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Abstract— This paper proposes a novel 3D servoing approach
using dense depth maps to achieve robotic tasks. With respect
to position-based approaches, our method does not require
the estimation of the 3D pose (direct), nor the extraction and
matching of 3D features (dense) and only requires dense depth
maps provided by 3D sensors. Our approach has been validated
in servoing experiments using the depth information from a
low cost RGB-D sensor. Positioning tasks are properly achieved
despite the noisy measurements, even when partial occlusions
or scene modifications occur.

I. INTRODUCTION

Most of the robotic positioning tasks are achieved by esti-

mating first the relative pose between the robot and the scene

or the object of interest, and then using a position-based

control scheme [21]. However, the pose estimation problem

itself is complex in its general formulation. Also known as

the 3D localization problem, this problem has been widely

investigated by the computer vision community [6] [13] but

remains non-trivial for unknown environments. Using range

data, a range flow formulation has been proposed [10][8] to

estimate the 3D pose of a mobile robot. Alternatively, the

alignement of successive 3D point clouds using ICP [1] [3]

has become a very popular method. Many variants have been

proposed in the litterature [18] and the development of the

so-called RGB-D cameras attracted lot of attention on these

methods [20] [16] [9] [17] in the recent years.

In this paper, we propose to perform robotic tasks without

reconstructing the full 3D pose between the robot and its

environment, but using a sensor-based servoing scheme,

the considered data being directly the depth map obtained

from a range sensor. Our approach is thus related to other

sensor-based methods, such as image-based visual servoing

(IBVS) [2], where a robotic task is expressed directly as

the regulation of a visual error. In IBVS, the visual error

is usually defined as the difference between a current and

a desired set of geometric features (points, straigth lines,

etc.) selected from the image, to control the desired degrees

of freedom. Therefore, IBVS schemes usually require the

extraction of visual features from image measurements, and

their matching in successive frames. However, those steps,

based on image processing techniques, are often considered

as the bottleneck of visual servoing methods.

Recently, some work proposed to use all the image di-

rectly, without any extraction or matching step, by min-

imizing the difference between the current image and a

reference image. This approach is referenced as photometric
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E. Marchand is with Université de Rennes 1, IRISA, INRIA, Lagadic

Project, Rennes, France firstname.name@irisa.fr

visual servoing [4]. However, since it is based on the lumi-

nance consistancy assumption, it is sensitive to illumination

changes. In our work we propose to use the depth map

obtained from a range sensor as a visual feature, without any

feature extraction or matching step, and to control a robot

with this feature directly. Our approach is thus both direct

(without any 3D pose estimation) and dense (without feature

extraction). To our knowledge this is the first time dense

depth information is used in a direct servoing approach.

The remainder of this paper is organized as follows: our

dense depth map servoing framework is described in section

II. In section III we propose simple solutions to increase

its robustness to some practical issues such as incomplete

measurements or occlusions. Positioning experiments have

been conducted to validate the approach. The results are

given and discussed in section IV.

II. DIRECT DENSE DEPTH MAP SERVOING

This section presents the heart of our approach, i.e. how

to control a robot using dense depth maps. We first introduce

what we call a depth map and what it means to use it

as a feature to regulate (section II-A). Then we derive the

fondamental equations necessary to compute our control law

(section II-B and II-C). In section II-D we underline the main

differences between our approach and sparse 3D approaches.

A. Depth map sensing

There are multiple technologies of sensors capable of

providing depth information, (or range). Most range sensors

without contact are active, and based on the time of flight

(ToF) principle: the idea is to send waves of known velocity

and measure the time it takes them to go from the sensor and

come back after reflection on the scene. This can be achieved

by sending light pulses. Another approach would consist in

using a modulated signal and measuring the phase shift. In

each case, knowing the velocity of the sent signal, the depth

information is derived (eg: Laser scans, sonars, radars, ToF

or RGB-D cameras).

Another existing technology for active range sensing is

based on structured light: known patterns (stripes, dots, ...)

are projected onto the scene and the depth information is

deduced from their deformation. This technology is used for

instance in the recent Microsoft Kinect or Asus Xtion pro

devices, based on PrimeSense technology [7].

Depth can also be measured with passive sensors such

as cameras: by matching image features in two different

views of a calibrated stereo rig, depth can be computed from

geometry. The depth information is sparse when a finite set
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Fig. 4. The task error is the difference of depth maps Z − Z
∗.

[22] or elevation rate constraint equation [10]. It is anal-

ogous to the brightness change constraint equation that is

used in the computation of optical flow [11] and used in

direct photometric visual servoing methods [4].

