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Abstract. Since the precise modeling of reflection is a difficult task,
most feature points trackers assume that objects are lambertian and
that no lighting change occurs. To some extent, a few approaches answer
these issues by computing an affine photometric model or by achieving a
photometric normalization. Through a study based on specular reflection
models, we explain explicitly the assumptions on which these techniques
are based. Then we propose a tracker that compensates for specular
highlights and lighting variations more efficiently when small windows of
interest are considered. Experimental results on image sequences prove
the robustness and the accuracy of this technique in comparison with
the existing trackers. Moreover, the computation time of the tracking is
not significantly increased.

1 Introduction

Since many algorithms rely on the accurate computation of correspondences be-
tween two frames through an image sequence, feature tracking has proved to
be an essential component of vision systems. Indeed, many high level tasks can
depend highly on it, such as 3D reconstruction, active vision or visual servo-
ing for example. Nevertheless, robust feature tracking is still a problem to be
addressed. It becomes far more complicated when no mark (edges or lines for
example), can be extracted from the observed object, such as in natural envi-
ronment [1]. In such a context, only points, among other possible features, are
likely to be easily detectable. However, tracking a point into an image sequence
is not a trivial task since the only available information is the luminance of the
point and of its neighboring pixels. The seminal works in this domain are due
to Lucas and Kanade [5,9] who assume the conservation of the point luminance
during the image sequence [3]. The measure of a correlation function between
two successive frames determines the translation motion undergone by the point.
Thereafter, some more robust tracking approaches have been proposed [8, 10].
However, such methods still assume that the luminance remains constant be-
tween two successive frames, which is often wrong. Indeed, most surfaces are
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not Lambertian and lighting conditions are mostly variable during an image se-
quence. To solve this problem, Hager and Belhumeur [2] acquire an image data
base of the scene under several illuminations and use these data to improve the
tracking. This method is efficient but requires a prior learning step, which can
be seen as too restrictive. An easier way to cope with illumination changes is to
achieve a photometric normalization as in [10] for example. In [4], the tracking
task compensates for affine illumination changes by computing the contrast and
illumination variations during the whole image sequence. These two methods
will be detailed in Section 3.

In this paper, we propose a new feature point tracking algorithm, based on
the study of reflection models, which is robust to specular highlights occurrence
and lighting changes. In addition, we show clearly on which assumptions the
approaches mentioned above are based. Besides, we will see that the proposed
algorithm provides a more appropriate model of the illumination changes, par-
ticularly for specular surfaces.

This article is structured as follows. Section 2 focuses on the modeling of
luminance changes, especially in cases of specular reflections and lighting varia-
tions. Section 3 details some of the existing tracking approaches: the Shi-Tomasi-
Kanade tracker [5,8,9], the normalized one [10] and the tracker with an affine il-
lumination compensation [4]. Thereafter, section 4 describes the proposed track-
ing method. To finish, section 5 shows experimental results, in order to compare
the different tracking techniques according to their robustness and accuracy. In
addition, this section will prove the efficiency of our approach.

2 Modeling of luminance changes

Suppose f and f ′ to be respectively the images of an object acquired at two
different times. A point P of this object projects in image f to p of coordinates
(xp, yp) and to p′ of coordinates (x′p, y

′
p) in the image f ′ after a relative motion

between the camera and the scene. The luminance at p depends on the scene
geometry. Fig.1 describes the vectors and the angles used in this paper. V and
L are respectively the viewing and the lighting directions, which form the angles
θr and θi with the normal n in P . B is the bisecting line between V and L, it
forms an angle ρ with the normal n. According to the most widely used reflection
models, such as the Torrance-Sparrow [11] and the Phong [7] ones, the luminance
at p can be described as follows

f(p) = Kd(p)a(p) cos θi(P ) + hf (p) +Ka (1)

where Ka is the intensity of ambient lighting and Kd a diffuse coefficient corre-
sponding to the direct lighting intensity. These values depend also on the gain
of the camera. The term a(p) is related to the albedo4 in P . The function hf

expresses the contribution of the specular reflection, which vanishes in case of a
4 The albedo is the ratio of the amount of light reflected by a small surface in P to

the amount of incident light. It depends only on the material and its texture.
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Fig. 1. Vectors and angles involved in the reflection description.

pure diffuse reflection, that is for Lambertian objects. Consequently, with such
objects and for a given lighting direction L, the luminance at p remains con-
stant whatever the viewing direction V is. Phong describes in [7] the specular
reflection as a cosine function of ρ

hf (p) = Ks(p) cosn(ρ(P )) (2)

where n is inversely proportional to the roughness of the surface and Ks is the
specular coefficient of the direct lighting. Torrance-Sparrow [11] describes hf by
an exponential function depending on ρ and on the surface roughness ς. For each
model, hf reaches a maximum value for ρ(P ) = 0, that is when B coincides with
n. Let us also notice that the specular reflection depends on the roughness, the
lighting and the viewing directions.

