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abstract
We present an approach to dynamic sensor planning prob-
lems in visual servoing. Specifically, one of the main prob-
lems in image-based visual servoing is to plan the camera
trajectory in order to avoid undesired configurations (e.g.,
features out of view, collision with obstacles, ...). Our
approach uses the robot redundancy and employs a control
scheme based on the task function approach. It combines
the regulation of the selected vision-based task with the min-
imization of a secondary cost function, which reflects given
constraints on the manipulator trajectory. We describe how
this methodology is applied to common problems in robotic
vision: occlusion avoidance, field of view constraint and ob-
stacle avoidance. We have demonstrated the validity of this

approach with various experiments.

1 Overview

One of the key points of the perception action cycle is
the automatic generation of the camera motion. Visual ser-
voing [8][4][9] appears to be a very efficient approach to this
problem. Although many of the theoretical control issues are
now well known, the integration of visual servoing into com-
plex robotics systems remains difficult for various reasons.
Considering the case of an eye-in-hand architecture, plan-
ning camera trajectory remains an important issue. Indeed,
if the control law computes a motion that leads the camera
to undesired configurations (such as manipulator joint lim-
its, occlusions or obstacles), visual servoing will fail. Con-
trol laws taking into account these “bad” configurations have
thus to be considered.

We have chosen to build in avoidance of undesirable con-
figurations using a control scheme based on the task function
approach [14][4]. It combines the regulation of the vision-
based task with the minimization of a cost function which
reflects the constraints imposed on the trajectory. The vi-
sual task is considered as a primary and priority task. The
cost function is then embedded in a secondary task which
only the components which are compatible with the primary
task are taken into account (i.e., the minimization of the
cost function is performed under the constraint that the vi-
sual task is realized). This cost function to be minimized
is based on a measure of the risk of the occurrence of an
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undesired configuration. It must reach its maximal value
when these configurations are likely to occur and its gradi-
ent must be equal to zero when the cost function reaches
its minimal value [14]. In this paper, we applied the pro-
posed methodology to various problems such as occlusions
avoidance, constraints on the field of view (i.e., keeping an
object inside view), 3D contact in a cluttered environment
(i.e., obstacle avoidance). This method as been previously
used for singularities and joint limits avoidance [11].

A similar approach has been proposed by Nelson and
Khosla. It consists of minimizing an objective function
which realizes a compromise between the visual task (a tar-
get tracking using a camera mounted on the end effector of
a manipulator) and the avoidance of kinematic singularities,
joint limits singularities but also with some other constraints
on the field of view, the focus measure [12]. This function
is used by exploiting the robot degrees of freedom which are
redundant with respect to the visual task. However, the re-
sulting camera motions can produce major perturbations in
the visual servoing since they are generally not compatible
with the regulation to zero of the selected image features.

The next section of this paper, taken from [11], recalls
the application of the task function approach to visual ser-
voing and the expression of the resulting control law. Sec-
tion 3 describes the approach proposed to dynamic sensor
planning. We finally present real time experimental results
dealing with various robotic tasks. These results have been
obtained using an eye-in-hand system composed of a camera
mounted on the end-effector of a six d.o.f Zebra Zero robot.

2 Visual Servoing

The image-based visual servoing consists in specifying
a task as the regulation in the image of a set of visual
features[4][8]. Embedding visual servoing in the task func-
tion approach [14] allows us to take advantage of general
results helpful for the analysis and the synthesis of efficient
closed loop control schemes. A good review and introduction
to visual servoing can be found in [9].

Let us denote P the current value of the set of selected
visual features used in the visual servoing task and measured
from the image at each iteration of the control law. To
ensure the convergence of P to its desired value P, we need
to know the interaction matrix L£ defined by the classical



equation [4] :

E = LE(E:B)TC (1)

where B is the time variation of P due to the camera motion
T,. The parameters p involved in LE represent the depth
information between the considered objects and the camera
frame.

A vision-based task e; is defined by:

e, =C(B—Py) (2)
where C, called combination matrix, has to be chosen such
that CL is full rank about the desired trajectory g»(t). It

can be defined as C = WL£+ (Bd,pd). Assumptions on the
shape and on the geometry of the considered objects in the
scene have thus generally to be done in order to compute
the desired values P, and p . In that case, we set W as a

full rank matrix such that Ker W = Ker Lg(gd,pd).

