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Abstract— This paper presents a new visual servoing method
that is able to stabilize a moving area of soft tissue within an
ultrasound B-mode imaging plane. The approach consists of
moving the probe in order to minimize the relative position
between a target imaging plane and the ultrasound plane
observed by the probe of the moving tissue target. The problem
is decoupled into motion out-of-plane and motion within plane.
For the former, a new original method based on the speckle
information contained in the images is developed. For the latter,
an image region tracker is used to provide the in-plane motion.
A visual servoing control scheme is then developed to perform
the tracking robotic task. The method is validated on simulated
motions of a probe on a static ultrasound volume acquired from
a phantom.

Index Terms— Visual servoing, ultrasound, speckle correla-
tion, medical robotics.

I. INTRODUCTION

Over the last several years, there have been a variety of
investigations of methods to assist ultrasound (US) guided
interventions or ultrasound examination by the use of med-
ical robotic systems. However, only a reported systems use
the visual information provided by the ultrasound sensor
directly in their control scheme. In [1], visual servoing
is used to center a section of an artery within the 2D
US image (B-scan image) by controlling the 3 degrees of
freedom (DOF) in the observation plane (2 translations and
1 rotation). In [2], the authors present a robotic system
including a motionless ultrasound probe and a 2-DOF needle
manipulator. Automatic needle insertion in a soft sponge
phantom was performed using ultrasound image-based visual
servoing. However, in this work, the actuated needle must
lie in the ultrasound observation plane since only 2 DOF
inside the observation plane are controlled. In general, a
standard probe provides a 2D B-scan image which therefore
limits vision-based control to the 3 DOF contained in the
plane using classic visual servoing techniques. Of course,
this is not the case if a 3D ultrasound probe is used, as in
[3] where a surgical instrument is positioned by 3D visual
servoing. However, for the moment 3D ultrasound probes are
expensive and provide only low voxel resolution. In what
follows we will only consider the use of standard 2D probes
which are more widespread in medical centers.

Some recent studies eliminate the requirement of control-
ling only the DOF contained in the ultrasound plane. In [4]
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4 DOF, which are not necessary in the observation plane,
are controlled by visual servoing in order to automatically
position a robotized laparoscopic instrument. In [5] a visual
servoing technique was developed to reach a desired section
of a tumor by controlling the 6-DOF motion of the probe.
However, these methods need a geometrical model of the
object of interest to interact with, which is the tool forceps
in [4] and a pre-operative model of the tumor in [5]. These
methods also need extensive and complex image processing
to segment the targeted objects in the B-scan images.

In this paper we propose to perform 6 DOF control of
a medical robot by using visual servoing from ultrasound
B-scan images. Rather than relying on segmenting objects
of interest, we make direct use of the speckle information
contained in the image. Using speckle, we track both out-
of plane and in-plane motions. Usually speckle contained
in ultrasound images is considered to be a noise and much
effort has been devoted to reducing it for image segmentation
applications. However speckle is not a random noise, such
as white noise, but instead is highly correlated over small
motions of the probe. This follows from the fact that speckle
results from the coherent reflection of very small cells
contained in soft tissues. Moreover, in practice focusing
of the ultrasound beam is not perfect, and particularly for
the elevation direction (that is, the direction orthogonal to
the imaging plane). Since this induces a ultrasound plane
width of a couple of mm there is an overlap between cells
observed in close B-scans. The result is a speckle correlation
between successive ultrasound images captured along the
elevation direction. Several authors ([6], [7]) have published
speckle decorrelation techniques for performing freehand 3D
ultrasound imaging without the need of a position sensor to
provide the location of the ultrasound probe. In [8], a method
using speckle information was also proposed to control on-
line the quality of the ultrasound calibration needed for
freehand 3D imaging. It is an ultrasound calibration tech-
nique based on a closed formulation on which the in-plane
motion of the ultrasound plane was estimated with speckle
correlation. In [9], strain imaging of tumors was performed
thanks to correlation based on speckle.

