
An Efficient Method to Compute the Inverse Jacobian Matrix in Visual Servoing

J.T. Lapresté1 F. Jurie1 M. Dhome1 F. Chaumette2

1 LASMEA, UMR 6602 du CNRS,Université Blaise Pascal, 63177 Aubière Cedex, France
2 IRISA/INRIA Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract— The paper presents a method for estimating the
inverse Jacobian matrix of a function, without computing the
direct Jacobian matrix. The resulting inverse Jacobian matrix is
shown to perform much better in modelling a relation θ = f−1(x)
than the classical Moore-Penrose inverse J+

f . Theoretical insight
as well as comparisons in the domain of visual servoing are
provided to demonstrate this assertion.

I. INTRODUCTION

Inverse kinematics plays a central role in robotics [14] and
infography [5]. In both cases, the basic idea is the same: there
exists a direct geometric relationship xt = f(θt) between the
degrees of freedom of the system θt and its output xt for any
time t, and the goal is to solve this equation to obtain θt from
xt. This problem can be solved in two different ways. The first
is to use a global method, finding the θ’s optimal path along
the full trajectory. This process is clearly time consuming and
cannot be realised on line, especially if f is highly non linear.
The alternative, which is more suited to on line computations
is to use local estimates, by differentiating the basic relation:

ẋt =
∂f

∂θt

θ̇t (1)

and locally inversing this relation to obtain θ̇t as a function of
ẋt. This computation is classically performed using the Moore-
Penrose pseudo-inverse J+

f (θ) where Jf = ∂f
∂θt

is the Jacobian
matrix of f at point θ.

In this paper, a new definition of the generalised inverse
is proposed, which generalizes and justifies the approach
proposed in [11] for template tracking in an image sequence.
After theoretical justifications of the method presented in
Section II, its application to visual servoing is proposed in
Section III. The article concludes with a discussion of the
method.

II. GENERAL CASE

A. Methods

Assume that we are in the common situation where parame-
ters θ = (θi)1≤i≤n explain measurements x = (xj)1≤j≤m by
a formula or computing process x = f(θ). The generalized
inverse problem is to estimate from the observation x the
parameters θ, in as large a neighbourhood as possible and
with as little computation as possible.

f is generally neither linear nor invertible, but always,
we can seek a local solution ∆θ = A∆x for ∆x in some

neighbourhood of zero and some matrix A to be estimated.
Traditionally, one takes a Taylor expansion of x,

f(θ) = Jf∆θ

(Jf being the Jacobian matrix) and inverts using the Moore-
Penrose pseudo-inverse i.e. A = J+.

It is possible to consider another solution than computing
the Moore-Penrose pseudo inverse J+

f (θ). Instead, we propose
to use a learning approach to directly compute the Jacobian
matrix of a supposed local inverse f−1 of f .

The learning stage is very straightforward. One generates
a random sample of Nr increments ∆θ, producing a n × Nr

matrix of perturbations θ + ∆θ and the m×Nr matrix of the
corresponding measurements variations ∆x = f(θ + ∆θ) −
f(θ) which can easily be computed using f .

Resolving the linear problem A∆x = ∆θ in the least square
sense will produce a new matrix A that will be denoted J⊕

f .
This computation must be performed using a numerically

stable process (SVD, for instance) as ∆x may not necessarily
have full rank.

B. Why is this method better?

This method is already no worse than the classical ones
as the computation of J+

f is almost always done by a finite
difference scheme rather similar to the learning stage and
almost as costly.

Moreover, if f is nearly linear around θ, it is clear that the
classical approach leads to satisfying results. Unfortunately
this it is not always the case and in general the validity of
the linear approximation of f(θ) is restricted to a very small
neighborhood of θ.

If one estimates the dimension N of the vector space
spanned by the image of a small neighbourhood of θ under
f , by observing the approximate rank of a matrix of samples,
it will find that this rank is greater than the dimension of the
parameter space and that, in fact, the greater the dimension,
the worse the approximation...

This dimensional gap can be seen as the proof of existence
of supplementary ’hidden’ parameters, knowledge of which
could lead to a far better linear approximation if they could
be taken into account.

For instance, suppose that f is quadratic, but that we add
to the θi parameters, the new (non linear) parameters νij =
θiθj . That gives us a linear expression in place of a quadratic
one. Using the computation of the Jacobian matrix of this

new function of n(n + 1)/2 variables will make the validity
domain of the approximation grow at the expanse of a lot of
supplementary computations.