If the vision-based task does not constrain all the n robot
degrees of freedom, a secondary task g, can also be per-
formed and we obtain the following task function:

e=Whe, + (I, - W W)g" 3)

where

e W+ and I, —W*W are two projection operators which
guarantee that the camera motion due to the secondary
task is compatible with the regulation of P to P;. In-
deed, due to the choice of matrix W, I, — W W belongs
to Ker Lp, which means that the realization of the sec-
ondary task will have no effect on the vision-based task
(Lp (I, —W*W)g! = 0). On the other hand, if errors
are introduced in LE, I, — WTW no longer exactly be-
longs to Ker Lp. This will induce perturbations on the
visual task due to the secondary task. Let us finally
note that, if the visual task constrains all the n degrees
of freedom of the manipulator, we have W = I,,, which
leads to I, — WTW = 0. It is thus impossible in that
case to consider any secondary task.

g, is the gradient of a cost function hs to be minimized
(9, aahF ). This cost function is minimized under the

constraint that e, is realized.

In order to make e exponentially decrease and then be-
have like a first order decoupled system, we get:

dg,

e,
C:_)\_ +;1_ﬂ'n_ +
1 e— Wy — - WIW)—

(4)

where:
e T, is the camera velocity;

e )\ is the proportional coefficient involved in the expo-
nential convergence of e;

—

Oe,

° represents an estimation of a possible autonomous

target motion. If the scene is static, we can assume
that 25t
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3 Dynamic sensor planning

As already stated, when the vision-based task does not
constrain all the six camera degrees of freedom, a secondary
task can be combined with e;. Thus we can use the re-
dundant degrees of freedom to propose a dynamic sensor
planning strategy.

3.1 Avoiding occlusions

The main goal here is to avoid the occlusion of the target
by static or moving (with unknown motion) objects. There-
fore, the manipulator has to perform adequate motion in
order to avoid the risk of occlusion while it ensures the de-
sired constraints between the camera and the target (see
Figure 1).

Figure 1: Reactive behavior for occlusion avoidance

Let us consider O the projection in the image of the set of
objects in the scene which can possibly occlude the target T':
O = {04,...04,}. According to the presented methodology
we have to define a function hs which reaches its maximum
when the target is occluded by another object of the scene.
We thus define h; as:

hs

%aie—ﬂ(w—oin?) ()

where o and (3 are two scalar constants. a sets the am-
plitude of the control law due to the secondary task. The

%, involved in (4) are then:

components of g, and

at
_ Ohs _ Ohs OP 9y, .
Zs 9F  OP OF’ ot
Computing 63’;; is seldom difficult. %= is nothing but the

interaction matrix L% or image jacobian.

Let us consider the case of a single occluding object ;
a generalization to multiple objects is straightforward. We
want to see the target T at the center of the image. Thus
we will consider the coordinates P = (X,Y) as its center
of gravity. If we also consider the occluding object O by a
point P, = (Xo,Yp), defined as the closest point of O to
T, we have:

hy = %ae—5||£—£o||2

and
—1/Zo 0
0 —1/z0
Bhs _ Bhs Xo/Zo + Bhs Yo/Zo
s~ 9r 090X XoYo oY 1+Y3
—(1+X3) —XoYo
Yo —XO



with oh
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X af(X — Xo)e
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3.2 Field of view constraints

Let us consider that we want to keep a set O of objects in
the field of view of the camera while ensuring a positioning
with respect to another object T'.

We have here to define a cost function hs which is equal
to 0 when O are located at the middle of the image and
which is maximal near the border if the image. However, it
is not always realistic with respect to the primary task to
define h, as a linear function of the distance to the center
of the image. Furthermore, seeing O; at the middle of the
image is not required by this process. Therefore we do not
use a linear function as proposed in [12] but the following
cost function:

=1
with: .
hs(O) = aeP@c(0)%) (7)

where dc(O;) denotes the distance between O; to the center
of the image. Such a function increases quickly in the vicinity
of the border of the image but reaches a nearly null value
when O; is located in a circle located around the center of
the image and which radius can be easily tuned using 3.

O; can be either any object of the scene (not necessary
related to the focused object T — see for example the results
proposed in the next section) or any point of the edge of
the focused object. It is possible to choose O as the set of
points located on the edge of the focused object. It is thus
possible to ensure that the whole object will be observed by
the camera.

Note that the function hs as proposed in (7) is not the
only possible one. Another function (more similar to the one
proposed by Nelson [12]) can be defined as:

db(0;
@ (1 - d'rEnn)
0

where db(O;) defines the distance between O; to the nearest
border of the image and dmin is a predetermined threshold.

) if db(0;) < dmin

otherwise

4 Trajectory planning

In the previous section, we have considered a single cam-
era mounted on the end effector of a manipulator and the
secondary task can be seen as a constraint introduced in the
camera trajectory. In this section, we will consider a differ-
ent problem: obstacle avoidance. To achieve this task, we
cannot consider only one camera. A second motionless cam-
era is added to the system and provides a global view of the
scene by observing the gripper and the target (see Figure 2).
Let us call C!, the camera mounted on the robot, the “local”
camera and C? the “global” camera. The main difference
with the approach presented in the previous section is that
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the secondary task will no longer be used to constrains the
camera trajectory but will provide to the system a collision
free path.