As a result of our methods, we show that it is possible to
automatically track a moving 3D ultrasound volume by an
ultrasound probe actuated by a robot. This can be useful in
numerous medical applications, for example to automatically
move the probe to maintain an appropriate view of moving
soft tissues during an examination or to synchronize the
insertion of a needle with a moving tumor for biopsy or
therapy purpose. In this paper, the robotic task consists of



automatically moving the current B-scan image provided by
the probe in order to track a moving target B-scan previously
recorded by the user at a given location. In our approach the
3-DOF out-of-plane and 3-DOF in-plane motions are respec-
tively extracted by an estimation method using the speckle
information and an image region tracking algorithm based on
grey level intensity. Two independent visual servoing based
control schemes on the extracted motion are then proposed
to control all DOF of the probe.

The remainder of this paper is organized as follows:
Sections II and III present respectively the methods used
to extract the out-of-plane motion and the in-plane motion
of the target B-scan image. The visual servoing control
laws are developed in section IV and results obtained from
simulations are presented and discussed in section V.

II. OUT-OF-PLANE MOTION EXTRACTION

A. Speckle decorrelation technique

In our approach, we propose to estimate the out-of-plane
motion of an ultrasound image plane target with respect to
the current B-scan image by using image speckle informa-
tion. Out-of-plane motion includes the displacement along
the normal to the current B-scan image and the two rotations
around its axial and lateral axes.

The source of motion information in these directions will
be speckle decorrelation. An approximation of the speckle
correlation function as a function of the orthogonal distance
d between two B-mode scans I1 and I2 is given in [6] by
the Gaussian model function:

ρ(I1, I2) = exp(
−d2

2σ2
) (1)

where ρ is the correlation value of speckle included in two
corresponding patches in the two images and σ is the resolu-
tion cell width along the elevation direction. In practice, this
approximation works well when the grey level intensity of
the image is defined on a linear scale. This is the case when
we directly use the radio-frequency (RF) signal provided by
the ultrasound imaging device. Unfortunately, this signal is
not generally available on most standard ultrasound systems.
Instead, the RF data is processed into B-mode images with
intensity compressed on a logarithmic scale. As this is our
case, we first have to convert the intensity to a linear scale
by applying the relation given in [10]:

I(i, j) = 10P (i,j)/51 (2)

where I(i, j) is the decompressed grey level intensity of the
pixel located at image coordinates i, j and P (i, j) is the
measured intensity in the B-mode image.

In order to perform position estimation using decorrela-
tion, it is necessary to experimentally calibrate speckle decor-
relation curves from real soft tissues or from an ultrasound
phantom simulating speckle. These curves are obtained by
capturing a set of B-scan images at known distances along
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Fig. 1. (left) Experimental decorrelation curves of the 25 patches consid-
ered in the (right) ultrasound image

the elevation direction and measuring the normalized corre-
lation coefficients given by ρ(d) =∑m

i=1

∑n
j=1(I0(i, j) − I0)(Id(i, j) − Id)√∑m

i=1

∑n
j=1(I0(i, j) − I0)2

∑m
i=1

∑n
j=1(Id(i, j) − Id)2

(3)
for several patches positioned in the images. In (3), I0, Id

correspond respectively to the pixel intensity array of a given
patch of the B-scan image captured at d = 0 and the one of
the corresponding patch in the image captured at distance
d. I0, Id are the mean value intensity of these patches
and m and n are their height and width. Fig. 1 shows the
decorrelation curves when we consider a grid of 25 patches
in the image.

As described with (1), the observed decorrelation curves
behave like Gaussian functions, but with different parameters
σ. This is due to the fact that the resolution cell width σ is a
function of the lateral and axial position of the patch in the
image. Generally for sensorless freehand 3D ultrasound, a
look-up table based on these calibrated decorrelation curves
is used to provide an accurate estimation of the elevation
distance from the considered measured inter-patch correla-
tion value. In our tracking application the objective is to
minimize the relative position between the current B-scan
and a desired one, therefore we do not require high accuracy
on the target plane position estimation. Consequently we
propose to estimate the inter-patch elevation distance directly
from (1) by using:

d̂(ρ) =
√

−2σ̂2 ln(ρ) (4)

where σ̂ = 0.72 mm is identified by averaging the experi-
mental decorrelation curves and fitting the model function.

