric distance as feature, contrary
to the conic case.

3.1. Algorithm overview

The goal of the proposed algorithm is to track a known moving object in
a sequence of images. As in almost all tracking algorithm, we assume that
the motion of the object between two images is small. Image measurements
are first of all taken and are the input of the following tracking and pose
estimation procedure:

1. Consider an initial pose c

M

o

of the object, usually the optimal pose of
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the previous image (manual selection for the first image of the sequence,
in experiments of this paper).

2. Project the 3D model on the sphere and sample it. A set of points is
thus generated for each segment of the 3D model.

3. Project these points in the current image for pose c

M

o

. They may not
fit to the actual object (Fig. 2) since it moved between the two images.

4. Apply the moving edge algorithm [33] to each conic of the 3D model
in the image to find the set of sample points on the real corresponding
contour.

5. Back-project the obtained points on the sphere.
6. Compute the point-to-great circle distances and interaction matrices.
7. Apply the VVS control law to compute the update vector of the pose.

Both latter items are repeated until convergence. Then, the next image of
the sequence is waited and the process restart at the first item of the list.

Following sections are organized as follows. First, the spherical virtual
visual servoing is presented (section 3.2) as it introduces what need to be
computed to optimize the pose. Then the new point-to-great circle feature
is defined in section 3.3 as well as a way to process the image to extract
measurements (section 3.4), its Jacobian (sections 3.5 and 3.6), needed for
the VVS. Figure 4 graphically sums up the algorithm before tackling its
validation on synthetic data in section 3.7.

3D#space# sphere# image#plane#

3D#line# great#
circle#

ini1al#
points#

ini1al#
points# image#

contour#
points#

contour#
points#

image#
Jacobian#

camera#
veloci1es#

control 
law 

prS pr

pr!
!1

moving'
edge'

sampling'

distances'

Figure 4: Synopsis of the algorithm.
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3.2. Virtual visual servoing

3.2.1. General formulation

The virtual spherical camera is defined by its projection function prS(.)
and the 3D object by several features o

S defined in its own frame. The VVS
method estimates the real pose c

M

o

of the object in the camera frame by
minimizing the error � (eq. (4)). � is computed between the set of detected
spherical features s⇤ and the position s(r) of the same features computed by
forward projection. r = [t

X

, t

Y

, t

Z

, ✓u

X

, ✓u

Y

, ✓u

Z

] is a vector representation
of the pose c

M

o

(3 translation and 3 rotation parameters). Considering k

features, � is defined as:

� =
kX

i=1

(s
i

(r)� s

⇤
i

)2, with s(r) = prS(
c

M

o

,

o

S

i

). (4)

i indexes the i-th feature of the set.
With this formulation, a virtual spherical camera, with initial pose c

M

0

o

,
is moved using a visual servoing control law to minimize the error �. At
convergence, the virtual sphere reaches the pose c

M

⇤
o

which minimizes �.
Assuming this non-linear estimation process converges, this pose is the real
pose. To sum up, this positioning task is expressed as the regulation of the
error

e = s(r)� s

⇤
. (5)

Imposing an exponential decoupled decrease of the error, ė = ��e leads
to the optimization of the pose so that the error evolution curve has an
exponential decreasing profile. ė depends on ṡ. The image features motion
is linked to the virtual camera velocity v [36]:

ṡ = Lsv. (6)

v = (�,!)T is the velocity vector of the pose with � = (�
X

, �

Y

, �

Z

), the trans-
lation velocity and ! = (!

X

,!

Y

,!

Z

), the rotation velocity. Ls is the inter-
action matrix (or image Jacobian) linking the features motion to the camera
velocity.

3.2.2. Robust formulation

To make the pose estimation more robust, it has to deal with outliers and
the use of M-estimator [28] is an e�cient solution in this way. Some func-
tions exist in the literature and apply well to our problem [37]. They allow
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uncertain measures to be less likely considered and in some cases completely
rejected. To add robust estimation to our objective function � (eq. (4)), it
is modified as:

�R =
kX

i=1

P(s
i

(r)� s

⇤
i

), (7)

where P(a) is a robust function that grows subquadratically and is monoton-
ically non-decreasing with increasing |a|. For P, we considered the Tukey’s
function [28] because it completely rejects outliers and give them a zero
weight. This is of interest in virtual visual servoing so that detected outliers
have no e↵ect on the virtual camera motion [38].

