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Abstract— For a space rendezvous mission, autonomy im-
poses stringent performance requirements regarding naviga-
tion. For the final phase, a vision-based navigation can be
a solution. A 3D model-based tracking algorithm has been
studied and tested on a mock-up of a telecommunication
satellite, using a 6-DOF robotic arm, with satisfactory results,
in terms of precision of the pose estimation and computational
costs. Quantitative tests in open loop have been carried out to
show the robustness of the algorithm to relative inter frame
motions chaser/target, orientation variations and illumination
conditions. The tracking algorithm has also been successfully
implemented in a closed loop chain for visual servoing.

I. INTRODUCTION

A. Context : an autonomous space rendezvous mission

A space rendezvous consists in the approach of a chaser
spacecraft towards a target spacecraft, from detection of the
target (if necessary) until docking on the target [15], [10]. It
can be achieved manually or autonomously. A high level of
autonomy can be preferred for several reasons (ground con-
trol cannot be used because of large communication delays,
safety reasons...). This maneuver has various applications,
from space station supplying, spacecraft refueling, grasping
or repairing. The first rendezvous was done manually in
1966, between Gemini 8, commanded by Neil Armstrong,
and Agena target vehicle. More recent examples include the
European Space Agency (ESA) Automated Transfer Vehicle
(ATV) which autonomously docks onto the International
Space Station (ISS), and projects such as the ESA Geosta-
tionary Servicing Vehicle (GSV) or the RObotic GEostation-
ary orbit Restorer (ROGER), both tasked to capture, inspect,
assist or re-orbit satellites in trouble. The following main
phases make up a rendezvous mission (Fig. 1):

1) the launch of the chaser (several days), which reaches
the target orbital plan (A, B), in absolute navigation,
and detection of the target.

2) the intermediate phase (a few hours until a day),
in which the chaser approaches the target orbit, in
absolute navigation. It consists in orbital transfers such
as Hohmann transfers (B to E).

3) the terminal phase (a few orbit periods) consists in
getting closer to the target down to a secure dis-
tance, in relative navigation, with successive impulsive
orbital maneuvers. Depending on the mission (ATV,
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Soyouz/Progress, DART), these maneuvers are handled
differently [15].

4) a forced translation is performed during a few minutes
to dock onto the target.

Fig. 1: Phases of a typical rendezvous

B. Scope of the study

In this work, which extends a former study performed
by Astrium known as High-Integrity, Autonomous, Multi-
Range Rendezvous and Docking (HARVD) [14], the target
is a telecommunication satellite (Amazonas-2). Since such a
satellite can be tracked with good accuracy from the ground,
the chaser can be driven on the target orbit and quite close to
this target (distance < 50km). For the autonomous terminal
phase, the secure distance is set to 1000m [14]. Along with
the forced translation, an alignment phase, or fly-around
phase (Fig. 2), with the target docking port is introduced.
We only focus on the final approach phase, the most critical
one, with precise requirements regarding lateral, longitudinal
and angular alignment and computational costs, and whose
navigation is proposed to be achieved by computer vision
(along with inertial sensors), using a monocular camera
mounted on the chaser, for a distance ranging from 1000m
to contact.

Fig. 2: Final approach of a rendezvous mission



C. State of the art

Navigation of the chaser consists in continuously estimat-
ing its relative pose (position, orientation) with the target.
To address this task, some computer vision approaches have
already been implemented for proximity operations in a
rendezvous mission. On the ATV, a videometer processes
a laser beam reflected by retroreflectors installed on the ISS,
which is the first operational vision system for spacecraft
navigation [13]. Using cameras, [1], [2], [15] propose to
rely on easy to detect and track markers installed on the
target. Other techniques under study in a space context
deal with natural features with stereo vision methods to
recover the pose, given a 3D model of the object [8],
[11]. With a monocular camera, a feature-matching com-
puter vision approach had been selected in [14]. It consists
in the extraction of invariant features in the image that
are matched to a database built from preliminary learning
sessions. It is however too computationally intensive to be
used during the whole mission at the required frequency
(a few Hz). A critical sensitivity to distance, illumination,
relative orientation, and occlusions of the target had been
observed [14]. In this paper we apply a markerless 3D
model-based tracking algorithm to the problem of satellite
tracking using a monocular camera [6]. It has already been
implemented in an ESA aerospace applications [8] and in an
aeronautics context [7].