After a relative motion between the camera and the scene, when no lighting
change occurs, θi, Kd and Ka are constant at P during the time. In the same
way, the albedo is constant at P leading to a(p′) = a(p). However, the specular
component hf , which depends on the viewing direction, may vary strongly during
the motion of the camera. In those conditions, the luminance f ′ is given by

f ′(p′) = Kd(p)a(p) cos θi(P ) + hf ′(p′) +Ka (3)

where hf ′ is the specular function.
Now, let us consider that some lighting shifts ∆Ka, ∆Kd and ∆θi are re-

spectively provoked on Ka, Kd and θi. Thus, the luminance can be expressed
as

f ′(p′) = K
′

d(p)a(p) cos θ
′

i(P ) +K
′

a + hf ′(p′) (4)

with K
′

d(p) = Kd(p) +∆Kd(p), θ
′

i(P ) = θi(P ) +∆θi(P ) and K
′

a = Ka +∆Ka.
The specular term hf ′(p′) includes the intensity change of the specular coefficient
Ks if necessary. From (4), the next section will clearly show the assumptions on
which the most widely used tracking methods are based.
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3 Analysis of existing tracking methods according to
their robustness to illumination changes

Let be m a point located in a window of interest W of size N × N centered
around p. Point m is the projection of a physical point M in f and m′ is its
projection in f ′. The tracking process consists in computing a motion model
δ parameterized by a vector A between f and f ′. According to the tracking
method, the assumptions about the photometric model are different. By elimi-
nating a(m) between (1) and (4), it yields to the following relationship between
two images of the same sequence f ′(m′) = λ(m)f(m) + η(m). This relationship
is found in [6] in an optical flow context, but λ and η are supposed to be constant
locally. According to our analysis based on the reflection models, λ(m) and η(m)
are expressed by:

λ(m) =
(Kd(m) +∆Kd(m)) cos(θi(M) +∆θi(M))

Kd(m) cos θi(M)
(5)

η(m) = −(hf (m) +Ka)λ(m) + hf ′(m′) +Ka +∆Ka (6)

From these relations we deduce the assumptions on which the classical trackers
are based.

The classical approach. The classical point feature tracker [5, 8, 9] assumes
a perfect conservation of luminance at point M during the sequence: f ′(m′) =
f(m), ∀m ∈ W and ∀W. Owing to owing to (5) and (6), that implies λ(m) =
1 and η(m) = 0 ∀m ∈ W, which is correct when no lighting change occurs
(∆θi(M) = 0, ∆Kd(m) = 0 ∀m ∈ W) and when objects are strictly lambertian
(hf (m) = hf ′(m′) = ∆Ka = 0, ∀m ∈ W and ∀W). Because of noise and because
of the strong assumptions considered on the motion and photometric models, it
is more suitable to minimize the following criterion

ε1(A) =
∑

m∈W
(f(m)− f ′(δ(m,A))2 (7)

This approach leads to good results in most cases but can suffer from lighting
changes and specular highlights occurrence. In order to cope with this problem,
a photometric normalization can be performed.

Use of an affine photometric model. In [4] the authors propose a tracking
method in order to compensate for contrast and intensity changes by computing
the parameters of the following criterion

ε2(A, λ, η) =
∑

m∈W
(λf(m)− f ′(δ(m,A))− η)2 . (8)

According to (5), λ(m) is supposed to be constant at each point of W. That is
correct for any surface curvature (and then ∀∆θi and ∀θi) and for any lighting
(∀Kd and ∀∆Kd) only if each function ∆θi, θi, ∆Kd, Kd is constant in W.
Then, it assumes that η(m) is constant at each point of W, which is correct for
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any surface curvature and for any roughness when both hf ′(m) and hf (m) are
constant at each point of W.

As a conclusion, this technique assumes that the illumination changes are
the same at each point of W. Practically, that can be a coarse assumption when
the surface projected onto W is non planar.

