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ABSTRACT

This paper presents an approach for detecting and tracking various
types of planar objects with geometrical features. We combine tra-
ditional keypoint detectors with Locally Likely Arrangement Hash-
ing (LLAH) [21] for geometrical feature based keypoint matching.
Because the stability of keypoint extraction affects the accuracy of
the keypoint matching, we set the criteria of keypoint selection on
keypoint response and the distance between keypoints. In order to
produce robustness to scale changes, we build a non-uniform im-
age pyramid according to keypoint distribution at each scale. In the
experiments, we evaluate the applicability of traditional keypoint
detectors with LLAH for the detection. We also compare our ap-
proach with SURF and finally demonstrate that it is possible to de-
tect and track different types of textures including colorful pictures,
binary fiducial markers and handwritings.

Index Terms: H.5.1 [INFORMATION INTERFACES AND
PRESENTATION (e.g., HCI)]: Multimedia Information Systems—
Artificial, augmented, and virtual realities; 1.4.8 [IMAGE
PROCESSING AND COMPUTER VISION]: Scene Analysis—
Tracking

1 INTRODUCTION

6DoF object detection and tracking are basically two important
technologies for vision based augmented reality. Object retrieval
(also known as recognition or identification) is recently incorpo-
rated in the detection such that an object is captured in an image,
retrieved from a database and its initial pose is simultaneously com-
puted [24]. Once an object is detected, it is tracked from the next
frame by tracking keypoints [31] or minimizing the difference be-
tween two consecutive images under blurring [23] and non-linear
illumination change [8]. This type of tracking is named tracking
by tracking. Detecting an object at every frame is another type of
tracking named tracking by matching [22].

Generally, object detection is based on local texture descriptors
such as SIFT [14]. Because the orientation histogram based key-
point descriptor in SIFT is considered as discriminative enough
for large-scale keypoint matching, several attempts to approxi-
mate and simplify SIFT have been actively investigated in recent
years [17,31, 5, 28]. Normally, keypoint matching with those meth-
ods works well for rich textures that have the variety of intensity in
a local patch such as Figure 1(a). However, binary textures such as
Figure 1(b), (c) and (d) do not have enough variety of intensity and
are hardly detected by those methods. Especially, it is almost im-
possible to detect random dot markers in Figure 1(e) because local
texture at each dot is exactly same. This means that a wide variety
of textures cannot be detected with only local texture based descrip-
tors. To address this issue and develop an all-in-one solution, we
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Figure 1: Our objective is to detect and track various types of textures
such as (a) graffiti [16], (b) handwriting, (c) poster for ISMAR 2011,
(d) ARToolKit marker [13] and (e) random dot marker [29] with only
one method.

need to drastically shift the approach for keypoint matching.

In this paper, we propose an approach for detecting and tracking
various types of planar objects with geometrical features. Com-
pared with traditional methods, we do not use local texture based
descriptors. Instead, we employ geometrical relationship between
keypoints as a descriptor. Whereas this type of method was not
much discussed in the community of computer vision and aug-
mented reality, similar methods were proposed for document im-
age retrieval [21, 18]. Because those methods were dedicated to
retrieving only text document images, we generalize them for com-
mon object retrieval.

In our approach, keypoints are first extracted with a traditional
keypoint detector. Next, we select stable keypoints by consider-
ing keypoint response and the distance between keypoints. After
selecting keypoints, we compute geometrical descriptors for each
keypoint and find correspondences between an input image and a
database with LLAH [21]. From the next frame, we perform key-
point matching between two consecutive frames to track objects
with LLAH. To improve the robustness for scale changes, we build
a non-uniform image pyramid according to the change of keypoint



distribution at each scale.

To the present, geometrical feature based keypoint matching has
not been much discussed yet. By investigating and evaluating such
approach, we contribute to various kinds of researches based on
keypoint matching. Especially, the approach has a possibility to
relax the limitation of target objects for augmented reality applica-
tions toward “augmenting everything”.

