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Abstract

This paper is concerned with choosing image features
for image based visual servo control and how this
choice influences the closed-loop dynamics of the sys-
tem. In prior work, image features tend to be chosen
on the basis of image processing simplicity and noise
sensitivity. In this paper we show that the choice of
feature directly influences the closed-loop dynamics
in task-space. We focus on the depth axis control of a
visual servo system and compare analytically various
approaches that have been reported recently in the
literature. The theoretical predictions are verified by
experiment.

1 Introduction

Image-based visual servo (IBVS) control is a tech-
nique whereby features f derived solely from image
plane information (image features) are servo con-
trolled to a desired goal configuration [11]. Tasks in
Cartesian space are re-posed as a servo control task
directly in image feature space. The classical IBVS
approach is based on controlling the image feature
kinematics. These are given by the expression

: V

i=i( ) 1)
where f is the vector of image features, (V, ) is the
camera’s velocity screw and the matrix J is the fea-
ture Jacobian or interaction matrix and is a func-
tion both of the image features and of the unknown

Cartesian pose of the camera. A linearising control
in image feature space

(6 )=71-1. 2

where J~T denotes the pseudo-inverse of J, is the
typical control strategy used. It is a known feature
of IBVS that the closed-loop system may display un-
desirable dynamics in task-space even though the dy-
namics in the image space are linear [3].
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To date, most work in image-based visual servo con-
trol has made use of point features [5,6,9,14], typical-
ly the coordinates of centroids of markers or corners.
Other features have been proposed in the literature
including the distance between two points in the im-
age plane and the orientation of the line connecting
those two points [6], perceived edge length [17], the
relative areas of two projected surfaces [17], the cen-
troid and higher order moments of a projected sur-
face [1,17,18], or the parameters of lines or ellipses
in the image plane [2,5]. More abstract features such
as rotation and depth information derived from ho-
mography decomposition have also been demonstrat-
ed [13]. In some cases specific features such as target
surface area [4] or the norm of a weighted centroid
feature [8] have been used in order to better con-
trol the depth axis of the closed-loop system. From
an image processing point of view the use of a fea-
ture obtained by an integration process, such as a
moment, is likely to be more robust than a measure
obtained by a differentiation process such as a point
or line. A key observation is that recent methods
tend to use an amalgamation of various image fea-
tures, such as points, angles, surface area etc., to
servo control the system rather than relying on a s-
ingle class of features [4]. Despite the wide range of
features considered, to the authors knowledge, there
has been no explicit work that analyzes in detail the
impact of the choice of image feature on the closed-
loop system dynamics in a task space.

In designing a visual servo control system it is ap-
propriate to ask the question: “What is a good set
of image features to select for IBVS control?”. In
practice, it is possible to assign a given dynamic re-
sponse to the image feature kinematics, however, it
is the task kinematics of the robot in Cartesian space
that are of most interest in a performance analysis.
Ideally, one would wish that the dynamics in the im-
age feature space correspond to equivalent dynamics
in the task-space. In this paper, we analyse a specific
class of IBVS problems, that in which the camera is



constrained to move in the depth or z-axis. Such mo-
tion control is always problematic in IBVS schemes
since changes in z lead to relatively small and high-
ly coupled changes in image features. We show that
it is possible to find image features for which a lin-
ear control design in image feature space does indeed
lead to asymptotically stable linear dynamics of the
closed-loop system in task-space. A number of dif-
ferent image features and their associated dynamics
are analyzed in detail to provide an overview of the
problem and cover most of the features recently pro-
posed in the literature. The theoretical predictions
are verified by experiment.

The next section more formally articulates the prob-
lem we are seeking to address. Section 3 treats a
number of possible of image features analytically to
determine their functional relationship to depth and
derives analytic expressions for the closed-loop sys-
tem response of an IBVS control design. The candi-
date image features fall into distinct families. Section
4 presents an experimental study that validates the
theoretical predictions of Section 3 for an example
feature from each family considered. Finally Section
5 summarizes our findings and discusses future work.

2 Formulation of problem

In order to obtain a tractable problem we restrict our
attention to the case where only motion along the
optical (also termed depth or z) axis of the camera
is allowed.