Iterative Re-Weighted Least Squares is a common method of applying
the M-estimator. Thus, the error to be regulated to 0 is redefined, taking
the robust function into account:

e = D(s(r)� s

⇤), (8)

where D is a diagonal weighting matrix given by D = diag(w
1

, ..., w

k

). Each
w

i

is a weight given to specify the confidence in each feature location and is
computed using statistics on the error vector [24].

A simple control law that allows to move the virtual camera can be de-
signed to try to ensure an exponential decoupled decrease of e:

v = �� (DLs)
+

D (s(r)� s

⇤) . (9)

where � is a gain that tunes the convergence rate and the matricial operator
( )+ denotes the left pseudo inverse of the matrix inside the parentheses.

The pose c

M

o

is then updated using the exponential map e

[.] of SE(3) [39]:

c

M

t+1

o

= c

M

t

o

e

[v]
, (10)

The feature type choice and hence the interaction matrix expression are
a key point of this algorithm. As previously mentioned, we chose the poin-
to-great circle feature and next sections describe the spherical virtual visual
servoing for it.

3.3. Definition of the point-to-great circle feature

As we can see in figure (3), the 3D line can be represented by the inter-
section of two planes. These two planes P

1

and P
2

are defined, in the sphere
frame, by:

P
1

: A
1

X +B

1

Y + C

1

Z = 0

P
2

: A
2

X +B

2

Y + C

2

Z +D

2

= 0
(11)
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with the following constraints on the 3D parameters:
8
><

>:

A

2

1

+B

2

1

+ C

2

1

= 1

A

2

2

+B

2
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+ C

2

2

= 1

A

1

A

2

+B

1

B

2

+ C

1

C

2

= 0

(12)

so that the two planes are orthogonal with unit normals N
1

= (A
1

, B

1

, C

1

)T

and N

2

= (A
2

, B

2

, C

2

)T. D
2

is the orthogonal distance of the 3D line to the
unified model sphere origin.

The spherical projection of a 3D line is then defined as the intersection
of the unitary sphere S and plane P

1

:
⇢

X

2 + Y

2 + Z

2 = 1
A

1

X +B

1

Y + C

1

Z = 0
. (13)

Since features are lying on the sphere surface, the normal vector N
1

is su�-
cient to parameterize the great circle.

Considering a point XS on the sphere, i.e. an image contour point pro-
jected on the sphere, its signed distance to the great circle is expressed by
the dot product d = N

1

.XS :

d = A

1

XS +B

1

YS + C

1

ZS (14)

This signed distance is interesting since d = 0 when the point is on the great
circle and tends to ±1 when going away the great circle.

The interaction matrix linked to this distance is expressed considering
the time variation of d, with XS constant during the pose optimization of
one image :

ḋ = Ȧ

1

XS + Ḃ

1

YS + Ċ

1

ZS . (15)

This clearly depends on the interaction matrix of N
1

, i.e. its variation with
respect to the pose. It is described in the following section.

3.4. Measuring edge image points

We mention that edge image points are measured since they are obtained
thanks to initial points computed from the 3D model projection at an initial
pose. This is the low level tracking method already used in [33]. Let us note
that it is di↵erent to a point detection method.
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Points used to compute the point-to-great circle distance are obtained
thanks to an adaptation of the moving edge method to omnidirectional im-
ages [34]. In the latter work, a 3D segment of the 3D model is projected as a
conic in the omnidirectional image. The method needs a regular sampling of
the conic in order to use the obtained sample points as initial positions for
the edge searching, along normal directions to the conic. However, a conic to
circle transformation and its inverse are necessary for the regular sampling.
Indeed, the direct regular sampling of the conic is not trivial, but for a circle,
it is.

In the current work, as introduced in the algorithm overview (section 3.1),
the sampling of the 3D line projection is done on its corresponding portion
of great circle, i.e. on the sphere. It allows a direct regular sampling, con-
trary to the conic case. Samples are then projected in the image to find the
corresponding contour thanks to the moving edge method.