The tracking algorithm is recalled in Section II. In Section
III, we present a visual servoing control loop to automatically
perform a simulated rendezvous between a robot and a mock-
up of Amazonas-2. Results regarding tracking performances
and robustness in open loop and regarding visual servoing
are exposed in Section IV.

II. 3D MODEL-BASED TRACKING

Our problem is restricted to model-based tracking, using
a 3D model of the target. This model is made up of lines,
which provides a good invariance to pose and illumination
changes, and robustness to some image noise or blur. The
purpose is to compute the pose (camera, and thus chaser,
position and orientation with respect to the target) which
provides the best alignment between edges of the projected
model and edges extracted in the image [12], [9], [6]. The
approach considered in this paper is described in [6]. Given
a new image, the 3D model of the scene or the target is
projected in the image according to the estimated previous
camera pose r (see Fig.3). Each projected line Li(r) of the
model is then sampled along its orientation in the image with
a sample step S. Then from each sample point pi,j a 1D
search along the normal of the projected edge is performed,
for a range R, to find a corresponding point p′i,j in the image.
As in [6], p′i,j is of maximum likelihood with regard to pi,j .

In order to compute the new pose, the distances between
points p′i,j and the projected lines Li are minimized with
respect to the following criteria [6] :

∆ =
∑

i

∑
j

ρ(d⊥(Li(r), p′i,j)) (1)

Fig. 3: Moving Edge principle

where d⊥(Li(r), p′i,j) is the distance between a point p′i,j
and the corresponding line Li(r) projected in the image from
a pose r. Here, ρ is a robust estimator, which reduces the
sensitivity to outliers. This is a non-linear minimization pro-
cess with respect to the pose parameters r. The minimization
process follows the Virtual Visual Servoing framework [6]
similar to a Gauss-Newton approach. The tuning of the range
R, sample step S, and the maximal number of iterations K in
minimization process are discussed in Section IV, regarding

estimation precision and computational costs.

III. TRACKING FOR VISUAL SERVOING

In order to servo the robot, we propose to use the 3D-
model based tracking algorithm within a 2 1/2 D visual
servoing control loop.

Visual servoing consists in using data provided by a vision
sensor for controlling the motions of a dynamic system [3].
Classically, to achieve a visual servoing task, a set of visual
features s has to be selected from the image enabling the
control of the desired degrees of freedom. The goal is to
minimize the error between the current values of visual
features s extracted from the current image and their desired
values s∗. For this purpose, techniques [3] depend on the
features s used : they can be 2D points directly extracted
from the image, for Image-based Visual Servoing (IBVS)
or 3D parameters recovered thanks to image measurements
like pose computation for Position-based Visual Servoing
(PBVS). Here we apply a hybrid solution, 2 1/2 D visual
servoing approach [4], [5], which avoids the shortcomings of
the two basic approaches, by combining features in 2D and
3D, in order to decouple position and rotational movements,
with a simpler interaction matrix, and with a better stability
than IBVS or PBVS :

s =
[
x y θuz t

]T
(2)

where x and y are the metric coordinates in the image of
a point of the object, here the center of the mock-up, θuz

is the third coordinate of the θu vector, which represents
the rotation the camera has to perform to reach the desired
pose, and t is the translation vector the camera has to
perform to reach the desired pose, expressed in the desired
camera frame. θuz and t have thus to be regulated to 0.
We need to minimize the error e = s− s∗ where features s
are recovered thanks to model-based tracking. A kinematic
controller, which is convenient for most of systems, is then
designed to servo the camera. A proportional control scheme



is defined, to make the error exponentially decreases, leading
to the following control law:

vc = −λL̂s

+
(s− s∗) (3)

with L̂s

+
the estimate of the pseudo-inverse of Ls, the

interaction matrix associated to the visual features. The paper
described in [3] details how this matrix can be computed. It
can here be estimated thanks to the parameters of the pose
computed by the model-based tracking algorithm.