The photometric normalization approach. This approach is based on the
minimization of the criterion ε2(A) except that λ and η are measured at each
step of the minimization process instead of being computed simultaneously with
the motion parameter A. Their values are λ = σf′

σf
and η = µf ′ − σf′µf

σf
, where

µf and µf ′ are the average values respectively of f and f ′ in W and σf , σf ′ are
the standard deviations. λ and η are supposed to be constant at each point m
of W, so that the same assumptions as the previous technique hold. Indeed, in
those conditions, the values µf and σf are given by{

µf = Kd cos(θi)µa +Ka + hf

σf = Kd cos(θi)σa
(9)

where µa is the average value of a and σa its standard deviation. Consequently,
f(m) − µf , a(m) − µa and f ′(m′) − µf ′ are invariant to highlights occurrence.
Finally we show easily that the following ratios are also invariant to ambient
and direct lighting changes, and to gain variation

(f(m)− µf )/σf = (a(m)− µa)/σa = (f ′(m′)− µf ′)/σf ′ , ∀m ∈ W. (10)

Nevertheless, these properties are true only if the specular reflection and the
lighting changes are the same at each point of W, as it as been mentioned
above. In some cases, these assumptions are not realistic, particularly when W
is the projection of a non planar surface of the scene. In addition, these values
can be ill-defined when σa ≈ 0, that is when the intensities almost saturate or
more generally when they are almost homogeneous in W.

Our method is described in the next section. It states the assumption that
the illumination changes can be approximated by a continuous function on W.

4 The proposed approach

It has been shown in section 2 how each kind of illumination changes can be
expressed. By considering (1) and (4), we immediately obtain the relationship
between f ′ and f

f ′(δ(m,A)) = f(m) + ψ(m) (11)

In the general case the photometric change is written

ψ(m) = a(m)(K′
d(m) cos(θi(M) +∆θi(M))−Kd(m) cos θi(M)) +

hf ′(δ(m,A))− hf (m) +∆Ka (12)
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When the lighting (or the gain of the camera) does not vary, the total temporal
change ψ in the specular component at a fixed scene point m is equal to

ψ(m) = hf ′(δ(m,A))− hf (m) (13)

According to the most widely used reflection models (see (2) for example), the
function ψ is variable on W since it depends on the viewing and lighting angles
and therefore on the normal n at each point of W. When lighting changes are
caused, it depends also on the albedo. We suppose that this function can be
approximated by a continuous and derivable function φ on W. In that case, a
Taylor series expansion can be performed at m in a neighborhood of p leading
to the following expression for φ(m) by neglecting the higher order terms

φ(m) = φ(p) +
∂φ

∂x

∣∣∣∣
p

(x− xp) +
∂φ

∂y

∣∣∣∣
p

(y − yp). (14)

Finally, by using (14) in (11) with m = (x, y)T and noting α = ∂φ
∂x

∣∣∣
p
, β = ∂φ

∂y

∣∣∣
p

et γ = φ(p), the proposed tracker consists in computing the motion parameter
A and the reflection parameters B = (α, β, γ)T by minimizing the following
criterion:

ε3(A,B) =
∑

m∈W

(
f(m)− f ′(δ(m,A))−UT B

)2
(15)

where U = (x−xp, y−yp, 1)T . Contrary to the previous approaches, this method
does not make assumptions about the scene. In particular, the incident angle
θi, the viewing angle θr, the parameter Ks and the roughness n (or ς) can vary.
Therefore, specular highlights and lighting changes can be different at each point
ofW. However, when lighting changes occur, the method assumes that the values
of the albedo can be approximated by a polynomial of first degree in W. Only in
that case, the proposed approach is more adapted for small windows of interest
W. In the next section, the different tracking methods are compared through
experiments.

5 Experimental results

In the following experiments, the tracking methods are based on the computation
of an affine motion model between the first frame and the current one. The
tracking algorithm integrates an outlier rejection module, based on the analysis
of the residues convergence εi, i = 1 . . . 3. A point is rejected of the tracking
process as soon as its residues become greater than a threshold Sconv = N 2E2

ave,
where Eave is the tolerated intensity variation for each point in W between f
and f ′. In these experiments, Eave = 15. We consider some sizes from N = 9 to
N = 13. In each case, the sequence is played from the first image to the last one
and then from the last image to the first one, in order to evaluate the symmetry
of the residuals and photometric curves. To compare the trackers we compute
several criteria: 1) the robustness of the tracking, that is to say the number of
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points that have been tracked during the whole sequence; 2) the accuracy of the
tracking: we compute the average of the residuals for all the points that have
been tracked during the whole sequence by the considered method. This criterion
provides information about the relevance of the photometric model. The lower
the residues are, the better the illumination variations are compensated for; 3)
the reflection parameters α, β and γ, computed by the parametric method. We
will also compare the computation time and the conditioning of the matrices
used in the minimization algorithm. Moreover, simulations results compare the
accuracy of the tracking in terms of position estimation. In order to simplify
the explanations of results, we introduce the following notations: C (classical
approach), J (affine model compensation), T (photometric normalization) and
P (proposed approach).