3.5. Interaction matrix for the great circle

The interaction between the time variation of the normal vector to the
great circle and the camera motion is expressed from Ṅ

1

= (Ȧ
1

, Ḃ

1

, Ċ

1

)T [40]:

Ṅ

1

= � 1

D

2

N

1

N

T
2

� �N

1

⇥ !, (16)

with � and !, the translation and rotation velocities of the spherical camera
(section 3.2.1). The time variation of N

1

leads to the interaction matrix
linked to the projection of a 3D line on the sphere:

LN1 =

2

4
L

A1

L

B1

L

C1

3

5 =


� 1

D

2

N

2

N

T
1

[N
1

]⇥

�
(17)

3.6. Interaction matrix for the point-to-great circle distance feature

From equation (15), and knowing the elements of LN1 (eq. (17)), the
interaction matrix L

d

related to the point-to-great circle distance is expressed
as:

L

d

=

0

@
XS
YS
ZS

1

A
T 0

@
L

A1

L

B1

L

C1

1

A
. (18)

The feature of the VVS is the signed distance d (eq. (14)). So, considering
k features, as in equation (7), the stacking of the k point-to-line distances
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for current pose gives s(r). The goal of the optimization is to reach null
distances between points to great circle and hence, s⇤ = 0 (a k-vector with
all elements equal to zero). Finally, the stacking of the k interaction matrices
L

d

leads to Ls and equation (8) allows to compute the update vector of the
pose.

3.7. Validation on synthetic images

This section presents results obtained on images synthesized using the
Pov-Ray software. The goal of these experiments is to study the behavior
and accuracy of our proposed approach (S) comparing to the image plane
based (IP) [27], and their impact on the estimated pose. The implementation
has been done in C++ using the ViSP library [41].

To do this evaluation, two kinds of omnidirectional images are processed.
One kind presents a box where lines are not radial in the image (Fig. 5) and
the other presents a majority of radials (Fig. 6). The latter case is a near-
singular situation for the image plane (IP) formulation in which it should be
less e�cient than in the former case, and also less e�cient than the spherical
formulation (S).

The experiments done with synthetical images allow to evaluate the con-
vergence rate of the algorithms and their robustness to noise in the previ-
ously mentioned situations. The pose estimation error at convergence and
the conditioning of interaction matrices are good tools to better understand
the behavior of algorithms.

Three sets of experiments are led to evaluate the:

1. robustness to initialization: several di↵erent initial poses with a unique
desired pose (robust estimation or not) (128 di↵erent initial poses).
Random variations of the optimal pose are computed in order to be
not too far in images for the low level moving edge to succeed.

2. robustness to low quality camera parameters: di↵erent level of noise
(1 %, 2.5 %, 5 %) applied to the camera intrinsic parameters in terms
of percentage of parameter values (1000 random choices each)

3. robustness to low quality 3D model of the object (i.e. the model is not
exactly the same as the real object, due to fabrication or measurement
errors of the object): di↵erent level of noise (1 %, 2.5 %, 5 %) applied
to the vertices of the object 3D model (1000 random choices each)

The two latter sets of experiments are led considering the robust estimation.
For experiments with noisy camera parameters or 3D model vertices, the
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(a) optimal (b) one of the initial poses

(c) camera noised case (d) model noised case

Figure 5: Projection of the 3D model of the box in images, in the perfect case (a), for
another pose (b), for the “optimal pose” but with noisy intrinsic parameters (c) and finally,
for the optimal pose, with a noise applied on the summits of the 3D model (d).

initial pose of image plane and spherical VVS is the optimal one, for the
perfect camera parameters and perfect model. The robustness is evaluated
with respect to (i) the convergence rate, (ii) the orientation and position
precision of the optimal pose and (iii) the interaction matrix conditioning.

