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ABSTRACT 

The work proposed in this document aims to investigate the use of 
consumer RGB-D sensors for object detection and pose estimation 
from natural features, with the purpose of using such techniques 
for developing augmented reality applications. Two methods 
based on depth-assisted rectification are proposed, which 
transform features extracted from the color image to a canonical 
view using depth data in order to obtain a representation invariant 
to rotation, scale and perspective distortions. While one method is 
suitable for textured objects, either planar or non-planar, the other 
method focuses on texture-less planar objects. Qualitative and 
quantitative evaluations of the proposed methods are performed, 
comparing it to existing methods for object detection and pose 
estimation. 

Keywords: Augmented reality, natural features, computer vision, 
RGB-D. 

Index Terms: I.4.8 [Image Processing and Computer Vision]: 
Scene Analysis—Depth Cues, Range Data, Tracking; H.5.1 
[Information Interfaces and Presentation]: Multimedia 
Information Systems—Artificial, Augmented, and Virtual 
Realities 

1 INTRODUCTION 

In the last years, AR applications have been benefited with the 
advent of low cost RGB-D consumer devices. These devices are 
commonly used in human body detection and tracking for user 
interaction purposes. RGB-D sensors are able to provide in real-
time, besides a color image (RGB channels) of the scene, another 
image in which each pixel value corresponds to the distance from 
the scene objects to the camera. Such image is named depth image 
(D channel). The use of RGB-D consumer devices for object 
detection and pose estimation has grown significantly over the last 
years [6][11]. The color and depth images from RGB-D cameras 
can be employed to obtain 3D models of the objects to be detected 
and also provide useful information at runtime for accomplishing 
better results when compared to techniques that use only RGB 
data. 

The main question related to the topics approached in this paper 
is: ―How to improve object detection and pose estimation from 
natural features for AR using consumer RGB-D sensors?‖. In 
order to address this problem, existing object tracking and 
detection methods based on natural features should be 
investigated in order to identify how depth information can be 
exploited to obtain better results than when only RGB data is 
used. A special attention should also be devoted to methods that 
already use RGB-D information for object tracking and detection. 

In this context, the work presented in this document aims to 
develop novel object detection and pose estimation methods for 
AR using natural features and consumer RGB-D sensors. The 
developed solutions are evaluated taking into account 
performance, robustness and accuracy metrics. 

The specific goals to be achieved in this work are: 
• Study the natural feature tracking and detection field, with 

emphasis on object tracking and detection methods, including 
techniques that make use of RGB-D data, for identifying points of 
improvement in the state of the art; 

• Define and develop object detection and pose estimation 
methods that use consumer RGB-D sensors for solving some of 
the identified points of improvement; 

• Perform case studies and evaluations of AR applications that 
make use of the developed methods, in order to verify how the 
methods contribute to improving user experience. 

This paper is organized as follows. Section 2 presents one of the 
methods developed in this work, which makes use of depth 
information for rectifying patches around interest points in the 
color image. Section 3 presents the other method developed in this 
work, which rectifies contours extracted from the color image 
using depth data. Section 4 discusses the preliminary results 
obtained with the techniques described in Sections 2 and 3. The 
results obtained are compared with other existing object detection 
and pose estimation methods. Section 5 presents final 
considerations and future work for the remainder of the PhD 
course. 

2 DEPTH-ASSISTED RECTIFICATION OF PATCHES 

This section presents a method developed in this work named 
Depth-Assisted Rectification of Patches (DARP), which exploits 
depth information available in RGB-D consumer devices to 
improve keypoint matching of perspectively distorted images. 
This is achieved by generating a projective rectification of a patch 
around the keypoint, which is normalized with respect to 
perspective distortions and scale. 

In DARP, keypoints are extracted using FAST-9 [14] and their 
normal vectors on the scene surface are estimated using the depth 
image with the average 3D gradient method [9]. Then, using depth 
and normal information, patches around the keypoints are 
rectified to a canonical view in order to remove perspective and 
scale distortions. Given             

  as the unit normal 
vector in camera coordinates at     , which is the corresponding 
3D point of a keypoint, two unit vectors    and    that define a 
plane with normal   can be obtained by: 

   
 

‖          
 ‖

           
 ,        . 