The remain of the paper is organized as follows. In the next
section, we review traditional keypoint detectors and local descrip-
tors. Section 3 briefly describes LLAH based keypoint matching
and tracking for text documents because it is a key technique in
our approach. Section 4 explains the detailed parts of detecting and
tracking geometrical features. In Section 5, we quantitatively eval-
uate the robustness of our approach by comparing with SURF [3].
In Section 7, we show augmentation results for various types of
textures.

2 RELATED WORKS

Detecting keypoints is an initial step in various researches and has
been investigated for a long time. Harris corner detector is one of
the most popular methods that computes a corner score from the
determinant and trace of autocorrelation matrix [12]. FAST corner
detector selects a pixel that has higher or lower value than neigh-
bors with a machine learning technique [25]. Mair, et al. improved
FAST by building an optimal decision tree [15]. These detectors
can be incorporated onto an image pyramid such that keypoints
are detected in a scale invariant manner. The keypoint detector in
SIFT is based on building a scale space with Differences of Gaus-
sians (DoG) computed by subtracting blurred images [14]. In this
method, a point with a local extrema on the space is selected as a
keypoint. Another type of scale space is constructed by resizing a
filter on a single scale in the following methods. In SURF, Hes-
sian is approximated by box filters and its response is efficiently
computed from integral images [3]. In CenSurE, Laplacian filters
with the different sizes of octagons and boxes are computed from
integral images as well [2]. In CSDD, a central foreground region
is compared with its surrounding by computing Laplacian of Gaus-
sian (LoG) with IIR filters [7].

For keypoint description, the recent major approach is the ap-
proximation and simplification of SIFT [14]. Mikolajczyk and
Schmid [17] proposed spatial sampling of gradient using a log-polar
location grid named GLOH compared with a Cartesian grid in SIFT.
For mobile devices, Wagner, et al. used smaller size of a sampling
grid and fewer quantization level of orientations to simplify SIFT
as Phony SIFT [31]. In CHoG, a tree coding technique is used to
quantize and compress a histogram of gradient into a low bit rate
feature [5]. For an orientation invariant descriptor, Takacs, et al.
developed RIFF that performed radial gradient transform for gradi-
ent binning [28]. For other types of descriptors, hundreds of binary
features in a local patch are computed for a random fern based clas-
sification [22] and BRIFF [4].

Due to the development of various keypoint detectors and de-
scriptors, their stability has quantitatively been evaluated from var-
ious aspects such as rotation and illumination changes. In 2000,
Schmid, et al. reported that Harris was better than other detectors in
various cases [26]. For keypoint matching on 3D objects, Hessian-
affine and Harris-affine detectors with the descriptor in SIFT out-
performed other combinations [19]. Gauglitz, et al. evaluated all
combinations of state-of-the-art keypoint detectors and descriptors
with several parameters for visual tracking [11]. They stated that it
was difficult to select a single best method in all cases because each
detector has advantages and disadvantages in a situation.

Some of approaches incorporated geometrical features into local
texture based descriptors. Chum and Matas proposed normalization
of a local region computed from local affine frames on the outer
boundaries of MSER with the scheme of geometric hashing [6].

Forssén and Lowe simply constructed pair descriptors with nearest
neighbor keypoints [10].

3 DETECTING AND TRACKING DOCUMENTS USING LLAH

LLAH is a method for retrieving document images using geomet-
rical features [21]. It was extended to a method for tracking doc-
uments for augmented reality applications [30]. Also, this tech-
nique was applied to the development of random dot markers [29].
Because our approach in this paper is crucially related with these
works, we briefly review the procedure to assist the understanding
of overall parts of our method.

3.1 Descriptors

We explain the procedure to compute descriptors with Figure 2. For
each keypoint, x'y" coordinate system is set and n nearest neigh-
bor points are selected in anti-clockwise direction on the coordi-
nate system (n = 7 in the figure). The order of the selection is
pre-defined such that we start from a (the point closest to x’ at the
first quadrant). Second, m points are selected from » points to com-
pute one descriptor. This means that the number of descriptors for a
keypoint is ,Cp,. For m points, 4 points are selected to compute the
ratio of two triangles. By computing all combinations, ,,C4 dimen-
sional descriptor is constructed. The descriptor is finally quantized
into one dimension as index by a hash scheme. Note that these
descriptors are not rotation-invariant because the starting point a
varies when capturing these points from different viewpoints.