Figure 7 shows convergence rates. We first observe that, when no 3D
line segments of the model projects as a radial, image plane and spherical
formulations lead to quasi identical convergence rates. A thin advantage for
the spherical formulation is however noted when the object 3D model is im-
portantly noised (Fig. 7(a), on the right side). Secondly, when the model
is mainly projected as radials, the spherical formulation clearly outperforms
the image plane one. This was expected from the theoretical developments
and is confirmed by experiments as we can see in the figure 7(b), for various
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(a) optimal (b) one of the initial poses

(c) camera noised case (d) model noised case

Figure 6: Same di↵erent cases than in figure 5 but the pose is such that the box edges are
mainly projected as radials in the image.

initial poses with or without robust estimation. In that case, the IP formu-
lation converges 50% of the time when the M-Estimator is used whereas it
never converges when it is not used. The former rate is due to the fact that
since a conic close to be a radial is badly conditioned, important algebraic
errors are encountered, even for a small geometric one, and the M-Estimator
rejects these measures. Hence, no measures are kept on radials and only two
segments of the model can be used to estimate the pose, which is subject to
ambiguities. When the M-Estimator is not used, sample points on radials are
kept in the optimization process and make the optimization unstable that
finishes to diverge or to converge in a local minimum.

Still about the various initial poses experiment in the presence of radials,
the spherical formulation allows to converge in all the tested cases when the
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Figure 7: Comparison of convergence rates, expressed as percentages of converged opti-
mization over number of initializations, for the image plane (IP) and spherical (S) formu-
lations with radials or not. “R” stands for “Robust” and “NR” for “No Robust”. For the
camera noised and model noised experiments, the robust estimator is always used.

robust estimation is used. However, it only converges at a rate of 50% to the
actual pose when the M-Estimator is not used, because some sample points
are attracted by shadows of the box in the image or samples points of a line
are attracted by the contour of other object edges.

When applying a Gaussian noise on camera parameters or vertices of the
3D model, at 1%, 2.5% or 5% of their value, the convergence rate decreases
when the level of noise is increasing, which is common. Of course, the noise
on camera parameters has a major impact on the convergence rate. Indeed,
the generalized focal length is noised up to ±10, for an original value of 200,
the principal point too and ⇠ is noised up to ±0.05 for an original value of
1. For instance, figures 5(c) and 6(c) show the projection of the 3D model
when camera parameters are noised, for the optimal pose (corresponding
to noiseless parameters). The spherical formulation outperforms the image
plane one, nearly doubling the convergence rate. The next diagrams have to
be cross-interpreted with the latter convergence survey.

Working with synthetic images allows to evaluate the pose estimation
precision itself without other unknown perturbations. We first study the
position and orientation estimation errors in the non radial case (Fig. 8).
In this case, as in the convergence survey, both formulations (IP and S)
lead to similar results with a slightly better precision in position, and more
particularly in orientation, of the spherical formulation. The “various initial
poses” experiments of figure 8 show the estimation precision at convergence
is, at least, doubled when using the robust estimation: a position error of
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Figure 8: Position and orientation errors at convergence for the image plane (IP) and
spherical (S) formulations without radials. “R” stands for “Robust” and “NR” for “No
Robust”. For the noised experiments, the robust estimator is always used.

around 2.5 cm with the robust estimation against 5 cm without.
In the presence of radial lines, the pose estimation precision is clearly bet-

ter, as compared with the known groundtruth, for the spherical formulation
than for the image plane one, even only considering the cases of convergence.
Figure 9 shows that the spherical formulation allows not only to converge
more frequently but the pose estimation is also more precise than with the
image plane formulation, especially when the model is projected as radials
in the image.

Another tool to study the behavior of non linear optimization algorithms
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Figure 9: Position and orientation errors at convergence for the image plane (IP) and
spherical (S) formulations with radials. “R” stands for “Robust” and “NR” for “No
Robust”. For the noised experiments, the robust estimator is always used.
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is the conditioning of the Jacobian so, in the current work, the conditioning
of the interaction matrix. The closer to 1 the condition number, the better
conditioned it is. Figure 10(a) shows the median condition number of the
interaction matrix in various experiments. The median is chosen and not the
mean because, in some cases, the interaction matrix condition number for
IP formulation is extremely high (about 106). The mean comparison with
S formulation would then not be fair. Similar results are obtained by the
two studied formulations of the 3D tracking, with a similar median condition
number in all experiments where the optimization converged.