From equation (5) we know that the temporal variation of

the depth is:

∂Z

∂t
= Ż −

∂Z

∂x
ẋ −

∂Z

∂y
ẏ, (6)

where Ż = dZ
dt

denotes the Z velocity expressed in the sensor

frame.

Therefore, the interaction matrix LZ related to one depth

value is expressed by:

LZ = LPZ
−

∂Z

∂x
Lx −

∂Z

∂y
Ly. (7)

The matrices Lx, Ly defined such that ẋ = Lxv and ẏ =
Lyv are the well-known interaction matrices of image point

coordinates, given by:

Lx =
[

−1

Z
0 x

Z
xy −(1 + x2) y

]

(8)

Ly =
[

0 −1

Z

y

Z
−(1 + y2) −xy −x

]

, (9)

and LPZ
is the interaction matrix related to the coordinate

Z of a 3D point, such that Ż = LPZ
v. It is given by:

LPZ
=

[

0 0 −1 −yZ xZ 0
]

. (10)

More details on the derivation of those interaction matrices

can be found in [2].

The full interaction matrix LZ of size N×6 corresponding

to the entire depth map is thus the stack of the 1×6 matrices

LZi
:

LZ =







LZ1

...

LZN






. (11)

D. Dense vs sparse 3D servoing

Depth information has already been used in position-based

visual servoing. For example, [15] proposed to use the 3D

coordinates (X, Y, Z) of a set of 3D points as features to

be regulated in a proportional control law. In other words,

the positioning task was expressed as the regulation of the

feature P = (X1, Y1, Z1, ...,XN , YN , ZN ) to a reference

feature P
∗ = (X∗

1 , Y ∗

1 , Z∗

1 , ...,X∗

N , Y ∗

N , Z∗

N ) corresponding

to the 3D coordinates of the set of points at the desired robot

position. The interaction matrix related to a single 3D point

is then given by [2]:

LP =





−1 0 0 0 −Z Y

0 −1 0 Z 0 −X

0 0 −1 −Y X 0



 . (12)

At first sight, the formulation of this kind of 3D feature

(X1, Y1, Z1, ...,XN , YN , ZN ) can seem very close to the

vector formulation Z = (Z1, ..., ZN ) that we defined in

section II-B. However, a key difference with respect to our

approach is that [15] uses a sparse set of 3D features. Con-

sequently, in [15] a matching step is required to determine

the feature values through the sequence, and the range flow

equation (5), based on a smoothness assumption, does not

hold in the sparse case. On the contrary, one of the key

advantages of the method we propose, is that it does not

require any feature extraction or matching step and uses

directly the dense depth information from the range sensor

thanks to the range flow equation.

III. PRACTICAL ISSUES AND ROBUSTNESS

IMPROVEMENTS

In the previous section, we presented our depth map based

servoing method. When testing it, we found that this method

was efficient in simulation sequences, with perfect data, but

we had to face some practical issues in real conditions, in

particular, in our case, using a Kinect sensor. This section

presents the modifications we had to undertake in order to

improve the robustness of the servoing task with respect to

noisy and incomplete measurements (section III-A) and to

scene perturbations and occlusions (section III-B).

A. Noisy and incomplete measurements

As illustrated in Figure 2-b the depth map acquired by a

Kinect sensor is noisy and incomplete. In practice, we only

considered the pixels for which a depth value was available

both in the reference Z
∗ and the current Z depth maps. This

means that the number N of depth values in Z and (11),

is inferior to the size of the depth map (320 × 240). In the

experiments presented in this paper, about 80% of the total

number of pixels could typically be used.



In addition, we reduced the noise by applying a simple

3 × 3 Gaussian filter on the depth maps, the convolution

being computed only with the valid neighbors.

Similarly, the spatial gradient was computed using a

simple 3 × 3 derivative kernel taking into account the valid

neighbors only.

B. Occlusions and scene modifications

Another issue to take into account is the possibility of

partial occlusions or scene modifications during the servoing

process. To reduce the effect of such events on the task

achievement, we use robust M-estimation [12][5]. We thus

introduce a modification of our task objective (1) allowing

uncertain measures to be less likely considered or in some

cases completely rejected. The new task error is given by:

e = D(Z − Z
∗) (13)

where D is diagonal weighting matrix given by: D =
diag (w1, ..., wN )), the weights wi depending on their dis-

tance to the median of the error vector e according to a

robust function [12]. Different functions are possible for the

robust estimation. In practice, we used Tukey’s estimator to

completely reject the least likely values.

Using (13), the new control law becomes [5]:

v = −λ(DLZ)+D(Z − Z
∗). (14)

Experimental results using this control scheme are pre-

sented in the next section.

