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Abstract

In this paper, the robustness of a new visual servo-
ing scheme with respect to camera calibration errors is
analyzed. This scheme, called 2D 1/2 visual servoing,
is based on the estimation of the partial camera dis-
placement from the current to the desired camera poses
at each iteration of the control law. Visual features
and data extracted from the partial displacement allow
us to design a decoupled control law controlling the siz
camera d.o.f. The necessary and sufficient conditions
for local asymptotic stability in presence of camera cal-
ibration errors are easily obtained. Then, thanks to the
simple structure of the system, sufficient conditions for
global asymptotic stability are proposed. Finally, exper-
imental results show the validity of our approach and its
robustness not only with respect to camera calibration
errors but also to robot calibration errors.

1 Introduction

Vision feedback control loop was introduced in or-
der to increase the flexibility and the accuracy of robot
systems [6, 7]. Consider for example the classical posi-
tioning task of an eye-in-hand system with respect to
a target. After the image corresponding to the camera
desired position has been learned, and after the cam-
era and/or the target has been moved, an error control
vector can be extracted from the two views of the tar-
get. A zero error implies that the robot end-effector
has reached the desired position with an accuracy re-
gardless to calibration errors. However, these errors
influence the way the system converges. In many cases
image features may get out of the camera field of view
during the servoing, which thus lead to its failure. For
this reason, it is important to study the visual servoing
robustness with respect to calibration errors.

Position-based visual servoing necessitates a cali-
brated camera and the knowledge of a perfect geomet-
ric model of the target to obtain unbiased pose esti-
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mation from image features [11]. Even if a closed loop
control is used, which makes possible the convergence
of the system in presence of calibration errors, it is
quite impossible to analytically analyze the stability of
the system. Image-based visual servoing is known to
be robust with respect to calibration errors [3]. How-
ever, its convergence is theoretically ensured only in
a region (quite impossible to determine analytically)
around the desired position. Except in simple cases,
the analysis of the stability robustness with respect to
calibration errors is again quite impossible, since the
system is coupled and non-linear [3].

It is shown in this paper that, contrarily to the pre-
vious approaches, it is possible to obtain analytical re-
sults using the 2D 1/2 visual servoing approach [9]. 2D
1/2 visual servoing is based on the projective recon-
struction of the target using feature points extracted
from two images (corresponding to the current and de-
sired camera poses). Let us emphasize that this recon-
struction does not necessitate the knowledge of the 3D
position of the target points, which makes unnecessary
a 3D model of the target, and increases the versatility
and the application area of visual servoing.

If the camera intrinsic parameters are known, a
scaled Euclidean reconstruction is obtained from the
projective reconstruction, and the camera rotation be-
tween the two views is computed at each iteration.
Consequently, the rotational and translational control
loop can be decoupled which allows to obtain the con-
vergence of the positioning task in all the task space.
In order to control the three remaining camera d.o.f,
we introduce the extended image coordinates of a refer-
ence point of the target. These ones are obtained from
the classical normalized image coordinates by adding a
third normalized z coordinate which is measured from
the Euclidean reconstruction. The interaction matrix
which links the time derivative of the extended image
coordinates and the camera velocity screw, called the



ezxtended tmage Jacobian matrix, has not singularity.
If the camera intrinsic parameters are not perfectly
known, the estimated control vector can be analyti-
cally computed in function of camera calibration er-
rors. Then, the necessary and sufficient conditions for
the local asymptotic stability in presence of camera cal-
ibration errors are easily obtained. Moreover, thanks
to the simple structure of the system, sufficient condi-
tions for global asymptotic stability are presented.

2 Euclidean reconstruction

2.1 Projective Homography estimation

Consider three 3D target points P; belonging to a
reference plane 7 (see Figure 1). It is well known that
the resulting image points m; in the current camera
frame F (expressed in pixels), are related to the cor-
responding ones m; in the desired camera frame F*,
by a projective homography H, such that (i = 1,2,3)
m; = Hym] [5]. If n supplementary points P; does
not belong to the reference plane (i.e. if the target is
not planar), the relationship between its current and
desired image points m; and m] respectively, is no
more linear in the unknown elements of H,. However,
if n > 5 points are available, it is possible to estimate
the homography matrix at video-rate using for example
the linearized algorithm presented in [8].