Our approach allows to take these ’hidden’ parameters into
account without having to use them explicitly, and without
introducing supplementary in line computations (only the
learning step will suffer).

As already said, the computation of the matrix ∆x of per-
turbations allows the number of hidden parameters necessary
to a correct linear estimate to be estimated (if we decide to
do this).

The J⊕
f computation implicitly uses this fact. We pretend

that J⊕
f is made of the n first lines of a pseudo-inverse (not

necessarily the Moore-Penrose one) of the Jacobian matrix of
a supposed function f̃(θ, ν) where the νi are hidden.

This can be seen by saying that the random generation of
the set of perturbations around θ leads to the estimation of a
set of ∆x that takes into account the variations of the hidden
parameters, due to the non-linearity of f .

Obviously, the top of the Jacobian matrix is all we need,
as the only variations that we wish to estimate are those of
the original parameters (θ), and not of the unknown hidden
parameters (ν).

It is also clear that, as soon as f is not perfectly affine, the
information contained in J⊕

f is far greater than that in J+
f as

soon as f is not perfectly affine, since the Jf pseudo-inverse
is not the same as the n first lines of J+

f !

C. Two examples

1) A quadratic function: Consider a function f(θ1, θ2) from
R

2 into R
p , f = (fi)1≤i≤p defined by:

xi = fi(θ1, θ2) = ai1θ1 + ai2θ2 + ai3θ1θ2 + ai4θ
2
1 + ai5θ

2
2

At (0, 0), the value of Jf is:

Jf (θ1, θ2) = ((aij)1≤i≤p,1≤j≤2)

Also, let

xi = f̃(θ1, θ2, ..., θ5) = ai1θ1 + ai2θ2 + ai3θ3 + ai4θ4 + ai5θ5

f̃ is a linear function of 5 reals that is identical to f on the
manifold of R

5 generated by (θ1, θ2, θ1θ2, θ
2
1, θ

2
2).

Jf̃ is a constant matrix :

Jf̃ (θ1, θ2, ..., θ5) = ((aij)1≤i≤p,1≤j≤5)

If we suppose that our interest point is the origin, there are
at least three ways to solve our inversion problem,

1) compute Jf and deduce J+
f ,

2) compute Jf̃ and the pertinent part of J+

f̃

3) estimate J⊕
f

The following tables show the accuracy of the different
approximations. For a fixed choice of f̃ , the norms ||K∆x−
∆θ|| are presented (where K is one of the different Jacobian
matrices). In the first table the computations are made with the

matrices ∆x and ∆θ that were previously used to generate J⊕
f .

The first column contains the number of perturbations used for
J⊕

f .

||J+

f ∆x − ∆θ|| ||J⊕

f ∆x − ∆θ|| ||J+

f̃
∆x − ∆θ||

1 4.1633e-17 0.0000e+00 2.0977e-14
2 1.5701e-16 1.8916e-16 1.1932e-15
3 9.4907e-03 6.4980e-16 8.2088e-16
4 6.6804e-02 8.4902e-16 2.4521e-15
5 1.7664e-01 1.2310e-15 1.2910e-15

10 9.7743e-02 5.0797e-16 2.7565e-15
50 6.0087e-01 3.6708e-15 2.3398e-14
100 6.0682e-01 4.2373e-15 3.5011e-15
500 1.8890e+00 1.3453e-14 1.8441e-14

The next table presents similar results, but once the three
Jacobian computed, new random matrices ∆ϑ and ∆x are
drawn.

||J+

f ∆x − ∆ϑ|| ||J⊕

f ∆x − ∆ϑ|| ||J+

f̃
∆x − ∆ϑ||

1 3.1735e+00 3.1735e+00 1.1941e-13
2 1.0325e+00 1.0325e+00 1.2159e-14
3 7.9791e-01 7.1834e-01 9.7157e-15
4 7.1033e-01 1.5500e-01 1.3281e-14
5 8.1970e-01 2.1996e-14 4.8466e-15

10 4.4527e-01 2.7380e-15 8.2650e-15
50 8.1853e-01 5.0798e-15 2.9975e-14
100 6.4036e-01 4.2410e-15 2.9141e-15
500 7.7098e-01 5.6362e-15 7.6079e-15

It is clear that outside the points used for learning, it is
necessary to have a minimum of 5 perturbations in order to
get a good estimate of J⊕

f . Of course, for the linear f̃ the
result is always perfect (up to roundoff precision).