This is valid because it is assumed that    and    are not equal 
to zero at the same time, since in this case the normal would be 
perpendicular to the viewing direction and the patch would be not 
visible. 

From     ,    and   , it is possible to find the corners   , 
…,    of the patch in the camera coordinate system. The patch 
size in camera coordinates should be fixed in order to allow scale 
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invariance. The corners   , …,    of the patch to be rectified in 
image coordinates are the projection of the 3D points   , …,   . 
Then,       , where   is the intrinsic parameters matrix. If 
the patch size in image coordinates is too small, the rectified patch 
will suffer degradation in image resolution, harming its 
description. This size is influenced by the location of the 3D point 
     (e.g., if      is too far from the camera, the patch size will 
be small). It is also directly proportional to the patch size in 
camera coordinates, which is determined by a constant factor   
applied to    and    as follows:          and         . 
The factor   should be large enough to allow good scale 
invariance while being small enough to give distinctiveness to the 
patch. In the performed experiments, it was computed by   
     , where   is the size of the rectified patch (set to    in the 
experiments). 

The corners   , …,    of the patch are given by: 
               ,                , 

               ,                . 
The corresponding corners    , …,     of the patch in the 

canonical view are: 

            ,               , 

            ,           . 

From   , …,    and    , …,    , it can be computed an 
homography   that takes points of the input image to points of the 
rectified patch. 

For rotation invariance, the rectified patch orientation is 
calculated using the intensity centroid [15]. Finally, a descriptor 
for the rectified patch is calculated using the assigned orientation 
with the Rotation-Aware BRIEF (rBRIEF) method [15]. 

DARP can be used with any local feature detector and 
descriptor and is suitable for planar and non-planar textured 
scenes. 

3 DEPTH-ASSISTED RECTIFICATION OF CONTOURS 

This section presents a method developed in this work named 
Depth-Assisted Rectification of Contours (DARC) for detection 
and pose estimation of texture-less planar objects using RGB-D 
cameras. It consists in matching contours extracted from the 
current image to previously acquired template contours. In order 
to achieve invariance to rotation, scale and perspective distortions, 
a rectified representation of the contours is obtained using the 
available depth information. DARC requires only a single RGB-D 
image of the planar objects in order to estimate their pose, 
opposed to some existing approaches that need to capture a 
number of views of the target object. It also does not generate 
warped versions of the templates, which is commonly required by 
existing object detection techniques. 

First, contours are extracted from the query RGB image using 
the Canny edge detector [5]. Then, for each extracted contour, the 
3D points that correspond to the 2D points of the contour and its 
inner contours are selected. In the remainder of this paper, the set 
of points that belong to a contour or its inner contours is named 
contour group. Then, for each contour group, the corresponding 
3D points    of the 2D contour points    are used to estimate the 
normal and orientation of the contour group via Principal 
Component Analysis (PCA). The centroid  ̅ of the 3D contour 
points is calculated, which is invariant to affine transforms. A 
covariance matrix is computed using    and  ̅, and its 
eigenvectors            and corresponding eigenvalues 
           are computed and ordered in ascending order. The 
normal vector to the contour group plane is    [3]. If needed,    
is flipped to point towards the viewing direction. Contour group 
orientation is given by    and   , which can be seen as the   and 
  axis, respectively, of a local coordinate system with origin at  ̅ 

[3]. There are four possible orientations given by combinations of 
the   and   axis with different signs. It only makes sense to 
consider all four orientations if mirrored or transparent objects 
might be detected. Otherwise, only two orientations are enough, 
which are given by using both flipped and non-flipped    as the   
axis and computing the   axis as the cross product of    and   . 

In order to allow matching instances of the same contour group 
observed from different viewpoints, they are normalized to a 
common representation. Translation invariance is achieved by 
writing the coordinates of the 3D contour points    relative to the 
centroid  ̅. Rotation invariance is obtained by aligning    and    
with the   and   global axes, respectively. Since the 3D contour 
points    are in camera coordinates, they are scale invariant. 
Perspective invariance is obtained by aligning the inverse of the 
normal vector    to the   global axis. This way, the rectified 
contour points     can be computed as follows: 

    [      ]      ̅ . 