Figure 2: Descriptors in LLAH. A descriptor is the set of the ratios of
two triangles. For each keypoint, several descriptors are computed
from neighbor points.

3.2 Detection

First, the descriptors (indices) are computed for each keypoint on a
reference and stored into an inverted file as (index, keypoint IDs).
To achieve rotation-invariant matching, the starting point a is set at
all n neighbor points for computing the descriptors. Thus, the total
number of computed descriptors for a keypoint is n - ,Cyy,.

In the keypoint matching, ,C,, descriptors are computed and key-
point IDs are retrieved from the inverted file to make a histogram
of keypoint IDs versus its retrieval frequency. A keypoint ID that
got the maximum frequency is selected as matched. To remove
outliers, geometrical verification is performed such that RANSAC
based homography is computed for planar objects.

3.3 Tracking

LLAH based keypoint matching is also applied to matching be-
tween two consecutive frame for keypoint tracking [30, 29]. This
means that the detection and tracking of keypoints are performed
with the same computation.

After geometrical verification in the detection, each keypoint on
the reference is projected onto the input image to find the closest
keypoint in the image. This process can increase correspondences,
refine the homography and effectively work because the number
of tracked keypoints decreases during moving a camera. To track



keypoints, we perform keypoint matching between the keypoints
obtained from the projection and those in the next frame.

4 DETECTING AND TRACKING GEOMETRICAL FEATURES

In this section, we explain the details of detecting and tracking ge-
ometrical features that work well for various types of textures.

4.1 Keypoint Extraction

We first tried applying document image retrieval using LLAH [21]
to typical image retrieval. However, it was far from working well
because of the instability of keypoint extraction on normal textured
patterns. In that method, binarization by adaptive thresholding is
used as a word region detector. From a text document image, it can
extract word regions and then the center of each region is computed
as a keypoint. When we applied it to other textured patterns, it could
not stably segment the patterns into comprehensible regions as il-
lustrated in Figure 3. It turned out that the binarization by adaptive
thresholding only worked well for extracting word regions in text
documents.

As described in Section 2, various keypoint detectors have al-
ready been developed in the literature. Therefore, we decided to
use them and select stable keypoints from the extracted keypoints
because the same neighbors of a keypoint should be extracted from
different views for keypoint matching. In the next section, we will
explain how to select stable keypoints.

Figure 3: Applying word region detector [21] to Figure 1(a). Bina-
rization by adaptive thresholding was applied to (a) an input image.
(b) Few keypoints were extracted from segmented regions because
most of the extracted regions were connected.

4.2 Keypoint Selection

Traditional keypoint detectors return the image coordinate of each
keypoint with several parameters such as size, scale, angle and re-
sponse. Some of these parameters might be useful as selection cri-
teria. Size and scale are not meaningful because many keypoints
have the same value. Though angle is variant for each keypoint, it
is unlikely that a specific angle is better than others. Therefore, we
select keypoint response to represent the quality of a keypoint as
in [27] and assume that a keypoint with higher response can have
higher repeatability. However, it is difficult to set a threshold for
keypoint response because the response value depends on textured
patterns. Instead, we set a threshold for the maximum number of
extracted keypoints selected from the strongest response as first cri-
terion. In traditional keypoint detectors, Harris [12], FAST [25],
Fast-Hessian in SURF [3] and CenSurE [2] provide keypoint re-
sponse. In the evaluations, we compared the accuracy of the detec-
tion by all keypoint detectors with LLAH.

The distance between keypoints is also important criterion.
When the neighbor points are too close, the ratio of two triangles
cannot correctly be computed because the points are almost on a
line or the triangles are small as illustrated in Figure 4(a). To com-
pute geometrical features, keypoints should sparsely be distributed.

Thus, we set a threshold for the minimum distance between key-
points as second criterion.