It is also noticeable that in this case, the validity domain of
the approximation is only a small neighbourhood of the origin
for the inverse Jacobian J+

f , but, for J⊕
f , the whole space, as

it is a constant Jacobian which is estimated.
2) The minimum of the Rosenbrock function:
If we denote by P = (u, v) a point of the plane, the

Rosenbrock function is given by

r(P) = r(u, v) = (u − 1)2 + 10(u2 − v)2;

it is always non negative and reach its minimum of 0 at the
point (1, 1).

In figure 1 one can see the level curves of a translation of
this function by (0.5, 0). It is often called ’the banana function’
because of the form of its curvature around the origin. It is
frequently given as an example of a non trivial optimization
problem, as most classical numerical optimization process (as
Levenberg-Marquardt or Gauss-Newton) presents a slow rate
of convergence to its minimum.

Our method is not able to replace minimization in every
circumstances, but in some cases its use can be interesting.

Let us suppose we know the form of the Rosenbrock
function and the fact its minimum is at (1, 1), but that we
have to find the minimum of an unknown translation (u0, v0)
of it. So the function to minimise is :

r0(P) = r0(u, v) = (u−u0−1)2 +10∗((u−u0)
2−v+v0)2.

As we know the original function and its minimum location
, it is possible to learn the shape of the function around the
minimum, and hence to convert the scalar minimization to a
vector value-seeking problem, by choosing:

• some random points (P i
e)1≤i ≤p around this position,

• some random perturbations (∆rj)1≤j≤q .
We now compute J⊕

r0
using ∆xij = r(P i

e +∆rj)−r(P i
e) and

use this to find the ∆r giving the desired vector of the target
values.

The figure presents the trajectory to the solution. One
iteration leads directly to the minimum.

2
 1.
 5
 1
 0.
 5
 0
 0.
5
 1
 1.
5
 2

1

0.
 5

0

0.
5

1

1.
5

2

2.
5

3

Fig. 1. One iteration and Levenberg Marquardt convergences

It is necessary to have at least p = 5 and q = 5 to ensure
convergence in one iteration . In fact if we expand the banana
formula:

r(u+1, v+1) = 41u2−40uv+10v2+10u4+40u3−20u2v;

a priori, 6 parameters are necessary to obtain a linearization,
but it is easy to imagine that a rotation will diagonalise
the quadratic part, removing a parameter. So a rank of 5 is
necessary and observed.

Under the same conditions an algorithm such as Levenberg-
Marquardt typically uses between 10 and 30 iterations and
even may fail to converge if the starting point is bad enough.

On Figure 1 the banana has been translated by 0.5 in the
x-direction and the minimum is at (1.5, 1). The convergence
of our algorithm takes only one iteration, independent of the
starting point, as the linear model is perfect. This would not
be the case if the banana had been rotated in the (u, v)
plane. Also the method based on the inverse Jacobian (gradient
descent) generally does not converge in an acceptable number
of iterations.

III. APPLICATION TO VISUAL SERVOING

A. Introduction

In this section, we show how the preceeding method brings
interesting results in visual servoing.

Image-based visual servoing is known to be satisfactory
when the error between initial measures x and desired ones
x∗ are small [4], [6], [8]. As soon as the error grows, it is
no longer possible to prove the system stability and potential

problems may appear in some cases [1]: convergence to a
local minimum, inappropriate robot trajectory due to strong
coupling, etc. To address these problems, a first approach con-
sists of selecting visual features sharing good properties [12],
[2], [9], [16], but a lot of work remains to be done in this
area. An other solution is to use a planning step jointly with
the servoing one. Using such an approach, the tracking error
along the planned path always remains small [13], [19], that
is in the stability domain of the control scheme.

The approach we propose here is simpler: it consists of
performing a classical visual servoing scheme, but suppressing
the strong non-linearities of the system (which are the main
cause of trouble) by taking them into account in the learning
stage of our Jacobian pseudo-inverse.

It must be noted that learning techniques have previously
been used in visual servoing. Off-line numerical learning was
even proposed in the first relevant work in the field [17], as the
analytical form of the Jacobian had not then been established
for most types of visual features. For the same reasons, similar
methods have been presented to deal with objects whose forms
and textures are unknown or complex [3]. Neural networks
have also been used [18]. Finally, on-line learning methods,
generally based on the Broyden estimation method, have also
been proposed to deal with uncalibrated systems [7], [10],
[15]. But in all of these previous studies, the authors have
preferred to estimate the Jacobian and invert it, instead of the
direct estimation of a pseudo-inverse.