B. Plane estimation

To estimate the target plane position, a minimum of three
elevation distances between three non-collinear patches are
needed. As (4) gives only absolute value on d, we have to
determine the correct sign of each distance. If we first assume
that the sign of each inter-patch distance is known, we can
estimate the target plane position with respect to the current
B-scan by using the plane equation:

ax + by + cz + d = 0 (5)



affect random sign to each zi

compute least-squares error

do

initial least-squares error = least-squares error

for i = 1 to n,

zi = -zi

compute  new least-squares error

if (new least-squares error < least-squares error)

least-squares error = new least-squares error

else

zi = -zi

end if

end for

while (least-squares error < initial least-squares error)

Fig. 2. Iterative algorithm for plane position estimation

where x, y, z are the 3D coordinates of the center of a
patch belonging to the target image plane with respect to the
current image plane. x, y correspond to its 2D position fixed
in the image grid (the same for the current and target image
plane) and z is the signed elevation distance which can be
estimated from (5) by:

ẑ =
3∑

j=1

αjfj(x, y) (6)

where f1(x, y) = 1, f2(x, y) = x, f3(x, y) = y depend
on the coordinates x, y which are known and α1 = −d/c,
α2 = −a/c, α3 = −b/c are the parameters of the plane. By
considering all the n patches of the grid, these parameters
can be estimated by using a classical least-squares algorithm
whose the cost function to minimize is the sum of squares of
the differences between the estimated and observed elevation
distances:

J =
n∑

i=1

(ẑi − zi)2 (7)

and which gives solution:

(α1 α2 α3)T = (MTM)−1MTZ (8)

where the components of the n × 3 matrix M are given by
Mi,j = fj(xi, yi) with i = 1 . . . n, j = 1 . . . 3 and the vector
Z contains the n observed elevation distances Zi = zi. The
normal vector of the target plane expressed in the current
plane is then obtained by:

�n = (a b c)T =
(α2 α3 1)T

||(α2 α3 1)T || (9)

and the elevation distance between the centers of the current
and target B-scan images is zb = α1.

This least-squares algorithm cannot be directly applied to
estimate the plane position due to the sign ambiguity of
the zi distance of each patch. So we propose to use the
iterative algorithm presented in Fig. 2 to rearrange sign of
each distance. The principle is first choose a random sign on
each zi and to compute an initial plane estimate and least-
squares error using these signs. Then, we modify the sign
of a patch and compute the new least-squares error. If the
new error norm is lower than the previous one, then the sign
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Fig. 3. (top) Symmetric plane position solutions provided by the iterative
algorithm. The points on the planes show the rearranged (signed) positions
of patches after the algorithm convergence. (bottom) Plots of the decreasing
least-squares error norm during the iterative algorithm process

is kept or otherwise it is discarded. This process is repeated
for the n patches in a loop. At the end, if the resulting error
norm is lower than the initial one then the initial error is
set to the current one and the loop is repeated until the last
resulting error is the same as the initial error. The algorithm
will then stop when it converges to one of the two stable
symmetric solutions as illustrated in Fig. 3. The first solution
corresponds to the case when there is a positive elevation
distance zb > 0 between the target and current plane and the
second to the case for a negative distance zb < 0. Note that
from one solution we can easily determine the second. For
the case presented in Fig. 3, the algorithm converges only
with 50 iterations whereas there are, in principle, 2n (with
n = 25) possible configurations1 of the signed distances.