The overall procedure for selecting keypoints is as follows. We
first sort all keypoints in the descending order of keypoint response.
When we select one keypoint from the sorted keypoints, we com-
pute the distance with the nearest neighbor in already-selected key-
points. If the distance is less than a threshold, it is discarded. When
the total number of selected keypoints is over than a threshold, the
selection is finished. An example of the selection is illustrated in
Figure 4. Because these two thresholds affect the result of object
detection, we investigate the influence in the evaluations.

Figure 4: Keypoint selection. FAST was applied to Figure 3(a). (a)
427 keypoints were extracted in total. (b) 100 keypoints were ex-
tracted by setting the minimum distance as 10 pixels and the maxi-
mum number of keypoints as 100.

4.3 Building Image Pyramid

To produce the robustness for scale changes, we take an image pyra-
mid based approach. Usually, an image pyramid is built by resiz-
ing images with a fixed scaling such that the image of each pyra-
mid level is generated by scaling down with a factor of 1/1/2 from
the previous level as in [31]. However, such image pyramid was
not efficient for our approach because keypoint distribution in two
consecutive scales were quite different depending on textures. In
this case, it is better to check the middle scale between two scales.
Therefore, we develop a method for building an image pyramid
with adaptively selected levels.

We first build an image pyramid with small scale changes, and
then select appropriate level as illustrated in Figure 5. Full reso-
lution corresponds to level O on the pyramid. From the next level,
keypoint matching is performed with the previously selected level.
Because the transformation is known, we can consider that a cor-
respondence is an inlier when the reprojection error is less than a
threshold (set as 3 pixels). Then, we simply compute an inlier rate
from the matching result as

) Number of inliers
Inlier rate = - —. (1)
Number of retrieved keypoints

Note that the denominator of this equation is not the number of
extracted keypoints because a keypoint does not alway have a cor-
responding point with LLAH [21]. We remove such keypoints from
the extracted keypoints and use only the remaining as retrieved key-
points.

When an inlier rate is lower than a threshold, the level is selected
for our image pyramid. For example, we set a threshold for accept-
able inlier rate as 20% in Figure 5. We perform keypoint matching
between level 1 and level 0, and skip level 1 from the matching
result because the inlier rate is higher than the threshold. When
level 3 is matched with level 0, level 3 is selected for our pyramid
because of its inlier rate. Then, level 4 is matched with level 3 to
judge whether level 4 is put into our pyramid or not.
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Figure 5: Building a non-uniform image pyramid. The image is first resized with a factor of 1/10 compared with a full resolution. A pyramid level
is selected for our image pyramid in the case that the inlier rate of keypoint matching with the previously selected pyramid level is lower than a
threshold. When we set the threshold for the inlier rate as 20%, the selected pyramid levels were 0, 3 and 5 in this figure. The selected levels
vary depending on keypoint detectors, two thresholds in the keypoint selection and target textures.

The result of selected levels depends on target textures, keypoint
detectors and two thresholds in the keypoint selection. For example,
Figure 1(a) with 600 x 480 pixels had there levels at 600 x 480,
480 x 384 and 360 x 288 whereas Figure 1(e) with 400 x 400 pixels
had one level at 400 x 400 under the same condition as described in
Section 7. This means that the image pyramid using a fixed scaling
is not efficient.

4.4 Detection and Tracking

Detecting and tracking planar objects are based on a method de-
scribed in Section 3. We incorporate the procedure for extract-
ing and selecting stable keypoints on an image pyramid into the
method.

At the beginning, we build our image pyramid of reference im-
ages to reduce computational cost in the on-line detection and track-
ing. We label each selected level on the pyramid as an individual
reference and compute descriptors in the rotation invariant manner
for a keypoint database.

For an input image in the detection, we compute the descriptors
only on full resolution and find correspondences on the references.
From the result of keypoint matching, we have the candidates of
detected references with their pyramid level. This means that a ref-
erence image can be detected on different levels. By computing
RANSAC [9] based homography for each candidate, we finally se-
lect a reference at a level.

Once a reference is detected, it is tracked using the reference
with a detected level. The keypoints on the reference are pro-
jected onto the input image to increase correspondences. In the
next frame, keypoints extracted in the image were matched with
the keypoints obtained from the projection. When tracking fails,
we detect a reference in the database again.