The rectified points should lie on the    plane (   ). Since 
two or four orientations given by    and    are considered, each 
one is used to generate a different rectification of a contour group. 
All these rectifications are taken into account in the matching 
phase. In some cases the estimated orientation is not accurate. 
However, this is still sufficient for matching and pose estimation 
purposes. 

After being rectified, query contour groups can be matched to a 
previously rectified template contour group. This is done by 
comparing each rectified query contour group with the rectified 
template contour group, considering the different orientations 
computed. First, a match is rejected if the upright bounding 
rectangles of the rectified contour groups do not have a similar 
size. Then, it is calculated a rough pose that maps the 3D 
unrectified template contour group to the 3D unrectified query 
contour group. Given the rotation    and translation    that rectify 
the template contour group and the rotation    and translation    
that rectify the query contour group, the rough pose is obtained 
by: 

[
    

  
]
  

[ 
   

  
]. 

The 3D unrectified template contour group is transformed using 
the rough pose [ | ] and then projected onto the query image. 
After that, the upright bounding rectangle of the projected points 
is calculated and compared with the upright bounding rectangle of 
the 2D query contour group. If they are not close to each other or 
their sizes are not similar, the match is discarded. 

The similarity between template contour group projection and 
2D query contour group is given by their chamfer distance [1]: 

 

  
∑       

   
   , 

where   is the number of points in the template contour group,   
  

is the  -th template contour point and     is the query distance 
transform truncated to a value  . For each query contour group, 
the template contour group orientation with smallest chamfer 
distance is marked as a candidate match. 

If there is a candidate match for a given query contour group, 
then a refined pose of the contour group is estimated from the 
previously computed rough pose using the Levenberg-Marquardt 
algorithm. The query distance transform is used to compute the 
residuals. Finally, the chamfer distance between the template 
contour group and query contour group is calculated using the 
refined pose. If it is below a threshold, then the match is 
considered as correct. 

In the current implementation, a single contour group is used 
for defining the pose of a given object. If the object contains 
several disjoint contour groups, one of these has to be selected for 
being used as template. 



4 PRELIMINARY RESULTS 

This section describes some results obtained with the DARP and 
DARC methods. The techniques were also evaluated regarding 
performance and pose estimation quality. All the experiments 
were performed with 640x480 images using a laptop with Intel 
Core i7 720QM @ 1.60GHz processor and 6GB RAM. 

4.1 DARP Results 

In order to evaluate DARP, some image sequences from the 
publicly available University of Washington’s RGB-D Object 
Dataset [10] were used. The results obtained with DARP were 
compared with ORB [15], since the current implementation of 
DARP performs keypoint detection, orientation assignment and 
patch description in a way similar to ORB. Two images of the 
same object with different poses were matched using both 
techniques. 

Initially the tests were done with planar objects, as can be seen 
in Figure 1. It is shown in the top images the results obtained with 
ORB and in the bottom images the results obtained with DARP. It 
can be seen in the left images the matches between the two 
instances of the object. The projection of a 3D point cloud of the 
object using the pose calculated from the matches is shown in the 
right images. It can be noted that the DARP method provides 
better results than ORB when the object has an oblique pose with 
respect to the viewing direction. The matches obtained with ORB 
led to a wrong 3D pose, while it was possible to estimate a 
reasonable pose using DARP, as evidenced by the projection of 
the 3D model. After, some tests were done with non-planar 
objects, as shown in Figure 2. DARP also obtained better results 
than ORB in the oblique pose scenario, since the 3D pose 
computed from the matches (right images) was closer to the 
correct pose when the DARP method was used. 

  

  

Figure 1: Planar object matching using ORB (top) and DARP 

(bottom): matches (left) and pose estimation (right). 

  

  

Figure 2: Non-planar object matching using ORB (top) and DARP 

(bottom): matches (left) and pose estimation (right). 