We still denote by x = (x1, . . . , xm) ∈ R
m a set of visual

features measured in the image resulting from the perspective
projection of a 3D scene. At this point we do not restrict the
type of possible features used. They can be coordinates of
the projection of 3D points, gray levels of an image region
produced by the projection of a 3D object, etc.

The aim of visual servoing is to control the end effector
pose θ so that the current visual features x reach a desired
value x∗. As usual, the end effector pose is represented by six
parameters, three to define its position, and three to define its
orientation.

If the objects that the camera observes are assumed to be
motionless, the relationship between the value of the visual
features and the end effector pose can be written in the form
x = f(θ) where f is highly non linear.

Going to kinematics, it is well known that the relationship
between the velocity of the visual features and the velocity in
the operational space can be written:

ẋ = J(x, z) θ̇,

where J(x, z) is called the interaction matrix related to x
when θ̇ corresponds to the camera velocity screw [4]. This
is also commonly called the image Jacobian when image
points coordinates are being used [8]. Note that J depends
on the current value x of the visual features, but also on
some unknown 3D parameters, denoted here z, that typically
represent the depth of the considered object.

The control scheme can then be designed from the definition
of a task function e that has to be regulated to 0. More

precisely, we have [4] e = C (x−x∗). Matrix C is classically
chosen equal to C = J+(x, ẑ) or C = J+(x∗, ẑ∗). In the first
case, C is computed at each iteration of the control law, using
the current value of x and an estimation ẑ of 3D parameters
z. In the second case, C is constant and computed off line,
using x = x∗ and z = ẑ∗.

A very simple control law can be designed by trying to
ensure a decoupled exponential decay of the task function (ė =
−λe with λ > 0), giving:

∆θ = −λ C(x − x∗) (2)

Our approach is situated at the computation level of the
pseudo-inverse C of the interaction matrix and in the case
where the dimension m of the visual features is greater than
the space of representation of the end effector pose (m > 6).
Although this is not discussed in the present paper, the method
can also of course be applied when less than 6 degrees of
freedom have to be controlled.

B. Visual servoing using image points

We now present simulation results to demonstrate the impact
of the inverse Jacobian computation method in visual servoing.
The idea is to replace the computation of the C pseudo-inverse
by the matrix J⊕ described previously in Section II.

For illustration, we choose, the specific case of an object
composed of the four vertices of a square. But we recall that
the method can be applied to any type of visual primitive
(straight lines, circles, drawing, etc.).

In the case of a single point, the interaction matrix is given
by:

J =

(

−1/Z 0 x/Z xy −(1 + x2) y
0 −1/Z y/Z 1 + y2 −xy −x

)

(3)

where (x, y) are the coordinates of a point in the image whose
depth is Z. Without loss of generality, the focal length is set
to 1 in this formula.

Using four points, a vector x is thus defined as a set of
eight coordinates: x = (x1, y1, . . . , x4, y4) and the dimension
of C is 6× 8. In each experiment, the square is 1 meter large
and we consider an on board camera whose desired position is
such that the square appears as a centered square in the image,
located at 3 m from the camera optical center. The focal length
has been set to 500 pixels and the principal point of the camera
is at (0, 0). Finally, for all experiments, λ (defined in equation
2) has been set to 0.2.

Three simulations are given, corresponding to three different
initial camera positions. As detailed in [1], the first two are
usually considered to be hard in image-based visual servoing
based on image points coordinates, due to the strong coupling
in the interaction matrix between translation along and rotation
around the optical axis.

1) In the first simulation, the camera is rotated by 50
degrees around the optical axis (see Fig 3).

2) In the second simulation, the camera is rotated by 160
degrees around the optical axis (see Fig 4).

3) In the third one, a 50 degree rotation around the x
camera axis is combined to a 50 degree rotation around
the z camera axis and a translational motion so that the
object appears in the image for this initial position. (see
Fig 5).

For each simulation, we compare three different methods
using respectively:

1) the Jacobian pseudo-inverse, computed at each iteration.
We denote this matrix by J+

i ,
2) the Jacobian pseudo-inverse, computed at equilibrium.

We denote this matrix by J+,
3) the new J⊕ matrix.