To motivate the results presented later in the paper
we begin by recalling a particular case study of clas-
sical IBVS control [3]. Consider a camera located
directly above a square planar target (of side length
1 for simplicity) perpendicular to the optical axis of
the camera. To simplify the analysis we assume that
the focal length of the camera is unity. The pixel co-
ordinates of the image points are (X;,Y;) = (+a, +a)
where a = 1/(2z) and z denotes the depth of the tar-
get from the camera. Choose a visual feature vector
f=(X1,..., X4, Y1,...,Ys) then the image feature
kinematics are given by

f=#<

where Jy is the image feature Jacobian or interaction
matrix. An analytic expression for the interaction
matrix is given by Chaumette [2]. Let zo denote
the initial depth and fo = f(z0) denote the initial
image feature. Choose the target feature associated
with motion of the camera to a desired depth z* and
rotation of the camera through m radians. Due to
the particular geometry of the example it is easily
verified that f* = —22 fy. The image error is defined
to be

|4
Q

e=f-1".
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In classical image based visual servo the image fea-
ture error kinematics are assigned stable dynamics.
Typically, a linearizing control is used

(n)

where J; T denotes the pseudo-inverse of Jy and
B > 0 is a positive constant. This control assigns
the kinematics ¢ = —fe to the image feature error.
An analytic form for J} is given by Chaumette [2].
From this information it is easily verified that the IB-
VS linearising control design leads to a control input
V., =B+ 2—2) The z-axis dynamics in Cartesian
task space are

v
Q

= —BJ}@ (3)

52
s= B+ 2. (4
We have shown that the linear dynamics assigned in
image feature space lead to an unstable non-linear
quadratic ODE in task-space.

The above example is an extreme example of the well
known problem with classical IBVS — the camera
trajectory is not optimal in Cartesian space. For
reasons of simplicity and performance, it is desirable
to assign linear task-space dynamics

(5)

for v > 0 some positive constant. At the same time
it is desirable to preserve the linear dynamics in im-
age feature space since this significantly simplifies the
control design. Thus, we ask the following question:

zZ= 77(2 - Z*)v

Is it possible to find image features such
that assigning asymptotically stable linear
dynamics in image feature space leads to
asymptotically stable linear task dynamics
in Cartesian space?

Consider the specific case where only motion in the z-
axis is possible. The linearizing control for the image
feature error is given by

Oe
&a (6)

for a constant 5 > 0. Equating the desired linear
task dynamics Eq. 5 with the linearizing control de-
sign Eq. 6 one obtains

V. —ﬁJz_le, where J, =

19 B
edz  y(z—2%)

As a consequence one has

e=ko(z— Z*)(ﬁ/v)

(7)

where ko is some constant. We have shown that, (in
the case where only motion in the z-axis is possible,)



if linear dynamics in both the task and the image fea-
ture error are desired, it is sufficient to choose the im-
age feature error of the form Eq. 7 with 5/y > 0. In
practice, it may be difficult to find an image feature
with the exact scaling features of Eq. 7. However,
the simplest case, where the linear rate of conver-
gence in both the image feature and the task-space
are equivalent 3 = ~, is of considerable interest. In
this case one has

e=f—f"=ko(z —2z"),

This has a particularly nice form in that the inter-
action matrix has constant sensitivity with depth, a
property that improves the numerical robustness of
the IBVS control law obtained. It is important to
note that using an image feature of this form is not
equivalent to 3D position based visual servo control.
The constant kg or the power 3/ need not be known
and the error e is constructed explicitly from image
data. Of course, it is necessary to use an estimate of
the image Jacobian or interaction matrix in order to
compute the control law and this usually depends in
part on the parameters of the image feature as well
as the unknown depth z. This is a common feature of
all IBVS algorithms and a number of methods exist
to overcome the difficulties [10,12,15,16].

Jz = ko.

3 The dynamics of the optical axis in
closed-loop IBVS

In this section a comparative theoretical analysis of
a range of characteristic image feature errors that
have been proposed in recent literature is undertak-
en. We focus on understanding the dynamic response
of the closed-loop IBVS control system in the ideal
case where the exact linearizing control law can be
computed.

3.1 Image feature errors proportional to 2!

Classical IBVS control based on point features leads
to an error criteria along the optical axis that is in-
versely proportional to the average depth of the tar-
get. This follows from the dependence of the depth
sensitivity on distance between points in the image
plane. This is a scaling property of any line segment
or linear measure derived from the image for a per-
spective projection camera subject to movement in
the z-axis. Other examples of image features with
the same scaling property are; direct measuremen-
t of the length of a line segment e = [ — [*, or the
radius of the smallest disk in the image plane that
contains the image. A robust measure that can be
used is the square root of the zero order moment [4]

e = /Mmoo — /Mg (8)

For all these cases one has

k
e~ ——A
z
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where A is a constant linked to the goal image fea-
ture while k£ > 0 is a proportionality constant that
depends on the nature of the target image and cam-
era geometry. Computing the z dynamics for a lin-
earizing control in image feature space one obtains
task-space dynamics
Z=z— %ZQ

in the optical axis of the camera frame. Note the
equivalence of this with Eq. 4 derived directly from
the full image Jacobian structure. The solution of
this ODE is easily computed using partial fraction
techniques

ok
20 = T e

where c is a constant depending on the initial condi-
tions of the system.