On the contrary, when looking at the median conditioning number of the
robust interaction matrix for the various initial poses experiment (Fig. 10(b),
left part), it helps well to explain the di↵erence of convergence rate between
both formulations. Indeed, the interaction matrix of the spherical formula-
tion is twice better conditioned than the image plane formulation.

However, when using a noised set of camera parameters in the presence
of radials, the condition number of both methods is similar, and even slightly
better for the IP formulation (Fig. 10(b), center part). It helps to understand
that, this is precisely the error computation as an algebraic distance in the
IP formulation which leads to a low convergence rate, in this case, and a low
precision when converging.

Finally, the noised model experiments in the presence of radial lines
(Fig. 10(b), right part) clearly show the image plane formulation is more
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Figure 10: Comparison of the conditioning of interaction matrices of the VVS for the
image plane (IP) and spherical (S) formulations with radials in the image plane or not.
“R” stands for “Robust” and “NR” for “No Robust”. For the camera noised and model
noised experiments, the robust estimator is always used.
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sensitive to a noised 3D model than the spherical one. And, more globally,
about the conditioning of the Jacobian in all experiments, the spherical for-
mulation shows to be very robust to noise, applied on the camera parameters
or on the 3D model, with a quasi constant median conditioning, despite noise.

To conclude, this survey experimentally highlights the interest of the
spherical modeling of the point-to-line distance, with the improvement of
convergence rate and pose estimation precision over the image plane formu-
lation.

4. Stereoscopic extension of the model based tracking in omnidi-

rectional vision

4.1. Robust stereoscopic virtual visual servoing

The aim of this section is to present how to adapt the VVS method to an
omnidirectional stereovision sensor considered as a rig of four single viewpoint
omnidirectional cameras. The criterion � (eq. (4)) has to be rewritten to
take into account several cameras, assuming known stereo system calibration
parameters [42]. So, for N cameras, � is extended to:

�S =
NX
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kjX
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(prS(
cj
M

c1
c1
M

o
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with, obviously, c1
M

c1 = I

4⇥4

and knowing the N � 1 sets of relative cam-
era poses with respect to the reference one. With this formulation, only
six parameters have to be estimated, as for the monocular pose estimation
problem. Setting N = 2, we retrieve a two cameras case ([25], in perspective
vision) and for the FOO, N = 4 (Fig. 1).

To express the features motion in images of cameras 2, 3 and 4 with
respect to the velocity v

1

of camera 1, i.e. the stereo rig velocity, a frame
change is applied to velocity vectors v

j

of cameras j = 2, 3, 4. Velocity vector
frame changes are computed thanks to the twist transformation matrix:
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where cj
R

c1 and
cj
t

c1 are respectively the rotational bloc and the translation
vector extracted from the homogeneous matrix cj

M

c1 . Then, we can express
v

j

w.r.t. v
1

:
v

j

= cj
V

c1v1

, j = 2..4. (21)
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So the feature velocity in the spherical image of the camera j is related to
the motion of camera 1:

ṡ

j

= L

j

v

j

= L

j

cj
V

c1v1

. (22)

For four cameras, considering a M-Estimator is computed on each image,
leading to four weighting matrices (D

1..4

), the pose velocity vector of the rig,
expressed in camera 1 frame, is computed as:
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Four M-Estimators are individually computed since the moving edges proce-
dure is done individually in each of the four views of the FOO. Finally, L

j

is
substituted by the stacking of each feature interaction matrix L

d

, computed
for the j-th spherical camera of the rig. The same reasoning is followed to de-
fine current and desired features for each camera (see the end of section 3.6).

v

1

is used to update the stereo rig pose, as in the unique camera case,
and poses of the three other cameras are then updated using the stereo rig
calibration parameters cj

M

c1 :
cj
M

o

= cj
M

c1
c1
M

o

. These pose matrices are
used in equation (23) to compute s

j

(r
j

) for a new iteration.

4.2. Experimental results

The algorithm has been applied on several image sequences either with a
static sensor and mobile objects in the scene and with mobile ones, embedded
on a mobile robot.