Now, if we consider a 3D Cartesian frame {c} attached
to the center of the current image plane and another {t}
attached to the center of the target image plane, the relative
displacement due to the out-of-plane motion can be defined
as a translation of distance zb along the Z axis of {c} and two
successive rotations α and β around the Y and X axes. This
gives us the following homogeneous transformation matrix
between {c} and {t}:

cHt =




cos(α) cos(α) sin(θ) sin(α) cos(θ) 0
0 cos(θ) − sin(θ) 0

− sin(α) cos(α) sin(θ) cos(α) cos(θ) zb

0 0 0 1




(10)
As the third column corresponds to the Z axis of the target
plane expressed in the current frame {c} the angles α and
β can be directly determined from the components of the
estimated normal vector �n. Therefore the 2 solutions of cHt

are given by using:

α = atan(a/c) , θ = −asin(b) if zb > 0
α = atan(−a/c) , θ = −asin(−b) if zb < 0 (11)

1In fact, there are fewer than 2n due to the planarity constraint; indeed
this is why such a simple algorithm works.
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Fig. 4. The state-transition graph used to track the sign of the elevation
distance zb and compute the relative position cHt between the current and
target planes

Note that, if zb = 0 there is an ambiguity on the target plane
orientation. This problem will be considered next.

C. Elevation distance tracking

Once a correct sign is known for the elevation plane, it
is possible to develop a system for tracking it without the
need for continual estimation. This approach also provides
a means for extending the range of the elevation distances
that can be corrected for.

In order to resolve the remaining sign ambiguity and
initiate tracking, we have developed a state-transition graph
which memorizes the evolution of the sign and uses an
intermediate B-scan image to reconstruct the target frame
position cHt when |zb| is close to zero. In practice, the B-
scan image target that needs to be tracked will be initially set
from a desired ultrasound image. This will be done after an
initial procedure where the user positions the probe held by
a medical robot to see the image of interest. Therefore at the
start, the current image and the target B-scan are superposed,
so zb = 0. We then propose to initially move the probe by a
small control step in the negative elevation direction in order
to obtain zb > s where s is a very low threshold value. This
provides initialization for the state-transition graph presented
in Fig. 4.

In particular, this first motion provides data for state 1
where the position of the target is given by cHt(zb > 0).
This state is maintained while zb > s. If |zb| decreases below
the threshold s due to the motion of soft tissues then an
intermediate plane with Cartesian frame {s} is set and frozen
to the current target B-scan position cHs = cHt(s) and the
state switches from 1 to 2. In this new state the position of the
plane target is then given by cHt = cHs(s)sHt(zs > 0)
where sHt(zs > 0) is the homogeneous matrix from the
fixed intermediate plane to the target plane provided by the
estimation method described in section II-B and zs is the
corresponding elevation distance between these two planes.

This new state is maintained while |zb| < s. Of course
there is the possibility of going back to the state 1 if zb

increases when the transition |zb| ≥ s & |zs| ≤ |zb| is

time time

Y

X

Xt

Yt

Fig. 5. (left) Reference image acquired at time t0 = 0 with the region
of interest to track - (right) current image modified by the in-plane motion
f(x; µ) with the estimated region of interest

validated. If now |zb| ≥ s & |zs| ≥ |zb| which means that
zb is negative and is lower than −s then the state goes in
3 where the target position is given directly by the solution
with negative elevation distance cHt(zb < 0). If afterwards
|zb| becomes lower than the threshold, the intermediate
plane is updated and frozen to the current target position
cHs = cHt(−s) and the state goes to 4 with solution
cHt = cHs(−s)sHt(zs > 0) where sHt(zs > 0) is the
transformation matrix from the recent updated intermediate
plane to the target. The first state is then retrieved when
|zb| ≥ s & |zs| ≥ |zb|. This method permits computation
of the correct sign of the distance zb by taking into account
its evolution and avoiding ambiguous orientation case when
zb = 0. Moreover in order to obtain smooth transitions when
the state switches, the following interpolation function is
applied to give the target plane pose vector p:

p = (1 − (|zb|/s)2) p1 + (|zb|/s)2 p2 (12)

where p1 is the pose vector describing the reconstructed
homogeneous matrix cHt obtained during state 2 or 4 and
p2 is the pose vector describing the direct solution cHt

during state 1 or 3. Note that this function gives no weight
to the direct solution cHt when zb = 0 in order to reject
the unstable case. The components of the normal vector �n
of the B-scan plane and its orientation angles α, β are then
retrieved using (10) and (11).