In cases 1 and 2, the interaction matrix is given by
equation (3). In the third case, J⊕ is numerically computed
as indicated in Section II-A. Space perturbations ∆θ are
generated around the equilibrium position and the value of
the visual features are measured. In the experiments, 1000
perturbations were used, but this figure is not critical for the
results quality. Matrix J⊕ is then computed from the formula
J⊕ = ∆θ∆x+. The maximal sizes of the perturbations during
the learning stage are of 50 degrees in rotation and 1 meter in
translation. The matrix is computed once and for all. It is not
computed on line in contrast to the J+

i .
To make the comparisons as meaningful as possible, we

also tested the case of a pseudo-inverse Jn, numerically
computed from the data used for J⊕ and using the relation
Jn = (∆x∆θ+)+. The results were systematically worse than
those from J+

i , so we do not present them here.
Figures 3 to 5 present the trajectories of the four image

points during the completion of the task. Due to lack of space,
it was not possible to present more detailed information (such
as the camera trajectory, the output of the controller, etc.)

In the first experiment (see Figure 3), the trajectory pro-
duced by using J⊕ is clearly the best one since it only involves
a camera rotational motion round the optical axis, while the
other matrices produce additional spurious translations.

The initial conditions of the two other simulations are even
more severe, and neither J+ nor J+

i are able to provide
satisfactory results, as can be seen in Figure 4 and 5. On the
other hand, the results obtained using J⊕ are satisfactory, both
for the camera trajectory and the image points trajectories. An
analysis of the rank of ∆x shows that this matrix is of rank 8
(and not 6). So we are in the situation described in section II-A
and the improved results are as expected.

Finally, note that even better results can be obtained using
more than four points, because, with our approach this allows
an even better account of the non-linearities in f . Such results
can not be presented here, due to lack of space.

IV. DISCUSSION

a) Comparison of complexities: Of the three methods,
only the second one, involving J+

i , uses an on line com-
putation. It is thus the more expensive, but recall that for
the presented experiments, Ji is 8 × 6 and J+

i requires the
inversion of the 6 × 6 matrix JT

i Ji.

As for the off line computations, it is clear that our method
is more expensive. J⊕ is computed from a system J⊕∆x =
∆θ, where (if Np is the number of perturbations):

• There are 6 × 8 = 48 unknowns in J⊕;
• ∆x is 8 × Np ;
• ∆θ is 6 × Np ;

This system is equivalent to the least square resolution of a
system of Np equations with 8 unknowns for 6 right hand
sides. This is practically and efficiently done with an economy
size SVD (in fact the pseudo inverse of an 8 × 8 matrix).

The computation of J+ is simply the pseudo-inverse of a
6 × 8 matrix.

b) Jacobian singularity: One of the drawbacks of classi-
cal methods is the existence of singularities that lead to failure
of the control law. The new proposal does not share the same
singularities. For instance, for a 180 degrees rotation around
the optical axis, it is well known that the classical control laws
using point coordinates can not converge [1].
In contrast, as can be seen on Figure 2, the J⊕ method
converges, which is a very nice result, even if the output of
the control is not the ideal one. Of course, this does not prove
the absence of other singularities, but the study of these still
seems to be out of reach.

0 5 10 15 20 25 30 35 40 45 50

−0.1

0

0.1

ra
d/

s

Rotational velocity (J⊕)

α
β
γ

0 5 10 15 20 25 30 35 40 45 50

−5

0

5

x 10
−3

m
/s

Translational velocity (J⊕)

tx
ty
tz

0 10 20 30 40 50
0

100

200

300

iterations

A
m

pl
itu

de

Error in image points coordinates(J⊕)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (J⊕)

Fig. 2. Convergence using J
⊕ for a 180

o rotation around the optical axis

c) Knowledge of the object model: With the J⊕-method,
it is not necessary to know the 3D model of the object. But
in this case a learning stage (which can be experimentally
expensive to perform) must be done with real images of the
object. However, this solution has the advantage of allowing
an implicit compensation of the system calibration errors. Of
course, if the 3D model is available, the learning can be
performed easily and quickly through simulations.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a learning method to
compute the inverse Jacobian for visual servoing. We have
explained why and under which conditions the direct com-
putation of the inverse Jacobian can be a better choice than
the computation of the pseudo-inverse of the Jacobian. We
presented realistic simulations in which this direct computation
was compared with classical methods have been presented.
The results plainly justify this approach.