4.2 DARC Results 

In order to evaluate DARC, some image sequences were captured 
using the Microsoft Kinect for Xbox 360 RGB-D camera and 
synthetic RGB-D images were also generated. 

Figure 3 shows some results obtained with DARC for detection 
and pose estimation of different planar objects. A video with the 
results can be found at http://goo.gl/PmXzQ. It can be seen 
that DARC can deal with significant changes in rotation and scale 
as well as with perspective distortions. The contour group used as 
template is the octagon of the stop sign. 

 

 

Figure 3: Augmentation of planar objects using DARC. 

DARC was compared to some existing techniques regarding 
pose estimation quality and performance. The methods selected 
for the evaluation were ORB [15], which is a texture based 
technique, and PTM [7], which exploits edge information. Pose 
estimation quality was evaluated with a database of 280 synthetic 
RGB-D images of a stop sign under different viewpoints on a 
cluttered background. The poses were under a degree change 
range of [      ] with a     step and a scale range of [       ] 
with a     step. The percentage of correct poses estimated by each 
method was calculated. The pose was considered as correct only if 
the root-mean-square (RMS) reprojection error was below   
pixels. Figure 4 shows that DARC outperformed ORB and PTM 
in all viewpoint changes. 

 

Figure 4: Percentage of correct poses of different methods with 

respect to viewpoint change. 

5 FINAL CONSIDERATIONS 

It was shown that the use of RGB-D sensors allows improving 
object tracking and detection from natural features. The DARP 
method has been proposed, which exploits depth information to 
improve keypoint matching. This is done by rectifying the patches 
using the 3D information in order to remove perspective effects. 



The depth information is also used to obtain a scale invariant 
representation of the patches. It was shown that DARP can be 
used together with existing keypoint matching methods in order to 
help them to handle situations such as oblique poses with respect 
to the viewing direction. It supports both planar and non-planar 
objects and is able to run at interactive rates. The DARC 
technique has also been presented, which performs detection and 
pose estimation of texture-less planar objects by making use of 
depth information available in RGB-D consumer devices. In order 
to achieve this, contours extracted from a query image are 
rectified for removing distortions caused by rotation, scale and 
perspective transforms. The normalized representation is matched 
to templates acquired a priori using chamfer distance and a rough 
pose is calculated. This pose is later refined using a Levenberg-
Marquardt optimization. DARC showed to be robust to in-plane 
and out-of-plane rotations, scale and perspective deformations, 
providing a pose with reasonable accuracy for AR applications. 
The DARC technique works in real-time, being able to run at 
~20 fps while detecting a single template. 

Regarding DARP, a quantitative evaluation of pose estimation 
quality will be performed. Future work will also focus in 
evaluating how normal estimation can be speeded up, maybe 
using faster approaches such as the one described in [6]. A 
refinement step for patch pose estimation using a template 
tracking method such as [2] will be considered. Another issue that 
should be investigated is that when the object suffers from severe 
perspective or scale distortion, the rectified patch loses resolution, 
which impacts on its description. One alternative to be studied for 
solving this would be to generate distorted versions of the 
reference images prior to keypoint matching [4]. Then, the 
available depth and normal information could be used to select a 
set of most probable matching keypoints for each patch. Finally, 
tests with other detectors and descriptors will be done. 

With respect to DARC, it will be evaluated the possibility of 
extending the technique for working with non-planar objects. It 
could also be noted that computational performance drops linearly 
with the number of detected templates. As future work, DARC 
scalability should be improved. Optimizations are planned in 
order to allow better frame rates while estimating the pose of a 
higher number of contour groups. Special attention should be 
devoted to the pose refinement step, which showed to be a 
bottleneck and its performance depends on the number of detected 
templates. The use of a template tracking method such as [2] 
should be considered. The current approach is also not robust to 
partial occlusions, since it uses only a single contour group to 
estimate object pose. If any contour that belongs to the contour 
group is occluded, detection tends to fail. Occlusion handling is a 
direct consequence of estimating the pose of more contour groups, 
which is a future work mentioned in the previous paragraph. If the 
object is composed by several contour groups and the pose of the 
visible contour groups can be calculated, the object pose can then 
be inferred even if some of its contour groups are occluded. In 
addition, a verification method using neighboring contours such 
as the one described in [8] could also be used. Contour detection 
showed to be not robust to illumination changes, noise and blur 
caused by very fast movements. The use of more robust region 
detectors such as MSERs [13] will be investigated. Finally, 
confusions can occur when the template contour groups do not 
have enough discriminative power. It will be studied if the 
discriminative power of contour matching can be improved by 
making use of oriented chamfer matching [16] or directional 
chamfer matching [12]. 