IV. EXPERIMENTAL RESULTS

In this section we present the results of our approach for

positioning tasks. A Kinect sensor has been mounted on a

ADEPT Viper robot (see Figure 3). In each experiment, the

robot first acquires the reference depth map at the desired

position. It is then moved to an initial position from which

the control scheme is launched, aiming at going back to

the desired one. A fixed gain λ = 2.5 is used in these

experiments.

The first experiment illustrates the behavior of our system

in a nominal case, namely with a static scene and no occlu-

sions. The depth maps are acquired using the LibFreenect1

driver through the ViSP library [14], with a resolution of

320 × 240. The scene is composed of various objects of

different shapes and materials (Figure 5 1-a).

The initial and final states are illustrated in Figure 5. The

first row shows the RGB views provided by the Kinect for

the initial (1-a) and final (1-b) positions. Those images are

never used in the control scheme but are useful for a better

understanding of the setup. The depth maps are shown in

the second row, and the last row gives the corresponding

error, i.e. the difference between the desired and the current

depth maps, unavailable data being discarded as explained in

III-A. The difference images are scaled so that a plain grey

frame (3-b) corresponds to a null error, and thus to the good

achievement of the task. In Figure 5 (3-a) we see that the

initial error was significant.

1http://openkinect.org/

(1-a) (1-b)

(2-a) (2-b)

(3-a) (3-b)

Fig. 5. First experiment. First column corresponds to the initial position.
The RGB view from the Kinect (1-a) is not used in the algorithm. (2-a)
Initial depth map, where white parts correspond to unavailable data. (3-
a) Difference between the initial and desired depth maps. Second column
corresponds to the end of the motion. The final depth map (2-b) corresponds
to the desired one, since their difference (3-b) is a uniform grey.

The corresponding quantitative values for the task error,

the 3D positioning errors and the velocities are given in

Figure 6. Figures (b) and (c) show that with an initial error

of 5 to 15cm in translation and 5 to 22deg in rotation, the

positioning task is achieved with a remaining error of less

than 3mm in translation and 0.4deg in rotation. Given the low

depth resolution of the sensor and its noisy measurements,

this corresponds to a good achievement of the task.

Note that in this scene the smoothness assumption was not

verified since large depth discontinuities exist at the border

of the objects, for example between the table and the floor.

This experiment thus shows that the method is successful

beyond its initial assumption.

In the second experiment, we evaluate the robustness of

our approach with respect to partial occlusions or modifica-

tions of the observed scene. The initial scene is illustrated in

Figure 8 (1-a). During the task achievement, someone entered

the sensor field, removed an object and put it back several

times. Some selected frames of this sequence are shown

in Figure 8. The initial and final positions are illustrated

in the first and last columns, while columns (b) and (c)

show examples of occlusions. Note that at the end of the

sequence the white bear has been completely removed from

the scene, and the final depth map (Figure 8 (2-d)) is thus

different from the desired one (Figure 7 (b)). This difference
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Fig. 6. First experiment. (a) Task error, (b) translational part of positioning
error, (c) rotational part of positioning error, (d) translational velocities, (e)
rotational velocities.

appears in the final difference image (Figure 8 (4-d)) and

the task error function (Figure 7 (a)). However, despite the

scene modifications and occlusions, the positioning task is

successfully achieved, as shown by the convergence of the

positioning errors in Figure 7 (b) and (c). The robustness of

our control scheme to perturbations is the result of the use

of M-estimation (see III-B). The effect of M-estimation is

illustrated on the third row of Figure 8, where we represented

the relative weights of each data in equation (13). Black

pixels correspond to rejected values and brightest ones to

inliers. Figure 8 (3-b), (3-c), and (3-d) show that the pertur-

bations are correctly detected since the corresponding pixels

are given a smaller weight. the positioning accuracy for this

experiment is similar to the first one. The videos of these

experiments are provided with this paper.

V. CONCLUSIONS

We have demonstrated that it is possible to use a dense

depth map directly to achieve a robotic task. The main

advantage of this approach is that it does not require any pose

estimation, feature extraction or matching step. Moreover,

when the depth map is obtained from an active sensor, the

resulting approach is not sensitive to illumination changes

as photometric approaches can be. Some limitations can

appear with the use of active sensors such as Kinect RGB-

D camera, in particular the noise and the absence of some

measurements. We shaw however that those issues can be

overcome thanks to the use of M-estimators and basic image

pre-processing.
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Fig. 7. Second experiment. (a) Task error, (b) desired depth map, (c)
translational part of positioning error, (d) rotational part of positioning error,
(e) translational velocities, (f) rotational velocities.
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