The solutions of this system display two behaviours:
Firstly, when A > 0 or A < —ke® then z(t) — k/A
and the asymptotic convergence is linear

(z(t)

Alternatively, if —e® < A < 0 then z(t) — oo for
t — ¢ —In(—1/A). This is the explicit form of the
finite-time escape behaviour that was observed in the
Chaumette conundrum [3,4].

k:) 4
—— | xe ", t— o0.

A

3.2 Image feature errors proportional to z 2

A number of authors have considered visual servo
control using the surface area of the target directly.
The image feature error in this case is

9)

Any image feature that depends on a measure of pro-
jected area in the image plane will scale as 1/2? with
motion in the optical axis of the camera. Consider
an image feature error of the form

ES
€ = Moo — Myo-

k

e~ z_2 — A
where A and k are constants analogous to those in
Section 3.1. Computing the z dynamics z =V, for a
linearizing control law in the image feature kinemat-
ics leads to task-space dynamics

: A 5

t=z——z

2k

The solution of this ODE may be computed using
partial fraction techniques

/ k
z(t) = e e



where c is a constant depending on the initial condi-
tions of the system. Note that the solution obtained
is simply the square root of the solution obtained in
Subsection 3.1. Clearly, the solution will display the
same qualitative behaviour, however, the asymptotic
convergence for A > 0 or A < —e® is linear with rate

1/2
(z(t) -

If —e® < A <0 then z(t) — oo for t — ¢—1In(—1/A).

k
Z) x e_t/Q, t — oo.

3.3 Image feature errors proportional to 2>

It is of interest to consider the inverse of the zero
order image moment since it intuitively scales in the
same manner as depth (increases for increasing depth
and vice versa). The depth control of the scheme re-
cently proposed by Hamel et al. [8] is closely related
to this form. A general image error of the form

1 1
e=— — — (10)
Mmoo  Mqo
or
e= Moo _ 1
moo

are examples of such an image feature. A general
form for this class of image feature error is

ex~kz?— A

where A and k are constants analogous to those in
above. Computing the z dynamics z = V, for a lin-
earising control law in the image feature kinematics
leads to task-space dynamics

) 1 /(A

The solution of this is easily computed using a change
of variables 2 = (22 — A/k) and yields

A+ ele—t)
)=\ —

where ¢ is a constant depending on the initial con-
ditions of the system. The solution obtained is sim-
ply the inverse of the case in Subsection 3.2. How-
ever, the qualitative behaviour of the solution is
considerably improved since the potential singular-
ity is removed. Thus, for all constants A, ¢ and k,

z — \/Z/\/E and

(z(t) -

(11)

A
E) x e_t/Q, t — oo.
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Remark 3.1 In Section 2 it was observed that for
any image feature error of the form e o (z — 2*)%/7
for B/ > 0 both the image feature kinematics and
the task kinematics are linear. In practice, (except in
the case discussed in Subsection 3.4) it is difficult to
find an image feature error with exactly the desired
property and the best possible is something of the
form

e o kozﬁ/v _ ko(z*)ﬁ/v

analogous to the case (for 5/7 = 2) considered in
this subsection. It is interesting to note that the
closed-loop response (cf. Eq. 11) is close to linear and
the asymptotic convergence in task-space is a factor
of half the asymptotic convergence in image feature
space, as predicted by the development in Section 2.

3.4 Image feature errors proportional to z

It is possible to find image features proportional to
the depth parameter z. A useful and robust example
is the inverse square root of the zero order moment

1 1

VMoo
Alternatively one could invert any linear measure de-
rived from the image e = & — 2

(12)

e =
moo

17 T

Remark 3.2 Note that the control design is not e-
quivalent to position based visual servo (PBVS) con-
trol where the depth is reconstructed and controlled
directly. The approach is a true image based visual
servo control design, with the additional advantage
that the scaling property of the image feature cho-
sen provides closed-loop performance comparable to
that of a PBVS system with well calibrated cameras.