IV. RESULTS

A. Experimental conditions

To implement the tracking algorithm on a vision based
rendezvous context, Astrium provided a complete 3D-model
and a real reduced (1/50) mock-up of Amazonas-2, a telecom
satellite built from the Eurostar-3000 platform, and similar
to the one used for HARVD experiments [14]. Amazonas-
2 was launched in 2009 for Spanish company Hipsasat to
cover the American (especially South America) position. It
is located on a Geostationary Orbit.

The provided 3D model is too complex to deal with real-
time applications. Thus we have considerably simplified the
model, keeping the most significant geometrical features.
Besides, depending on the relative size of the mock-up
in the image, the relevant information to be considered
varies. Indeed, regarding the central module of the satellite,
the contours are not very precise and regular, due to the
insulating film on most of the surface of this module and on
the four circular antennas. Since the film reflects light, the
irregularities are enhanced by the sun luminosity and make
it hard for the algorithm to identify edges. For long distances
(Fig.6(a)), the information provided by the central module is
not useful, nor significant, compared to the information given
by the solar panels, with sharper edges. However, for shorter
distances (Fig.6(d)), details of the central module have to
be included and the model has to be refined, to perform
the approach properly. The solution implemented here is to
switch between 3D models in order to use the model with
the most relevant information with regard to the distance
camera/mock-up.

Using a robot to simulate the rendezvous, with a camera
mounted on its end-effector, enables to have regular and quite
realistic movements (let us however note that the specific
dynamic of spacecraft is not considered in this paper).
Besides, the position of the robot is known very precisely
(10−4m), providing us with ground truth. It enables to ex-
actly replicate test procedures and so to carry out systematic
tests to quantify the tracking performances in open loop. The
robot we have used (Fig. 4) has 6 degrees of freedom and
640×480 images are processed. Sun illumination can also
be simulated by spot lights located around the scene. As the
mock-up size is 1/50 of the satellite and as we use for tests a
different camera from the one that would be on-board (in this
case, a camera with a 5 deg. FoV, along x and y, is supposed
to be mounted on the chaser spacecraft), scaling factors need
to be derived. Fig.5 shows the equivalence between the real

and experimental contexts with regard to the z-coordinate
of the target center in the camera frame, so that the target
has the same relative size in the image in both cases. The
dynamics along x and y are also affected as relative motions
chaser/target in the real context scaled by a factor close to
1/50 induce in the experimental context the same inter frame
motions of the target in the image. Typical forced translations
for rendezvous scenarios specified in [14] are performed with
velocities ranging from 0.05m/s to 0.10m/s, and with a
camera frame rate set to 1Hz in these cases.

Fig. 4: The experimental setup. It includes Amazonas 2 mock-up,
camera mounted on the robot end-effector and a light.
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Fig. 5: Equivalence experimental/real contexts. The scaling factor
dzexp

dzreal can be approximated to 0.0024 as we restrict to distances
ranging from 56m to 800m, due to the robot joint limits.

B. Results on a nominal scenario

In this scenario, for the first translation, the camera is
moving with a constant velocity (0.015m/s) along its optical
axis, which targets the center of the mock-up, with a 15Hz
frame rate (the equivalent velocity would be 0.40m/s in a
space context, so larger than usual translation velocities),
and with a distance chaser/target ranging from 1.56m to
0.62m, what corresponds to a 642m-255m range in the
space context. Then the robot performs a fly-around phase
to realign to the docking port of the mock-up and performs
its final translation with a constant velocity (still 0.015m/s),
until a distance chaser/target of 0.135m, which is the shortest
achievable distance because of joint limits between the robot
and the mock-up, and which is equivalent to 56m in the space
context. Here, illumination conditions are favorable, leading
to distinctive edges on the mock-up. Two tracking configu-
rations, C1 and C2, are implemented, and are specified by



TABLE I: Tracking configurations

C1 C2
Model Single model 2 models
ds (m) No 0.43

R (pixels) 6 6 (d > ds), 11 (d < ds)
S (pixels) 5 10 (d > ds), 8 (d < ds)

K 30 5

the type of 3D model(s) used, their switching distance ds

if it is the case, and the tracking key parameters defined in
Section II (range R, step S, and the maximum number K
of iterations in the control law), (see Tab. I). These values
have been empirically determined.