5 EVALUATIONS WITH OUR DATASET

We first focused on the evaluations of object detection to clarify
the applicability of traditional keypoint detectors with LLAH. As
described in Section 3, the geometrical descriptors in LLAH should
theoretically be rotation invariant. To evaluate the invariance, we
prepared our dataset images captured under large rotations.

5.1 Overview

In order to capture the whole part of each texture with a rotating
camera, we used a camera mounted on a robot arm to precisely
control the rotation angle. We initially set the arm perpendicular to
textured patterns in Figure 1 on a table and rotated it at 5 degrees
increments through 90 degrees with centering around a principal
point of the camera as illustrated in Figure 6. The resolution of
captured grayscale images was 640 x 480.

We performed keypoint matching between the first frame and
others, and counted inliers by computing a reprojection error with

the ground truth of a rotation matrix obtained from the robot odom-
etry. A keypoint is an inlier when the error is less than 3 pixels.
The evaluation criterion was the inlier rate defined in Equation 1.
Note that we did not build our image pyramid because the distance
between a camera and a texture was fixed. We discussed the influ-
ence in a single scale in this section. Regarding the parameters in
LLAH [21], we set n =7 and m = 5 for all experiments.

Figure 6: Example of images. A camera equipped on an arm robot
was used to control the rotaiton angles precisely. Grayscale images
were captured at 5 degrees increments through 90 degrees. The
resolution of the captured images was 640 x 480.

5.2 Comparison between Keypoint Detectors

We first compared the inlier rates computed with each traditional
keypoint detector under large rotations. For all texture images in
Figure 1, we tested our approach with Harris [12], FAST [25], Fast-
Hessian in SURF [3] and STAR that was improved version of Cen-
SurE [2] implemented in OpenCV [1]. We used default parame-
ters in OpenCV for all detectors. For two thresholds in the key-
point selection, we set the maximum number of keypoints as 200
and the minimum distance between keypoints as 10 pixels. As a
comparison with a traditional local texture descriptor, we selected
SUREF [3] for keypoint extraction and description and FLANN [20]
for keypoint matching implemented in OpenCV. We limited the
maximum number of extracted keypoints to 200 by selecting from
the strongest response to set up the same condition as in our ap-
proach. The inlier rate for SURF was computed by dividing the
number of inliers by the number of extracted keypoints because
FLANN always returned the nearest point for each keypoint.

In Figure 7, we showed the results of the inlier rates at each an-
gle for all texture images. Harris outperformed others in most of
the cases including rich texture and binary texture. This means that
keypoint extraction with rotation invariance in Harris provided bet-
ter performance than others in terms of stability. Especially, the
keypoints on the handwriting were stably extracted as illustrated in
Figure 7(b). Because the inlier rates are around 50%, RANSAC [9]
or other robust estimators can remove outliers when computing ho-
mography.

For the ISMAR 2011 pattern in Figure 1(c), the inlier rate of Har-
ris was lower than the rate of Harris in other textures as illustrated
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Figure 8: Thresholds for the minimum distance between keypoints
(pixel). (a) and (b) correspond to (a) and (b) in Figure 1. We tested
the threshold from 0 pixels to 30 pixels. In both cases, 10 pixels got
fairly good results.

in Figure 7(c). This is because there were a lot of similar corners
extracted from squares in the lower part of this texture. When we
limited the number of extracted keypoints, all corners could not al-
ways be extracted and some of them were unstably extracted.

From Figure 7(e), it was obviously proved that a local texture
based approach could not detect random dot markers because the
local texture was exactly same. Therefore, an geometrical feature
based approach is definitely required to detect various kinds of tex-
tures with only one method.

5.3 Thresholds in Keypoint Selection

In this section, we investigated the influence of two thresholds for
inlier rates with Harris corner detector for Figure 1(a) and (b).

5.3.1 Minimum Distance between Keypoints

In this experiment, we fixed the threshold for the maximum number
of extracted keypoints as 200. As illustrated in Figure 8, we tested
the minimum distance between keypoints from 0 pixels to 30 pixels.
From Figure 8(a) and (b), the result at 10 pixels commonly outper-
formed others. For other cases, the results were not stable. The
influence of the threshold clearly appeared in Figure 8(b). When
the threshold was 0 pixels, the inlier rates were around O at many
angles because many keypoints densely appeared together. As a
result, geometrical features for such keypoints were not discrimina-
tive. To avoid detecting dense keypoints, it is necessary to set up a
threshold for the minimum distance between keypoints.