Figure 1: Camera displacement modelisation

2.2 Known camera calibration

Let A be the intrinsic parameters matrix of the cam-
era:

_[au O;qw ZO]
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This is the transformation between the pixel coor-
dinates and the normalized coordinates of an image
point. Assuming that the camera calibration is known,
the Euclidean homography is calculated as follows:

H=A"H,A (2)
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After H is computed, it can be decomposed as the sum
of a rotation matrix and of a rank 1 matrix [5]:

H=R +ty n*T (3)
where R is the rotation matrix between frames F and
F* (i-e. the homography of the plane at infinity R =
H,.,), t4- is the ratio between the translation vector
t and the distance d* of C* from m, and n* is the
unit vector normal to the plane 7 expressed in F*.
From H and the image features, it is thus possible to
determine these motion parameters and the structure
of the reference plane. For example, the distances d
and d* are unknown (where d is the current distance
between frame F and 7), but the ratio r = d/d* can
easily be estimated. Indeed, noting n = Rn* the vector
normal to 7, expressed in F, we have:

d
r=—

== 1+ n%ty. = det(H)

(4)
Furthermore, the ratio p between the unknown depth
Z of a point lying on m and d*, can be computed as:

_Z_
==

p (5)

nTp
These parameters are important since they are used
in the design of our control scheme. In the following
subsection we will show how it is possible, in the un-
calibrated domain, to obtain an analytical form of the
estimated motion parameters as a function of the real
motion parameters and of the camera calibration er-
rors.

2.3 TUnknown camera calibration

If the camera is not perfectly calibrated and A is
used instead of A, the measured normalized image
point p can be written in function of the real normal-
ized one p as:

(6)

where A = A—'A. Then, in presence of calibration
errors, the estimated homography matrix is:

p=4JAp

H = SAHSA™! (7)
The estimated homography matrix can be decomposed
as the sum of a matrix similar to a rotation matrix and
of a rank 1 matrix:

ﬁ = ﬁoo +/£d* ﬁ*T

(®)

where Hoo = SARSA™L, 40 = |In*T6A~L||6Aty- and
*T6A71

a7 = HE*T57A*1[|' The eigenvalues of R depend on



the angle of rotation 8, and its eigenvector correspond-
ing to the unitary eigenvalues is the axis of rotation u.
Matrix H, is not a rotation matrix, but is similar to
R, which implies that the two matrices have the same
eigenvalues and the eigenvectors of H, are the eigen-
vectors of R multiplied by matrix JA. The estimated
rotation angle 6 and the estimated rotation axis u, ex-
tracted directly from H,, can be written as a function
of the real parameters and of the calibration errors:
6Au

U= ——0H

=0
[6Au]|

and 9)

It must be emphasized that, as well as the rotation
angle 6, the ratio r is computed without error:

7 = det(H) = det(H) = r (10)
Consequently, since n = RTa* = %, pis:
2 T
p= << = = (SA_T * 11
P=ars = s = ISATWlp (1)

3 2D 1/2 visual servoing

In this section, we present the design of our visual
servoing scheme. In order to control the orientation of
the camera, we use of course the 3D estimated rotation
R between F and F* (which has to reach the identity
matrix). Let u be the rotation axis and 6 the rotation
angle obtained from R. The rotational velocity of the
camera {2 is simply expressed in function of the angular
velocity 6 around the axis of rotation u as:

uf =90 (12)
The control of the camera orientation is thus decou-
pled from the position one since the former is directly
available from the obtained partial pose. The position
of the camera can be controlled in the image space and
in the Cartesian space at the same time. In order to
maintain the target in the camera field of view, we
introduced in [9] the use of two independent visual fea-
tures, such as the image coordinates of a target point,
and of the ratio r = d%, computed from equation (4),
which controls the depth between the camera and the
target. However, it is possible to design a more elegant
control vector, from which stability analysis is simpler.