First, the tracking algorithms are tested on scenes showing specular high-
lights. For each image sequence, the scene (objects and lighting) is motionless,
only the camera moves. The scenes are lighted by a direct and an ambient light-
ing.

• Experiment Book . The first sequence (see Fig. 2a) shows a book. The
motion of the camera leads to specular highlights which appear and disappear
during the sequence. A number of 97 points has been selected in the first frame
but 11 points are lost because they are occluded by the book or because they
get out of the camera field of view. The number of points correctly tracked is
counted in table 1a. These results prove that the proposed approach (P ) is far
more robust than the existing ones (C, J and T ) since the number of tracked
points is always much larger. Fig. 2b compares the average residuals obtained
by the trackers during the sequence for N = 9. Until the 100th frame, P obtains
the lowest convergence residuals: the proposed photometric model fits best to
the specular occurrence. After the 100th frame, the residuals of T become lower
than the P ones. However, these values are computed by averaging the residuals
of 33 points for T and 68 points for P . In order to compare correctly these two
approaches, let us consider Fig. 2c, which shows the average residuals computed
only on the few points that are correctly tracked by T and P simultaneously.
Here, the residuals are lower for the proposed approach. That shows the good
adequacy of the local model proposed to compensate for specular highlights. Let
us notice that J is less convincing than T even though these two methods are
based on the same photometric assumptions. As it will be shown later on, this is
due to the ill-conditioning of J . Fig. 2d depicts the behavior of the photometric
parameters that have been computed by P . Let us notice that these curves
are perfectly symmetric, in agreement with the symmetry of the sequence and
therefore with the symmetry of the illumination changes.

• Experiment Marylin . The image sequence Marylin (see Fig. 3a) shows
different specular objects, planar or not, lighted by the daylight and the spot-
lights of the room. Different types of material are considered (ceramic, glass,
glossy paper, metal). This sequence is particularly noisy since the camera used
has an interlaced scan mode. Besides, we can see some specular reflections es-
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(a)

1st frame 100thframe 200thframe

(b) (c)

(d)
α β γ

Fig. 2. Experiment Book (a) Three images of the sequence. (b) and (c): Residuals
for N=9, (b) is the average of the residual computed on all the points tracked and
(c) the average of the residuals for the points that are correctly tracked by T et P
simultaneously. (d) Illumination parameters computed with the proposed approach.

pecially on the glass of the photograph. A total number of 56 points has been
selected in the first frame, but a large number of points (20 points) is lost be-
cause of occlusions and noise. Table 1b collects the number of points that have
been tracked until the end of the sequence by each technique. Contrary to the
previous sequence, T is less powerful than J , which could mean that T is less
robust to noise than J . P tracks a larger number of points in each case. As it
can be seen from the residuals obtained on the points that have been tracked by
the whole of the approaches (see Fig. 3b), this technique is also more accurate.

Now, let us compare the techniques on a sequence showing lighting changes.

• Experiment Lighting changes. The scene consists of a specular planar ob-
ject lighted by the daylight and by one direct spotlight (see Fig. 4a). Strong
variations are produced on the direct lighting intensity since it varies periodi-
cally, from a minimum value to a maximum one each 10 frames. Table 1c collects
the number of points that have been tracked, on 58 points selected initially. Ob-
viously, the proposed method provides a better robustness of the tracking since
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(a) 1st frame (b) 400th frame (c) Residuals

Fig. 3. Experiment Marilyn (a) and (b) Two images of the sequence. (c) Average of
the residuals for N=9 obtained by J and P .

the whole of the points are tracked. Fig. 4b shows the average residuals ob-
tained. For this kind of illumination changes, P and T are the most accurate
techniques and obtain quite similar residuals. However, Fig. 4c, compares the
average residuals computed for the points that have been tracked by the two
techniques simultaneously. P gets the lowest residuals. The temporal evolution
of the illumination parameters is depicted on Fig. 4d. Their periodical variations
correspond to the lighting changes that have been provoked.

Accuracy of the tracking. In order to evaluate the accuracy of the points
positioning, we use a software that simulates the appearence of an object lighted
by an ambient light and a direct spotlight, by using a Phong model (see (2)). In
the simulated sequence from Fig.5a and 5b, a motionless cylinder is viewed by
a moving camera. The direct light is moved, inducing some specular highlights
changes. A point is rejected as soon as its error (the euclidian distance between
the real position of the point, computed by the software, and its estimated po-
sition by the tracker) is greater than 0.5 pixel. 13 points are initially selected,
the method C loses 13 points, T 7 points, J 6 points and P loses no point.
The figure 5c shows the evolution of the average of positioning errors obtained
by each technique. P obtains the lowest errors all along the sequence and the
number of points that are correctly tracked is higher.