The image feature error may be written
exkz—A

where A and k are constants analogous to those in
above. Computing the z dynamics z = V. for a lin-
earizing control law in the image feature kinematics
leads to task-space dynamics

1

The solution of this linear ODE is

A+ elet)
() = ——
(==
where ¢ is a constant depending on the initial con-

ditions of the system. For all constants A, ¢ and k,
z — A/k and

(2(t) — AJk) x e, t— co.

The rate of convergence in image space and feature
space is equivalent. This is an example of an image
feature that satisfies Eq. 7.



3.5 Image feature errors with log depen-
dence z

In all the above cases the image features considered
have been proportional to some power of the depth
parameter. There has been some recent considera-
tion of using a log ratio of image features [7] in order
that polynomial dependence is converted into a s-
caling factor. For example, consider image feature
errors of the form

e = In <7> =1In <%1Z) , (13)
e = 1 <mgo) =—2In <%) ,
Moo A2
e = 1 VALLUUN o —In <@> ,
Mo As

for suitable constants k;, A;. All such image fea-
ture errors differ only by a scalar factor. Thus, we
consider a class of image feature errors

o (E
€ =oln A

where A and k are constants analogous to those in
above and « is a constant that is derived from the
particular feature used. Computing the z dynamics
z =V, for a linearizing control law in the image
feature kinematics leads to task kinematics

N
Z = 2 mn A .

Note that the task kinematics do not depend on the
scale factor. This non-linear ODE may be solved
analytically using the substitution x = In(kz/A)

A v

k

(14)

2(t) =
where ¢ is a constant depending on the initial con-
ditions of the system. Clearly the system response

is non-linear in task-space, however, the qualitative
behaviour is good. For all constants A, ¢ and k,

z — A/k and
(ee’t)eec - 1) , t— oo.

4 Experimental study

(2(t) — A/k) (

In this section an experimental study is presented
that verifies the theoretical prediction made is Sec-
tion 3. Six image features were considered; a classi-
cal IBVS point based image feature error, and then
one example from each class of image feature errors
discussed in Section 3. To simplify the experimen-
t the image features used were based on a calcula-
tion of the first order moment of the image surface
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Eqn’s (8), (9), (10), (12), and (13). A square tar-
get orthogonal to the camera’s optical axis was used.
Figure 1 shows the set point images from the upper
limit (z = 0.7m) and the lower limit (z = 0.2m).
For each error criterion the closed-loop response for
servo control, firstly from the upper to the lower set
points, and then from the lower to upper set points,
was measured. In order to compute the exact lin-
earising control a depth estimate is required and this
was provided using a classical pose algorithm.

Figures 2 and 3 show the z-axis velocity demand for
the two sets of experiments. The control gain § was
used to normalise the initial control demand such
that all controllers demand the same initial velocity.
This helps in relative comparison of the closed-loop
response. As expected, the results for the classical
point based IBVS error feature and the feature giv-
en by (8) give identical results (red and green plots
are superposed). Furthermore, comparing Figure 2
and 3, it is seen that the feature given by (12) gives
equivalent exponential control in both upward and
downward servo control. All the other features swap
between being more aggressive and less aggressive
depending on whether upward or downward servo
control is considered. Thus features which have a
fast time-to-convergence for forward motion have a
slow time-to-convergence for backward motion, and
vice-versa. In addition, in the case of backward mo-
tion the error features (8), (9) and (13) lead to an un-
desirable increase in the control demand during the
transient. Figure 4 plots the closed-loop response in
Cartesian space against the response in feature space
for the upward servo task. The light blue line cor-
responds to the error feature (12). Its linear form
demonstrates the matched exponential convergence
of the Cartesian motion and the image feature mo-
tion. The curved nature of the other response lines
show the non-linear nature of the Cartesian dynam-
ics of all other schemes. As far as noise sensitivity is
concerned, we have not been able to find any signi-
ficative difference between the different features.

5 Conclusion

This paper has shown analytically and by experiment
that the choice of image feature has a direct effect
on the closed-loop dynamics of the system. For good
closed-loop behaviour in the z-axis for IBVS control
schemes, one should choose image features that scale
as e x z.
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Figure 2: z-axis translation demand versus time to
reach z=0.2 m from z=0.7 m
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Figure 3: z-axis translation demand versus time to
reach z=0.7 m from z=0.2 m
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Figure 4: Behaviour of Cartesian target depth ver-
sus image feature error