Performances are satisfactory for both cases (see Fig. 6
and Fig. 10), with low positioning errors along x, y and
z. In the equivalent space context, these estimation errors
along x and y would be less than 0.08% of the distance
chaser/target, except for C2 from 82m (90s on Fig.10) to
the center of the target, with around 0.3% of the relative
distance, along x. They would always be less than 0.5%
along z. Low angular misalignment is also observed (less
than 5 deg., except around y for C2 at the far end of the
estimation). In this scenario, solutions C1 and C2 appear
to have quite similar performances, except that C1 is more
stable than C2, due to its higher level of detail and its smaller
sample step S.

(a) d = 1.56m (b) d = 0.62m

(c) d = 0.43m (d) d = 0.14m

Fig. 6: Tracking for a nominal scenario, under good illumination,
with C2. On (a), the chaser starts its first translation, then its fly-
around phase on (b). During the second translation, the 3D model
and tracking parameters change (c), until d = 0.14m (d).

C. Robustness tests

1) Robustness to translation motions: As the target may
not be initially centered in the image or because of un-
certainties in the chaser and target motions, it has been
relevant to test the sensitivity of the algorithm to translation
motions of the robot along x and y in the camera frame, with
relative orientation alignment. The purpose is to determine

TABLE II: Robustness to motions

C1 C2
Distance

0.3 0.5 0.9 1.3 0.3 0.5 0.9 1.3(exp) (m)
Distance

124 206 370 535 124 206 370 535(real) (m)
Target motion lim. 5.5 6.0 6.6 6.8 8.1 6.0 5.8 5.4/x (pix/frame)
Target motion lim. 3.8 5.4 5.8 6.0 7.9 5.9 5.8 6.0/y (pix/frame)
Rel. motion lim. /x 9.4 17.0 33.2 50.1 13.8 16.9 29.6 39.8(real) (cm/frame)
Rel. motion lim. /y 8.7 20.4 39.5 59.0 18.0 22.3 39.5 59.0(real) (cm/frame)

if at different distances chaser/target the tracking is properly
performed or not, given the inter frame motion constraints.
Tab. II gathers the results, with limits in terms of the
motion of the target in the image and of the relative motion
chaser/target in the real space context.

The tracking is less robust to inter frame translation
motions of the target in the image at short distances and for
motions along y. C2 appears to be more robust than C1 for
distances inferior to ds as its range R is larger. Nevertheless,
limits in terms of inter frame relative motions in the space
context show that the tracking algorithm is more than suitable
for a rendezvous approach with slow and smooth motions,
as defined in [14].

2) Robustness to orientation variations: Tests have shown
that with C1 or C2 configuration, tracking can be performed,
whatever the initial relative orientation. Some problems may
occur when the solar panels tend to appear as single edges
in the image (see Fig. 7(a)). This singularity leads to some
ambiguities on the contours of these panels when the chaser
performs its first translation and fly-around phases (Fig. 7(b),
Fig. 7(c)). Fig. 11 shows performances of this approach. We
observe greater but still acceptable position errors. In the
equivalent space context, the error along z would be below
0.7% of the relative distance for C1, 1% for C2 during the
first translation (0s − 7s) and fly-around phases (7s − 20s)
(Fig. 11), then decreasing to remain under 0.36% until the
end (at 56m from the target in a real space context), in
both configurations. Along x and y, errors would always
be below 0.25% of the relative distance for C1 and C2. The
orientation error around z reaches 13 deg. for C1 during the
fly-around phase, but then gets much lower. More generally,
tracking is limited to rotational motions of the chaser in
the camera frame implying inter frame target motions in the
image similar to the limits defined in Tab. II.