III. IN-PLANE-MOTION-EXTRACTION

Fig. 5 shows the target image captured at time t0 = 0 and
the current image obtained at time t when in-plane motion
was applied. To extract the in-plane rigid motion of the B-
scan target with respect to the current image plane, we use
the image region tracking technique presented in [11] which
we briefly recall here.

The objective of this technique is to estimate the parameter
vector µ of an appropriate parametric model function f(x;µ)
which describes the geometrical transformation on the pixel
coordinates x = (x y)T from the reference to the current
image. For our application, the motion parameter vector is
µ = (ux uy γ)T where ux, uy are the translations along X
and Y axes of the reference image and γ is the rotation angle



around the Z axis. The vector form of the motion parametric
model function is:

f(x;ux, uy, γ) = R(γ)x + u (13)

where R(γ) is the 2 × 2 rotation matrix of angle γ and
u = (ux uy)T is the translational vector. The principle of
the method is to determine the motion parameter µ which
minimizes the sum of squared differences of pixels intensity
between the region of interest obtained with the geometrical
transformation (13) in the current image and the reference
region of interest fixed in the target image where µ = 0.
Therefore the objective function to minimize is:

O(µ) = ||I(µ, t) − I(0, t0)||2 (14)

where I(0, t0) is the vector containing the intensity values of
the N pixels belonging to the reference target image at t = 0
and I(µ, t) contains the intensity values of the N pixels in
the current image whose coordinates were warped by (13)
using the most recent motion parameter µ(t) as given here:

I(µ, t) =




I(f(x1, µ), t)
...

I(f(xN , µ), t)


 (15)

By rewriting (14) in term of a vector of offsets δµ such that
µ(t + τ) = µ(t) + δµ from an image captured at time t + τ :

O(δµ) = ||I(µ + δµ, t + τ) − I(0, t0)||2 (16)

and by approximating it with a first order Taylor expansion
we obtain:

O(δµ) ≈ ||Mδµ + I(µ, t + τ) − I(0, t0)||2 (17)

where M is the Jacobian matrix of I with respect to µ:

M(µ) =




∇xI(x1, t0)T fx(x1, µ)−1fµ(x1, µ)
...

∇xI(xN , t0)T fx(xN , µ)−1fµ(xN , µ)


 (18)

Here ∇xI(x, t0)T is the intensity gradient vector at pixel
location x = (x y)T in the reference image and fx, fµ are
respectively the partial derivatives of f(x;µ) with respect
to x and µ. By using µ = (ux uy γ)T and the parametric
motion model (13) it gives:

f−1
x fµ =

[
1 0 −y
0 1 x

] [
R(−γ) 0

0 1

]
(19)

The solution of δµ is then obtained by setting the gradient
of O(δµ) to zero and solving which yields:

δµ = −M+(I(µ, t + τ) − I(0, t0)) (20)

where M+ is the pseudo inverse of M. The motion param-
eter vector is then:

µ(t + τ) = µ(t) + δµ (21)

In practice, in order to obtain accurate parameters con-
vergence, we successively compute (20) and (21) during
several iterations until ||δµ||2 becomes lower than a small

fixed threshold value ε. For more complete details on this
method we invite the reader to refer to [11]. The extracted
motion is then applied to the n patches used to compute
the speckle correlation in order to update their positions
in the current image. Other methods based on the same
principle are proposed in the literature, for example in [12] a
second-order minimization technique is used for large motion
tracking with fast convergence rate by using the mean value
of the Jacobian M in the target image and the one in the
current image.