Consider a point P lying in the reference plane .
It is well known that the time derivatives of its coor-
dinates, expressed in the current camera frame, can be
written as:

P=-V+[P]Q (13)

where [P] is the skew-symmetric matrix associated to
vector P. 'V and Q define the camera velocity screw
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T=[V" a ]T With a perspective projection
model, P projects onto the image Tplane with normal-
. . x v T
ized coordinatesp=[z y 1] =[% % 1].
Let us define the ezxtended image coordinates p. as:

"= log(p) |"

where 2z is a supplementary normalized coordinate
which can be computed from equation (5). Then, the
time variation of the extended coordinates can be writ-

pe=[2z y z] £ ¥ (14)

ten'as:1[10_%_|[):(_| 1 |
waly L] e
where: |' 1 0 z -|
L(p)=; 0 -1 y (16)
L 0 0 —1J

Finally, the interaction matrix related to the extended
image coordinates can be easily obtained:

Pe = [ d%pLU L. ]T (17)
where:
[ Ty —(1+2%) vy -|
Lo(pe) =Lo(P)lPlx = | 1+y?) -y -z
|_ —y T 0 J
(18)
Equations (12) and (17) can be regrouped as follows:
. 1
Pe | _ [ aple Lo [TV _pop
=T Tl e | —raear a9)

where L is an upper triangular matrix which is always
full rank. This particular form will allow us to design
a control scheme with very interesting properties.

4 Control law

The positioning task controlling the 6 camera d.o.f.
can be described as the regulation to zero of a task
function [4]. In our case:

* T T

e=[p.—p; u'f] (20)

where p} can be obtained from the desired image ac-
quired during the off-line learning step.

The exponential convergence of p. toward p} and
uf toward 0 can be obtained by imposing € = —\e
(where X tunes the convergence rate). Assuming the
target motionless (see [2, 1, 10] otherwise), the control
law is given by:

T =-AL""'e (21)



where T is the camera velocity screw sent to the robot
controller. As usual, the camera velocity is considered
as the control vector. In practice, small perturbations
in the robot Jacobian and calibration errors in the hand
to eye rigid transformation will be compensated by the
closed-loop scheme. More precisely, from (19) we have:

%]

Let us point out that the camera translational velocity
is proportional to the desired distance d* between F*
and 7. An approximate value has thus to be chosen
during the off-line learning stage. This value has not to
be precisely determined (by hand in the experiments).
It will be proven, in the following section, that very
large errors do not influence the stability of the system.

Let us finally note that the rotational control loop
is decoupled from the translational one. A such decou-
pled system and the particular form of L allow us to
obtain the convergence in the half space in front of 7
if exact model and perfect measurements are assumed.
However, a more realistic approach consists in general-
izing the previous control as:

A%
P
where hats indicate that approximations are used since
the true terms are not perfectly known. The closed-
loop system will then be stable if LL™! is positive [4].
In the next section, after the demonstration of the local

asymptotical stability, sufficient conditions to ensure
the positiveness of the matrix LL~! are given.

d*pL;1
0

—d*pL; L,

. (22

] = A=

5 Stability analysis

Let us assume that the only possible errors are on
the intrinsic camera parameters and on d*. The task
function can be reconstructed as:

] e
0A4; O

_ _ d0A;; dpo
ET_|: 0 1:|7 EH—H[ 0 1

where dA4; is the (2 x 2) sub-matrix of JA contain-
ing the pixel lengths (see (1)), dpo is the (2 x 1) sub-
vector containing the error on the image center and
w= m. The closed-loop system can be written:

E, 0

&= [ -~ (24)

with:

| e

e ="f(e) = -AQ(e)e (26)
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Noting v = g:z = g—: |6A~Tn*||, matrix Q can be writ-
ten as:
Q — VLULJIET Lv([P]x - V[ﬁ]X)EG (27)

0 Ey

Function f is a C'*° vector field defined on an open
subset S of SE3. It is easy to show the existence and
uniqueness of the equilibrium point:

Proposition 1 The only point of equilibrium for £, i.e
a point €° € S such that £(e°) =0, is e® = 0.

Proof of proposition 1 The existence of the equilib-
rium point is evident since if e = 0, then f(e)
Q(e)e = 0. This equilibrium point is unique if and
only if det(Q(e)) # 0, Ve € S. Since matriz Q is up-
per triangular, its determinant can be easily calculated:

det(Q)

= v3det(L,) det(L;?) det(E,) det(Ey) =

(28)
then det(Q) # 0,Ve € S since v # 0 and p # 0.