Discussions. As expected, the classical tracker described in section 3 is not
robust neither to specular highlights occurrence nor to lighting variations. A
large number of points are lost, sometimes the whole of the points. Obviously,
the tracking with photometric normalization and the approach with an affine
compensation roughly improve the results. Besides, their efficiency increases for
large windows of interest. Indeed, for small windows, the computation of σf ,
σg and λ are sensitive to noise. Because these values are multiplied or divided
by the luminance values f , an error caused on these parameters have a huge
influence, and can yield to the computation of an incorrect motion parameter
A. On the other hand, it could seem surprising that J and T behave differently
although they are based on the same photometric assumptions. Actually, J suf-
fers from a bad convergence for small windows. As an example, table 2 contains
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(a)

1st frame 75 th frame 150 th frame

(b) (c)

(d)
α β γ

Fig. 4. Experiment Lighting changes. (a) Three images of the sequence. (b) and (c)
Residuals for N=9, (b) is the average of the residuals computed on all the points
tracked and (c) the average of the residuals for the points that are correctly tracked by
T et P at the same time. (d) Illumination parameters of point A computed with the
proposed method.

(a) (b) (c)

Fig. 5. Simulation. (a) and (b) Images of the sequence. (c) Average of the positioning
errors (in pixels).
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the ratios CN given by the ratio of the Condition Number of the tracker to the
Condition Number of the classical tracker (or the T approach since it has the
same condition number), computed on 10 points of the sequence Book and for
different sizes of window. It collects the maximum (Max), the minimum (Min)
and the average values (Ave) obtained. These values show clearly that J is less
well-conditioned than the other approaches included ours. To finish, the method
P tracks a larger number of points than the other methods. It really compen-
sates for the variability of specular reflection and lighting variations onW, which
proves the relevance of the modeling of ψ by (14). However, let us notice that
the difference of performance between the three methods (P , J and T ) is less
significant when lighting changes are caused than when only specular highlights
occur, in particular for large windows of interest. J and T are well adapted to
contrast changes, and not to specular highlights, which are generally not con-
stant in W. However, let us note once again that J is less efficient because of
its ill-conditioning. The proposed method is perfectly adapted to specular high-
lights since their variations in W is well modeled. In case of lighting variations,
the albedo must be approximated by a polynomial of first degree. However this
approximation is satisfying for small windows of interest.

Up to now, we did not compare the computation time of the methods. For
example, in sequence Book, the average tracking time of one point is 1.3ms for
classical method, 1.7ms for the J technique, 4.6ms for the T one (let us note
that the computation of the means and standard deviations are costly) and 1.4ms
for our approach 5. As a conclusion, the computation time is not significantly
increased in comparison to the classical approach.

6 Conclusion

The existing tracking methods are based on several assumptions that had never
been, or partially, specified explicitly before. In this paper, the analysis of these
methods is led according to specular reflection models. Contrary to the classical
approach, the tracking methods based on an affine photometric compensation
are, to some extent, robust to illumination changes. However, the illumination
parameters are assumed to be constant around the point to be tracked. This
can be incorrect when the surfaces are non planar or when specular highlights
occur. Our approach overcomes these issues. We assume that an illumination
change can be approximated by a continuous and derivable function around the
points to be tracked. This model is well adapted for small windows of interest,
since it improves the robustness of the tracking against highlights occurrence and
lighting changes. The computation duration of this method is not significantly
increased in comparison with the classical technique and the accuracy of tracking
is improved. In addition, its convergence properties are more satisfying than
the technique involving an affine model since better conditioning numbers have
been obtained. Our future work will focus on a more appropriate modeling of
illumination changes for larger windows of interest.
5 With a processor Pentium III, 1.8GHz, 512Mo RAM.
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Table 1. Number of points tracked during the whole sequence versus N .

(a) Book (86 points to track) (b) Marylin (36 points) (c) Lighting changes (58 points)

Tracker N=9 N=11 N=13

C 27 20 16
T 33 49 53
J 15 25 48
P 68 68 69

Tracker N=9 N=11 N=13

C 0 0 0
T 1 3 7
J 4 8 15
P 23 21 21

Tracker N=9 N=11 N=13

C 37 29 23
T 45 51 53
J 39 48 51
P 58 58 58

Table 2. Conditioning number on 10 points selected on sequence Book. Maximum
(Max), minimum (Min) and average value (Ave).

Tracker Max Min Ave

J 9 1 3.5
P 2 0.5 1.4
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