5.3.2 Maximum Number of Extracted Keypoints

In this experiment, we fixed the threshold for the minimum distance
between keypoints as 10 pixels. As illustrated in Figure 9, we tested
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Figure 9: Thresholds for the maximum number of extracted key-
points. (a) and (b) correspond to (a) and (b) in Figure 1. We set
the threshold from 50 to 300. In (b), the lines of 200 and 300 were
overlapped. It is difficult to state that more or fewer number is better.

the maximum number of extracted keypoints from 50 to 300. In
Figure 9(b), the line charts of 200 and 300 were overlapped because
extracted keypoints in both cases were same. In Figure 9(a), the
worst result appeared at 300. In contrast, the best result appeared at
300 in Figure 9(b). Similarly, fairly good result appeared at 50 in
Figure 9(a) whereas the same threshold was worst in Figure 9(b).
From this result, it is hard to state that more or fewer number of
keypoints is better or not. From various experiments, we confirmed
that setting 200 on the threshold had provided better performance.

6 EVALUATIONS WITH MIKOLAJCZYK’S DATASET

In this section, we evaluated the influence of viewpoint changes for
the detection with two datasets in Mikolajczyk framework [16, 17]
as illustrated in Figure 10 and 11.

6.1 Overview

As in Section 5.3, we investigated the influence of two thresholds.
In Figure 10(e) and Figure 11(e), the inlier rate with several thresh-
olds for the maximum number of extracted keypoints was computed
by fixing the minimum distance between keypoints as 10 pixels. In
Figure 10(f) and Figure 11(f), the inlier rate with several thresholds
for the minimum distance between keypoints was computed by fix-
ing the maximum number of extracted keypoints as 400. In each
image set in Figure 10 and 11, (a) was used as a reference with an
image pyramid and compared with other three images from (b) to
(d). We compared our approach using Harris corner detector with
SURF.
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Figure 10: View angle change. (e) The thresholds for the minimum
distance between keypoints from 5 to 30 pixels were tested with three
image pairs: (a,b), (a,c) and (a,d). (f) The thresholds for the maxi-
mum number of extracted keypoints from 200 to 500 were tested with
the same image pairs as (e).

6.2 Evaluation

Figure 10 included view angle changes in perspective views. In
Figure 10(e) that illustrated the inlier rates with different thresholds
for the minimum distance between keypoints, the result at 10 pixels
was quite better than others for the pair (a,b). For other pairs, our
approach did not achieve enough inlier rate for camera pose esti-
mation. In Figure 10(f) that illustrated the inlier rates with different
thresholds for the maximum number of extracted keypoints, there
were few differences among the results of four thresholds. Com-
pared with SURF, our approach with Harris corner detector was not
invariant to viewpoint changes such that the inlier rates computed
from our approach were not sufficient in the pair (a,c) while SURF
still achieved around 20%.

Figure 11 included zoom and rotation changes in a 3D outdoor
scene. Compared with the previous experiment, the results for the
pair (a,c) were better because the viewpoint change in this experi-
ment was limited to zoom and rotation. For other pairs, the result
was almost same as that in the previous experiment.

6.3 Discussion

In order to establish correct correspondences in our approach, we
need to extract both same keypoints and same neighbor keypoints.
As illustrated in Figure 11(e), the inlier rate decreased when the
maximum number of extracted keypoints increased. Because differ-
ent keypoints might be included in the neighbor keypoints in differ-
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Figure 11: Zoom and rotation change. The experimental condition of
(e) and (f) was the same as that of Figure 10 (e) and (f).

ent views if there are too many keypoints, the number of extracted
keypoints should be limited.

Also, the matching result was sensitively influenced by the min-
imum distance between keypoints. From both experiments in Fig-
ure 10 and 11, it is hard to find the best threshold because the best
threshold depended on texture patterns. Because the density of ex-
tracted keypoints varies depending on an image size and content, it
is necessary to set up the threshold considering such elements.