Therefore, the task has no singularity and, if the task
function decreases, it decreases towards 0.

Theorem 1 (Local asymptotic stability) The dif-

ferential system (26) is locally asymptotically stable

around the equilibrium point e€° if and only if:
~ ~ I
50, 2250 and = >0
Oy Qy d*

(29)

In practice, these conditions are easily verified.

Proof of theorem 1 Consider now the first order
Taylor expansion of the non-linear differential system
(26) around the equilibrium point:

e~ —2Q(e’)(e —e°) (30)
The linearized system (30) is asymptotically stable if
and only if the eigenvalues of Q(e°) are positive. They
are given by:

A1 =va,/a, ,
A2 = vay /Ay, ,

)\3:1/,
A4=)u‘7

As = pov, [y ,

A6 = [0ty [y (31)

Then they are positive if and only if conditions (29)
are verified. Since the linearized system is asymptot-
ically stable, the local asymptotic stability, around the
equilibrium point, of the non-linear system is proven.

We now present sufficient conditions to ensure the
global asymptotic stability.



Theorem 2 (Global asymptotic stability) The
differential system (26) is globally asymptotically
stable, only if conditions (29) are verified, and if:

p(vIT = SA[ + |1 = v])*[6A[*g* () < voroe

where v = /22 +y2 = tan(vy) is the tangent of the

vision angle 1 (7 is its mazimum value), and:

(32)

2T HVTER Y
9’ = 5 (1+7%) (33)
2 ~ 2
au a’U au a’l} a’u/U a'U/U aU
U:A—+A——\/<A——A—>+(A — = A—> >0
Oy Oy Qly, Oty Oty Oy Oy
(34)

o1=0+1-1/(0 — 12 +[[L- 6AJ2(1 +7%) > 0 (35)

oy=0+1—/(c—1)2+|0po|2>0 (36)

The proof of the theorem is given in [8]. This suffi-
cient condition depends on many parameters and has to
be used with some knowledge of the system geometry.
As an example, we can use condition (32) to obtain a
sufficient condition when the hypothesis of exact mea-
surements cannot be applied to the distance d* since it
is estimated by hand. In that case, where perfect cam-
era calibration is assumed (A=1,0=01 =00=2,

p=landv = g—:), condition (32) can be written :

Fo &

- — 4— 37

(1- 5P <45 (37)

The solution of this inequality is:
1-Vem+1 _d 1+/9?(®) +1
1+2—— < - <1+2———F—~——
9*() d 9*()
(38)

The two bounds are plotted in Figure 2 versus 7.

Figure 2: Stability bounds for the estimated depth

This means that, if we consider for example a camera
with a 20° vision angle (then 7 = 0.364), the stability
condition is verified if 0.24 < d*/d* < 4.22. If the real
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distance d* is 50 cm, the system will asymptotically
converge for any initial position in the task space if d*
is chosen between 12 and 211 cm. This result defini-
tively validates the robustness of our control scheme.
Moreover, similar results can be obtained by consider-
ing camera calibration errors. Let us finally note that
condition (32) is only sufficient, then the convergence
can be realized even for larger errors. In the next sec-
tion, we will see experimentally that the 2D 1/2 visual
servoing is robust also in presence of errors in the robot
Jacobian.

6 Experimental results

The control law has been tested on a seven d.o.f.
industrial robot MITSUBISHI PA10 (at EDF DER
Chatou) and a six d.o.f. Cartesian robot AFMA (at
IRISA). The camera is mounted on the robot end-
effector. In the presented experiments, d* is set to
50 cm (while its real value is 60 ¢m) and A = 0.1
(a faster convergence can be obtained by increasing A
when the error becomes small). As far as calibration is
concerned, two different set of parameters are used:

- coarse calibration: the pixel and focal lengths given
by the camera constructor are used. The image cen-
ter has been used for the optical axis projection. The
transformation matrix between the camera and the
robot end-effector frames is set with an accuracy to
within 1 cm for translation and 5 dg for rotation.