IV. VISUAL SERVOING

Now that the whole motion of the B-scan target is es-
timated, we present the control scheme used to control a
medical robot holding the ultrasound probe in order to reach
and track a moving B-scan target. In our approach, two visual
servoing techniques are used to independently control the
out-of-plane 3-DOF motion of the probe and its in-plane 3-
DOF motion.

A. Out-of-plane motion control

A 3D visual servoing control is used to track the out-
of-plane motion. We chose as the visual features s1 =
(a b c zb)T the 3 components of the normal vector �n of
the estimated target plane and its elevation distance zb with
respect to the current B-scan. The desired visual features
vector to achieve is s∗1 = (0 0 1 0)T which means that the
final position of the normal vector of the target plane will be
orthogonal to the current image and that relative elevation
distance will be null. The variation of the visual information
s1 to the out-of-plane velocity v1 = (vz ωx ωy)T of the
probe is given by:

ṡ1 = Ls1v1 = Ls1




0 0 −c
0 c 0
0 −b a
−1 0 0


v1 (22)

where vz is the probe translational velocity along the orthog-
onal Z axes of the current image frame {c} (attached to the
center of the image) and ωx, ωy are respectively the rotational
velocities around the X and Y axis. In visual servoing Ls1

is called the interaction matrix (see [13]) and is determined
from the geometrical model of the considered system. In
our case it depends only on the components of the normal
vector �n of the target plane. The visual servoing task can
then be expressed as a regulation to zero of the task function
e1 = s1 − s∗1. Usually, the control law is defined such as the
task e1 decreases exponentially in order to behave like a
first order system by using a proportional controller [13].
In this work we apply rather the second-order minimization
technique introduced in [14] which uses the following control
law to improve the trajectory for large displacement:

v1 = −2λ1(L̂s1 + Ls
∗
1)

+e1 with gain λ1 > 0 (23)

where L̂s1 is the interaction matrix estimated at each control
iteration and Ls

∗
1 is the one at the desired location (with

a = b = 0 and c = 1).



B. In-plane motion control

To control the in-plane motion of the probe we implement
an image-based visual servoing where the visual features
s2 = (ux uy γ)T are directly the translation u = (ux uy)T

and the rotation γ extracted and expressed in the current
image by using the method described in section III. The
corresponding desired features vector to reach is s∗2 =
(0 0 0)T and the interaction matrix Ls2 related to s2 such
that ṡ2 = Ls2v2, is simply a 3 × 3 identity matrix. The
control velocity v2 = (vx vy ωz)T to apply to the probe in
order to obtain an exponential decreasing of the visual error
e2 = s2 − s∗2 is then obtained by:

v2 = −λ2(Ls2)
−1e2 with gain λ2 > 0 (24)

where vx, vy are the translational velocities of the probe
along the X and Y axis of {c}, and ωz is the rotational
velocity around the Z axes.

The 6-DOF control needed to track the full motion of
the target B-scan is finally performed by applying to the
probe the screw velocity v = (vx vy vz ωx ωy ωz)T whose
components are given by the two independent control laws
(23) and (24).

V. SIMULATION AND RESULTS

A. Ultrasound imagery simulator

Usually, we apply simulated ground truth data to see
how the system performs under ideal circumstances and
then gradually introduce systemic and random errors into
the data and the tracking system, thus gradually approach
realistic scenarios, before an experimental validation on real
data (especially on human data) is attempted. Therefore, we
developed an ultrasound simulator software which allows us
to position and move a 2D virtual probe and simulate a
moving 3D ultrasound volume. This volume is composed
from 100 parallel real B-scan images of 180 × 210 pixels
resolution with a pixel size of 0.2 × 0.2 mm that were
previously captured from an ultrasound speckle phantom at
elevation intervals of 0.25 mm.

This simulator is built from the Visualization ToolKit
(VTK) software system [15] and the Visual Servoing Plat-
form (ViSP) [16] which are freely available open source
C++ libraries. We use VTK to render the 3D view of the
ultrasound volume as shown in Fig. 6 and to generate the
current 2D ultrasound image observed by the virtual probe by
means of cubic interpolation, and we use ViSP to implement
the target B-scan motion extraction from the resliced 2D
image and to compute the visual servoing control law applied
to the probe velocity screw.