Let us finally note that we only evaluated the detection part of our
method in this section. Such detection process has only to be con-
sidered for the initialization and when the tracking process failed.
It has also to be noted that, the complexity of the detection does
not increase dramatically with the number of reference image in
the database. Therefore, in a real application process, various ref-
erence images are considered. They can also be synthesized (as
in [22] to take into account affine or perspective transformation).
Such a process greatly improves the detection process.

7 AUGMENTATION RESULTS

Figure 12 represented the results of the detection on different scales
and the tracking under perspective views. We first stored the refer-
ences from all texture images, and then captured one of the textures
for the augmentation. For two thresholds in the keypoint selection,
we set the minimum distance between keypoints as 10 pixels and
the maximum number of extracted keypoints as 200. The first row
in Figure 12 represented the result of keypoint extraction for the
reference images. The resolution of the texture images and that of
their pyramid are described in Table 1.



Table 1: Image resolution of the textures in Figure 1 and their pyra-
mid (pixel). The selected levels for the pyramid varied according to
textures.

Texture | Resolution
(a) 640 x 480
(b) 640 x 480
(c) 353 x 500
(d) 400 x 400
(e) 400 x 400

Pyramid
640 x 480, 480 x 384, 360 x 288
640 x 480, 448 x 336
353 x 500, 282 x 400, 247 x 350
400 x 400, 240 x 240
400 x 400

Table 2: Average computational costs (msec).

Extraction | Description | Detection | Tracking
15 10 5 2

As illustrated in Figure 12, the movement of a camera included
scale changes and perspective views. Object detection was done
with difference scales. The robustness of random dot markers to
scale changes was apparently higher than others even when one
level on the image pyramid was generated because the dots were
stably extracted from several viewpoints. For others, the range of
camera movement during the tracking was almost same. Regarding
computational costs, a frame rate was around 30 frames per second
on a typical laptop (Intel i7 CPU 2.67GHz with 4GB RAM) for
640 x 480 pixels as described in Table 2. By using our approach, it
is possible to detect and track rich texture, handwriting, ARToolKit
markers and random dot markers.

8 CONCLUSION

We proposed an approach for detecting and tracking various types
of textures using geometrical feature based keypoint matching. We
combined traditional keypoint detectors with LLAH originally de-
signed for retrieving text documents. Because the stability of key-
point extraction was required, we selected stable keypoints ac-
cording to keypoint response and the distance between keypoints.
We also built a non-uniform image pyramid by matching between
neighboring scales to adaptively select the representative scales.

In the evaluations, we investigated the inlier rates in the detec-
tion for several image sets. Because the result was influenced by
both the minimum distance between keypoints and the maximum
number of extracted keypoints, we need to set up two thresholds
considering an image size and content. To be invariant to viewpoint
changes, one possible approach is to prepare synthetic images of
various different viewpoints such as [22] and compute descriptors
on them because the number of registered images did not much
influence the retrieval costs due to a hashing scheme as reported
in [21].

In the further works, we need to improve object tracking be-
cause traditional trackers are more robust to illumination and scale
change [8]. One solution is to merge such trackers into our ap-
proach such that object detection is performed by our method and
the tracker is selected depending on the detected object. The inte-
gration of a local texture descriptor with geometrical descriptors in
LLAH will be also an interesting topic.
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Figure 7: Comparison between keypoint detectors. (a)-(e) correspond to (a)-(e) in Figure 1. In most of the cases, Harris outperformed others.
This means that the stability of keypoint extraction with rotation invariance in Harris was more superior than others. For random dot markers, it

was obviously proved that keypoint matching with local texture descriptors failed. To deal with various types of textures, a geometrical feature
based approach should be integrated.
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Figure 12: Augmentation results from detecting and tracking planar images. (a)-(e) correspond to (a)-(e) in Figure 1. Images at the first row are
the results of keypoint extraction with Harris on the reference images. As a result of detection and tracking, we overlaid a paper ID and a pyramid
level on the images. The range of camera movement for random dot markers was widest.