- bad calibration: a supplementary error on the cam-
era intrinsic parameters (20%) is added, as well as on
the translation (5 cm on each axis) and on the rota-
tion (5 dg on each axis) of the transformation matrix
between the camera and the robot end-effector.

The images corresponding to the desired and initial
camera poses are given in Figure 3a and 3b respectively.
The target is composed by twelve white marks lying on
three different planes. The extracted visual features are
the image coordinates of the center of gravity of each
mark. With such simple images, the control loop can
be realized at video rate.

Figure 3: Images of the target for desired (a) and initial
(b) camera poses



The camera rotation (in degrees) and the direction
of translation, computed from the estimated homogra-
phy using the initial and desired images, are given in
Table 1 in function of the camera calibration.

calibration S A ”tt—“”” ”tt—y” ”t:”
exact 28.1 -—33.8 96.1 —-0.11 0.99 0.10
coarse 33.0 -32.8 96.3 —-0.20 0.97 0.3

bad 269 —26.6 99.0 —0.25 0.96 0.04

Table 1: Motion parameters

The pose estimations, obtained using coarse and bad
camera calibration, are not very different (compare Fig-
ure 4(b) and Figure 6(b)). For example, the maximal
rotational error is around 5 dg for coarse calibration
and around 7 dg for bad calibration. However, the re-
sulting features points trajectories in the images (see
Figure 5(b) and Figure 7(b)) show the influence of bad
calibration on the convergence of the system.

6.1 Coarse calibration

The error on the extended image coordinates of the
reference point are plotted in Figure 4a. The estimated
rotation is plotted in Figure 4b.

100
0| \
0|

05,

The outputs of the control law are given in Figure 4c
and Figure 4d. The obtained results are particularly
stable and robust and the error decreases exponentially
to 0. Finally, the error on the image coordinates of each
target point is given in Figure 5a and the correspond-
ing trajectory in the image is given in Figure 5b. The
trajectory of the chosen reference point can be easily
identified since it looks like a straight line in the image.

50 100 1 20 20 a0 0 M0 40 50

(b)

Figure 5: Error on pixels coordinates (a) and trajectory
in the image (b) of the target points

The convergence of the coordinates to their desired val-
ues demonstrates the correct realization of the posi-
tioning task. We can finally note that, due to the im-
portant displacement between the initial and desired
camera poses, image-based and position-based visual
servoings fail in that case.

6.2 Bad calibration

The obtained results are given in Figure 6 and Figure 7.

05,

000 5 2000 i E 000 500

Figure 4: Error on extended image coordinates (a), uf
(dg) (b), translational velocity V (cm/s) (c) and rota-
tional velocity € (dg/s) (d) versus iteration number

50 200 500 000 0 1000 50 200

' (© (d)

Figure 6: Error on extended image coordinates (a), ué

(dg) (b), translational velocity V(cm/s) (c) and rota-

tional velocity € (dg/s) (d) versus iteration number



As can be seen in Figure 6a, the convergence of the
error is no more perfectly exponential. This is due
to the bad calibration of the camera and the rough
approximation of d* (which has no influence using a
coarse calibration). However, even in this worse case,
we can note the stability and the robustness of the
control law. Contrarily to the previous experiment, the
trajectory of the reference point in the image is no more
a straight line since the camera is bad calibrated as well
as the homogeneous transformation matrix between the
camera and the robot end-effector frame. However, the
convergence of the coordinates to their desired values
demonstrates the correct realization of the task.

50 a0 1 0 0 30 0 a0

(b)

Figure 7: Error on pixels coordinates (a) and trajectory
in the image (b) of the target points

FEa—T

7 Conclusion

In this paper we have proposed a new approach to
vision-based robot control which presents many advan-
tages with respect to the classical position-based and
image-based visual servoings. Thanks to its simple
structure analytical results on its robustness can be
obtained. The necessary and sufficient conditions for
local asymptotic stability and sufficient conditions for
global asymptotic stability in presence of camera cal-
ibration errors have been obtained. Experimental re-
sults show the validity of our approach and its robust-
ness not only with respect to camera calibration errors
but also to robot calibration errors. Future work will
be devoted to find an adaptive control scheme in order
to maintain the target in the image even in presence of
very large calibration errors, and to the coupling of our
control scheme with real objects and complex images.
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