3) Robustness to illumination changes: A quite extreme
scenario has been experimented, with brutal changes (Fig. 8).
Fig. 12 shows performances of two solutions, different from
C1 and C2. Low luminosity triggers the disappearance of the
panels. With the lack of this key geometrical information,
the four circular antennas become necessary for the tracking
to be performed. The information being concentrated in
the middle of the image, we can observe some errors for
rotations around x and y, and of position for z at the be-



(a) d = 0.70m, first translation (b) d = 0.45m, fly-around

(c) d = 0.45m, fly-around (d) d = 0.45m, end of fly-
around

Fig. 7: Potential problem when tracking with singular orientation,
when the solar panels of the target appear as single edges (a).

ginning. Performances are better for a multi-model solution
(two models, switching six times, at illumination changes),
especially on the lateral position alignment. The different
illumination changes trigger jumps in the different measured
errors, see Fig. 12. The tracking is particularly robust to light
reflections on the insulating film.

(a) d = 1.86m, first
translation

(b) d = 1.39m (c) d = 0.72m, fly-
around

(d) d = 0.48m, second
translation

(e) d = 0.38m (f) d = 0.14m

Fig. 8: Tracking with 3D models switching at illumination changes.

D. Computational costs
In our application, the ability to switch between different

models and so to adapt them to the conditions (illumination,
distance) is a relevant issue to reduce computational costs.
The simple 3D models used in C2 have thus been designed
in this sense, what has lead to lower computational costs
than for C1 and its single detailed model, with more lines.
For parameters K, R and S defined in Section II and which
tune the estimation convergence rate, C2 is a trade-off to
reduce costs while preserving performances as compared to
C1. With an Intel Core 2 Duo processor, the mean execution
time per frame for a typical approach is 45ms for C1, 21ms
for C2, with a 18ms standard deviation for C1, 4ms for C2.

E. Visual servoing results

We have performed an autonomous rendezvous in a closed
loop chain by servoing the robot close to the mock-up,
with angular alignment, using the 2D 1/2 visual servoing
technique presented in Section III. As exposed in Section
I-B, the maneuver has been divided into three phases: a first
translation is achieved to drive the target into the center
of the image, a fly-around phase to align to the docking
port axis of the target, and a final translation until almost
docking (0.13m or 55m). The servoing performed on the
mock-up has successfully achieved the intended goal, for two
illumination conditions (Fig. 9(a)-(c) and (d)-(f) and provided
video).

(a) first translation (b) fly-around (c) second translation

(d) first translation (e) fly-around (f) second translation

Fig. 9: Complete approach within a visual servoing experiment
under strong and low luminosity.

V. CONCLUSIONS AND FUTURE WORKS

A real-time model-based based approach has been ap-
plied on the final approach of an autonomous rendezvous
mission, in order to track and automatically approach the
target spacecraft. The tests performed in open loop on a
mock-up have shown promising performances in terms of
pose computation, regarding motions, distance, orientation
or illumination constraints. The estimation precision and
the robustness of the algorithm would make it suitable for
equivalent realistic rendezvous final approaches. This method
is also adapted to perform an autonomous rendezvous only
based on visual servoing, with successful results.

As the tracking method only deals with simple line mod-
els, with a simple hidden-face algorithm, future works would
aim at processing a complete, complex surface 3D model,
thanks to hardware graphics. Evaluating and propagating
tracking uncertainty using statistical methods and improving
initialization techniques would also be key issues.
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Fig. 10: Pose errors, for the nominal approach scenario, using
tracking configurations C1 and C2, with the corresponding mean
(µ) and standard deviation (σ) values.
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Fig. 11: Pose errors, when the chaser starts its first translation
with solar panels of the target appearing as single edges, using
configurations C1 and C2.
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Fig. 12: Pose errors, for a standard approach with six brutal
illumination changes, at times t = 7s, 45s, 52s, 57s, 74s and 88s,
using a configuration with two 3D models switching at illumination
changes (Multi-model), and a configuration with a single 3D model
during the whole approach.