B. Tracking robotic task results

We simulate the 6-DOF motion of the volume by applying
6 sinusoidal signals with same period of 5 seconds to the
position of a Cartesian frame {o} attached to the volume and
initially superposed to the ultrasound plane frame {c} such
that {o(t = 0)} = {c(t = 0)}. The translational magnitudes
were set to 10 mm along the X , Y and 12 mm along the

virtual

probe plane

ultrasound

volume

current US image

Fig. 6. Ultrasound simulator: 3D view of the ultrasound volume and the
initial ultrasound image observed by the virtual probe with the 25 speckle
patches (grid) and the in-plane tracking region of interest (biggest box)
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Fig. 7. (top) Out-of-plane and in-plane tracking positioning errors -
(bottom) Position and orientation (uθ representation) of the volume (dashed
lines) and the ultrasound probe (full lines) with respect to a fixed base frame

Z axes of {o} and the rotational magnitudes were set to
10 deg around the X , Y axis and 8 deg around the Z axes.
The threshold elevation distance s used in the state-transition
graph was set to 0.1 mm and the gain of the control laws
(23) and (24) were both fixed to λ1 = λ2 = 10.

Fig. 7 shows the time responses of the out-of-plane and
in-plane positioning errors during the full motion tracking
task. The components of the out-of-plane error correspond
to the α, β angles and the elevation distance zb of the target
B-scan plane with respect to the current B-scan. Their values
are linked to the visual feature s1 by relation (11) whereas
the in-plane error corresponds directly to the visual features
vector s2. Fig. 7 also shows the evolution of the volume
position (dashed lines) and probe position (full lines) with
respect to a fixed base frame. We can see that the task is
performed well since only tracking errors lower than 0.6
mm for the translation and 0.5 deg for rotation components
are measured. Moreover, these errors could be reduced if a
prediction of the velocity of the target B-scan is introduced
in the control law by the use for example of a Kalman filter
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Fig. 8. (top) Velocity control screw applied to the virtual ultrasound probe
and speckle correlation values of the patches between the current and target
image plane - (bottom) Target plane least-squares error norm and state value
of the state-transition graph use to extract the elevation sign

as presented in [17] or a generalized predictive controller
[18].

Fig. 8 shows the control velocity screw applied to the
probe and the evolution of the inter-patch speckle correlation
values between the current and target B-scan images. The
figure also presents the evolution of the plane estimation
least-squares error norm and the cycle of the state-transition
graph performed to track the elevation distance sign. As we
can see, correlation values are decreasing due to the tracking
error. Consequently if the error becomes too high, a tracking
failure could occur due to a lack of correlation. The solution
to avoid this case and to guarantee the robustness of the
tracking robotic task is to use in the method presented in
section II-C several successive intermediate planes between
the current and target planes in such way that there is always
a minimum speckle correlation value between themselves.
This can also be useful in order to automatically retrieve
an other moving B-scan target that was previously recorded
at a distant position by guiding the probe along a path of
intermediate B-scan images.

VI. CONCLUSION

This paper has presented an estimation and control method
to automatically synchronize the 6-DOF motion of an ul-
trasound probe with a moving 3D ultrasound volume by
tracking the displacement of a B-scan image of reference.
The out-of-plane motion was extracted from the speckle
information contained in the ultrasound image, and an image
region tracking method was used to extract the in-plane
motion. Two independent visual control schemes were then
developed to automatically move the probe in order to track
the full motion of the target B-scan.

As simulations results are promising, we are now working
on the experimental validation of the proposed method.
The experiment will consist of controlling a medical robot

holding a 2D ultrasound probe in order to track the motion of
real soft tissues. In future work, we also plan to consider non-
rigid motion due to the internal deformation of soft tissues.
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