An investigation of other ways of improving object detection 
and pose estimation using RGB-D sensors will also be performed. 
Then, AR case studies using the developed methods will be done. 

REFERENCES 

[1] H. Barrow, J. Tenembaum, R. Bolles, and H. Wolf. Parametric 

correspondence and chamfer matching: two new techniques for 

image matching. In IJCAI ’77, pages 659–663, Cambridge, 

Massachusetts, 1977. 

[2] S. Benhimane, and E.  Malis. Real-time image-based tracking of 

planes using efficient second-order minimization. In IEEE/RSJ IROS 

’04, pages 943–948, Sendai, Japan, 2004. 

[3] J. Berkmann and T. Caelli. Computation of surface geometry and 

segmentation using covariance techniques. In IEEE PAMI, 

volume 16, issue 11, pages 1114–1116, 1994. 

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary 

Robust Independent Elementary Features. In Kostas Daniilidis, 

Petros Maragos, and Nikos Paragios, editors, ECCV ’10, Lecture 

Notes in Computer Science, volume 6314, pages 778–792, 

Heraklion, Greece, 2010. 

[5] J. Canny. A computational approach to edge detection. In IEEE 

PAMI, volume 8, issue 6, pages 679–698, 1986. 

[6] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, 

and V. Lepetit. Gradient response maps for real-time detection of 

textureless objects. In IEEE PAMI, volume 34, issue 5, pages 876–

888, 2012. 

[7] A. Hofhauser, C. Steger, and N. Navab. Edge-based template 

matching and tracking for perspectively distorted planar objects. In 

In George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, 

Paolo Remagnino, Fatih Porikli, Jörg Peters, James Klosowski, 

Laura Arns and Yu Ka Chun et al., editors, ISVC ’08, Lecture Notes 

in Computer Science, volume 5358, pages 35–44, Las Vegas, 

Nevada, 2008. 

[8] S. Holzer, S. Hinterstoisser, S. Ilic, and N. Navab. Distance 

transform templates for object detection and pose estimation. In 

IEEE CVPR ’09, pages 1177–1184, Miami, Florida, 2009. 

[9] S. Holzer, R. Rusu, M. Dixon, S. Gedikli, N. Navab. Real-time 

surface normal estimation from organized point cloud data using 

integral images. In IEEE/RSJ IROS ’12, Vilamoura, Algarve, 

Portugal, 2012 (to be published). 

[10] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-

view RGB-D object dataset. In ICRA ’11, pages 1817–1824, 

Shangai, China, 2011. 

[11] W. Lee, N. Park, and W. Woo. Depth-assisted real-time 3D object 

detection for augmented reality. In ICAT ’11, pages 126–132, Osaka, 

Japan, 2011. 

[12] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa. Fast 

directional chamfer matching. In IEEE CVPR ’10, pages 1696–1703, 

San Francisco, California, 2010. 

[13] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline 

stereo from maximally stable extremal regions. In BMVC ’02, pages 

384–393, Cardiff, Wales, 2002. 

[14] E. Rosten, and T. Drummond. Machine learning for highspeed 

corner detection. In ECCV, pages 430–443, 2006. 

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: an 

efficient alternative to SIFT or SURF. In IEEE ICCV ’11, pages 

2564–2571, Barcelona, Spain, 2011. 

[16] J. Shotton, A. Blake, and R. Cipolla. Multiscale categorical object 

recognition using contour fragments. In IEEE PAMI, volume 30, 

issue 7, pages 1270–1281, 2008. 