The first handheld box tracking experiment is led to compare image plane
based and spherical based VVS methods using the FOO sensor. Pose estima-
tion stability of image plane and spherical formulations in the stereo case are
then compared. Then, a localization experiment tracking doors of a scene
shows the precision of estimation when using the spherical formulation. Fi-
nally, an experiment is led outdoor to track buildings in a more challenging
situation than indoor.

4.2.1. Box tracking: sphere versus image plane

A box (30 cm ⇥ 25 cm ⇥ 20 cm) is manually moved in a major part of
the static sensor field of view (Fig. 11), at a distance range from 35 cm to
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(a) Experimental setup (b) Image 1

(c) Image 149 (d) Image 312

Figure 11: Pose estimation for the handheld box. (a) an external view of the setup. (b-d)
FOO images with the projected model (green), showing its pose is well computed all along
the sequence.

75 cm, in this experimentation. The small size of the box, and hence its
small size in images, even if it is not so fare, leads to challenging condi-
tions. The tracking succeeds even in the image plane formulation thanks to
the redundancy compensating the occurrence of singularities (Fig. 11). The
spherical stereo tracking succeeds too and the tracking results are similar
to the image plane formulation. It is however noticeable that the spheri-
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cal formulation is more stable than the image plane one, mainly due to the
fact that it uses more image measurements, without discarding them due to
a near-singularity. Figure 12 presents temporal variations for each position
and orientation coordinates estimated from the box stereo sequence, and par-
ticularly on a subset of this sequence where the di↵erences between IP and
S are the most visible. The instability of the image plane formulation w.r.t.
the spherical one is particularly clear, in this experiment, for the X and Z
coordinates and Y and Z rotation angles.

(a) position variations in meters (b) orientation variations in degrees

Figure 12: Pose variations between frames 200 and 250 of the sequence presented in
figure 11, using the four mirrors. “IP” stands for “Image Plane” formulation and “S” for
“Spherical” formulation.

4.2.2. Application to mobile robot localization

Indoor experimentation. In this experiment, we consider a massively radial
model projection and mutual occlusion case. The FOO sensor is vertically
mounted on a mobile robot with mirrors reflecting the ground and walls.
This usual placement of the omnidirectional sensor allows to actually sense
information 360o all around the robot. Hence, it leads to the projection of
vertical lines as radial lines in the image plane (Fig. 13(b)), the degenerate
and even singular case of the normalized conic representation. Indeed, when
using doors as the 3D model for VVS in the image plane, the tracking is lost
from the first images. However, the spherical formulation of the model based
VVS allows to naturally deal with the projection of vertical lines when the
sensor axis is also vertical. Figure 13 present tracking results over several
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images of a sequence where the robot is moved along a loop trajectory. De-
spite important rotations of the robot and important size variations of doors
in images, the tracking succeeds all along this sequence.

Estimated poses are used to plot a raw estimation of the camera/robot
trajectory in figure 14. Comparison is made between the onboard estimation

(a) Experimental setup (b) Image 197 / 546

(c) Image 255 / 546 (d) Image 343 / 546

Figure 13: Stereo spherical tracking and pose estimation of an environment mainly com-
posed of radial lines in the image. The FOO camera is mounted on a mobile robot with
mirrors reflecting the ground and walls. The spherical tracking of scene doors succeeds all
along the sequence of 546 images where the robot makes a loop.
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using the spherical VVS and the trajectory estimated with an external tool,
which is a camera placed at the ceiling, tracking and estimating the pose of an
IR target placed on the robot. The overlapping of the two trajectories shows
qualitatively the estimation precision, which is important, with stable pose
estimations over time, without any filtering. Even if the trajectory obtained
with an external vision tool cannot be actually considered as a “ground
truth”, it gives an idea of it. We then computed the error between these two
trajectories and obtained 6.72 cm as mean position estimation error. This
mean error leads to the mean error ratio over the trajectory length (around
11 m) of 0.61 %.

Figure 14: Estimated trajectory using poses obtained from the stereo spherical VVS. The
“ground truth” is obtained using an external localization tool. The important overlapping
of these trajectories shows the precision of the estimation. The unit is the meter.