Future work will be devoted to making real experiments,
implementing the proposed control law on a robotic system.
On the other side, the direct computation of the inverse
Jacobian, does not allow any easy stability analysis. This is
an important theoretical point that has to be addressed.

Last, but not least, it should be noted that, independently of
the servoing context, the proposed method consists in learning
the inverse jacobian matrix around the global optimum and that
it can be used in full generality to efficiently optimise functions
for which the shape around the optimum is previously known.

REFERENCES

[1] F. Chaumette, “Potential problems of stability and convergence in image-
based and position-based visual servoing,” in The Confluence of Vision
and Control. LNCIS 237, Springer Verlag, pp. 66–78, 1998.

[2] P. Corke and S. Hutchinson, “A new partitioned approach to image-
based visual servo control,” IEEE Trans. on Robotics and Automation,
17(4):507-515, August 2001.

[3] K. Deguchi, “A direct interpretation of dynamic images with camera and
object motions for vision guided robot control,” Int. Journal of Computer
Vision, 37(1):7-20, June 2000.

[4] B. Espiau, F. Chaumette and P. Rives, “A new approach to visual
servoing in robotics”, IEEE Trans. on Robotics and Automtion, 8(3):313-
326, June 1992.

[5] M. Girard and A. Maciejewski, “Computational modeling for the com-
puter animation of legged figures,” ACM Computer Graphics, 19(3):263-
270, 1985.

[6] K. Hashimoto, ed., Visual servoing, Series in Robotics and Automated
Systems, vol. 7, World Scientific, 1993.

[7] K. Hosoda, M. Asada: “Versatile visual servoing without knowledge of
true jacobian” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
IROS’94, Munchen, Germany, September 1994.

[8] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. on Robotics and Automation, 12(5):651-670,
October 1996.

[9] M. Iwatsuki and N. Okiyama, “A new formulation of visual servoing
based on cylindrical coordinate system with shiftable origin,” IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, IROS’02, Lausanne,
Switzerland, October 2002.

[10] M. Jägersand, O. Fuentes, R. Nelson, “Experimental evaluation of
uncalibrated visual servoing for precision manipulation”, IEEE Int.
Conf. on Robotics and Automation, ICRA’97, Vol. 3, p. 2874-2880,
Albuquerque, New Mexico, April 1997.

[11] F. Jurie and M. Dhome, “Hyperplane approximation for template match-
ing,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24,
24(7):996-1000, 2002.

[12] E. Malis, F. Chaumette, and S. Boudet, “2 1/2 D visual servoing,” IEEE
Trans. on Robotics and Automation, 15(2):238-250, April 1999.

[13] Y. Mezouar and F. Chaumette, “Path planning for robust image-based
control„” IEEE Trans. on Robotics and Automation, 18(4):534-549,
August 2002.

[14] R. Paul, Robot Manipulators: Mathematics, Programming, and Control.
Cambridge: MIT Press, 1981.

[15] J. Piepmeier, “Uncalibrated eye-in-hand visual servoing”, Int. Journal
of Robotics Research, 22(10/11):805-820, October 2003..

[16] O. Tahri and F. Chaumette, “Application of moment invariants to visual
servoing,” IEEE Int. Conf. on Robotics and Automation, ICRA’03, Vol. 3,
pp. 276-4281, Taipei, Taiwan, September 2003.

[17] L. Weiss, “Dynamic visual servo control of robots. an adaptive image-
based approach”, PhD Thesis, CMU-RI-TR-84-16; Carnegie Mellon
University, April 1984.

[18] G. Wells, C. Venaille, and C. Torras, “Vision-based robot positioning
using neural networks,” Image and Vision Computing, 14:715-732,
December 1996.

[19] P. Zanne, G. Morel, and F. Plestan, “Sensor-based control in the presence
of uncertainties: bounding the task function tracking errors,” IEEE
Int. Conf. on Robotics and Automation, ICRA’02, Washington D.C.,
May 2002.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (Ji+)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (J+)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (J⊕)

Fig. 3. First simulation (rotation of 50
o around the optical axis): image trajectories for the three control schemes

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (Ji+)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (J+)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (J⊕)

Fig. 4. Second simulation (rotation of 160
o around the optical axis)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (Ji+)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (J+)

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
Trajectory of target points in the image (J⊕)

Fig. 5. Third simulation: (large and complex displacement)