Outdoor experimentation. This experiment shows the behavior of our method
in more challenging conditions, traveling the robot outdoor. The robot em-
beds a small configuration of the FOO sensor, still with the four mirrors but
with a smaller lens in order to have a sensor of the same size as a monocular
one : 30 cm (fig. 15(b)). A sequence of 1500 images for a 21 m path of the
robot is acquired. A building is tracked with a partial and imprecise model
of its edges. In the image sequence, the building moves in a large part of
images leading to self-occlusion of the building (fig. 15). Despite these di�-
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(a) environment; red: an idea of the robot path; green: tracked edges in (d-f)

(b) small FOO (c) Estimated poses (d) Image 0 / 1500

(e) Image 540 / 1500 (f) Image 1450 / 1500

Figure 15: Tracking buildings. (a) The outdoor environment. (b) A compact configuration
of the FOO is mounted on the robot. (c) Estimated poses (red) using the stereo spherical
VVS. The robot is driven along a trajectory of 21 m with 1500 acquired images. Tracking
results are shown at (d) the beginning, (e) the middle and (f) the end of the robot path.
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culties, the tracking succeeds all along the sequence showing the robustness
of the method in real conditions with partial occlusion of the building bottom
by some cars, self occlusion of the building, which also present other strong
gradients on its surface. One can finally note that, in a mean, the distance
between the robot and the building is around 12 m.

A video presenting the two latter experiments is available at the following
URL: http://home.mis.u-picardie.fr/⇠g-caron/videos/MBTMobileFOO.mp4.

5. Discussion and conclusion

Experiments aimed to evaluate the new spherical formulation of the 3D model
based tracking in omnidirectional vision and its extension to stereovision. We
compared this new formulation with the image plane based one. Dealing with
this spherical representation allows (i) to withdraw singular and nearly singular
conic representations, (ii) to reduce the number of parameters to represent a line
and, finally, (iii) to easily use an actual geometrical distance. All these theoretical
interests are confirmed by the results.

Experimental results on synthetic images show exactly the situation in which
the image plane formulation is defeated whereas the spherical formulation is always
e�cient. Based on this experimental demonstration, the results on real images
show two things. First, using the image plane formulation, the redundancy brought
by the FOO stereovision sensor adds enough robustness to the tracking, even if it is
not perfectly stable. Then, experimental results on real images show that the use
of the spherical formulation stabilizes estimations in the tracking of a box. This is
furthermore the only formulation allowing to succeed to track an environment for
the onboard localization of a mobile robot, when the 3D model is mainly projected
as radials, which is really often the case indoor as well as outdoor. The redundancy
of the four views is not enough constraining for the image plane formulation in the
latter case, highlighting again the interest of the spherical formulation.

Another advantage of the technique is the processing time since, even if no
particular code optimization has been led, processing is real time w.r.t. the acqui-
sition frame rate. The tracking of a box in the monocular VVS case for images of
640⇥480 pixels (450⇥450 useful) takes around 25 ms and the tracking of doors in
the last experiment with the FOO takes 45 ms for 800⇥ 800 pixels FOO images,
with 250 moving edge sites in each view. Furthermore, the latter computation
time can even be reduced since processes are parallelizable for the stereo case.
Indeed, the moving edge stage is done on each image individually, as the weights
computation of the M-Estimator, and these steps could be done in parallel for each
view.
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Of course, if image acquisition conditions are really hard for a tracking method
(extremely small object in images or important displacement of the tracked ob-
ject/scene between two consecutive frames), the proposed algorithm may diverge.
But if the new spherical method diverges, the former image plane one will diverge
too, whereas the opposite has never been observed in any of our experiments. A
better behavior of the former image plane formulation over the new spherical one
is, furthermore, never waited from the theoretical expressions.

To sum up, the new spherical formulation of model based pose estimation and
the redundancy brought by the FOO sensor allow to make the tracking robust and
stable in static or mobile situations, indoor and outdoor. Experiments show that
the use of this sensor is adapted, e�cient and robust, for real time onboard mobile
robot localization applications.

Future works will be focused on the low level image processing side to fully
adapt the moving edge to the spherical geometry and to study the interests brought
by this adaptation. Finally, the mix of the proposed contour-based method with
a textured-based one [43] is one of the perspectives of this work too, in order to
merge their e�ciency in textured and non-textured areas.
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