\J

Figure 2: Two cameras system: a local and global view of the
scene
4.1 Achieving contact...

The first task we want to perform is simply a point to
point contact in 3D space. This kind of task can be achieved
using the stereo visual servoing approach [6]. In our case,
we will used two cameras as described above. To achieve
the described task in an object free scene is straightforward.
The primary task is to minimize the error between the cur-
rent position of the target in the “local” image P' and the
position of the gripper Bfi while the secondary task is noth-
ing but the distance between gripper PY and the target P9
in the “global” image. Note that P!, and P9 are fixed in the
corresponding images.

oh, _ h, OPY

Bgs
s 9F 0PI OF ' Ot

=0

hs =||P? = Pj||* and g

where % defines the relation between the velocity of P? in
C? and C' velocity. It is given by:

i )

where R and t are the rotation matrix and translation vec-
tor associated to the C'-to-C? (or the gripper-to-C?) rigid
transformation and sk(a) is the skew-symmetric matrix as-
sociated with vector a. R and ¢ are computed using the
method proposed in [5].

4.2 ... in cluttered environment

The problem is quite different if we consider a cluttered
environment. Let us actually consider not the whole robot
but just the extremity of the gripper defined by a point. We
will also consider that we have only 3 d.o.f in translation.

It is possible to modify the previous formulation (Sec-
tion 4.1) in order to introduce in the cost function hs a
term which increases when the robot moves toward an ob-
ject. However, if it is possible to ensure that the gripper will
not encounter an obstacle, it is hardly possible to propose
an object-free path toward the target (i.e., between P9 and
PY). To this purpose we propose to use a method derived
from the potential fields methods: the navigation functions
[10][13].

Let us define by Cyree the set of object-free positions of
the robot in the image: Cfree = C \ U, Bi where B; is an
obstacle and C is the configuration space. A navigation func-
tion is a potential function U : Cfree — R with a minimum
located at the goal and whose domain of attraction includes

R —R([sk(-R"t)]
0 R

or
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Figure 3: Positioning with respect to a point using an occlusion avoidance process (a) error between the current position of the point in
the image and the desired position (P — P,;), (b) position of the two objects in the image, and (c) cost function hs

the entire subset of Cfrc. connected to the goal [10]. To com-
pute this navigation function we have used the algorithm
proposed in [1].

The resulting navigation function U is strictly decreasing
and admits only one minimum located at the goal. Knowing
U, the cost function can be defined as:

hs = BU(XZ,Y{)

where 3 is a scalar constant which sets the amplitude of the
control law due to the secondary task.

The term Ohs/ds involved in the computation of g, is
merely the spatial gradients of hy, i.e.:

Ohs _ 8 ( VUx

0s VUy
Using this formulation, the gripper will avoid any obstacle
visible from the fixed camera. Furthermore if a path exists,
then the specified task will be also achieved. If the obstacle
and camera Cy are static then only the spatial gradients of U
have to be recomputed. However, this approach can also deal
with moving obstacles. In that case, the navigation function
has to be recomputed at each iteration of the control law.

5 Experimental results

The method described above has been implemented on an
experimental cell at Yale University. We have used a CCD
camera mounted on the effector of a 6 d.o.f Zebra Zero robot
arm. Image processing is performed at video rate using the
XVision system [7].

5.1 Handling occlusions

In this experiment (as well as in the next one) we will con-
sider a gaze control task. If P = (z,y) describes the position
of the projection of the center of gravity of the “target”, the
goal (i.e.the primary task) is to observe this object at the
center of the image: P, = (0,0). Only two degrees of free-
dom are necessary to perform the vision-based task, thus
four motion components are redundant and can be used to
avoid the undesirable configurations.

In this experiment the distance between the camera and
the target is approximatively 400mm. An object is moving
with an a priori unknown motion between the camera and
the target in order to cause an occlusion.

Using the proposed occlusion avoidance process, when
the distance in the image between the target and the oc-
cluding object decreases, the cost function hs increases (see
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Figure 4: Positioning with respect to a point: (a) initial image
acquired by the camera, (b) initial position of the camera with
respect to the target (the screw) and the occluding object (the
vehicle toy), (c) final image acquired by the camera, and (d) final
position of the camera with respect to the target and the occluding
object

Figure 3.c) and the other degrees of freedom are used to
avoid the occlusion. When the occluding object moves away
from the target, the cost function decreases (oscillations are
due to a non-constant velocity of the occluding object).

We can observe that during the occlusion avoidance pro-
cess, the vision based task is not perfectly achieved (see Fig-
ure 3.a). This is due to the fact that we do not have any
information on the relative position between the camera and
the target: the depth information z involved in the interac-
tion matrix is unknown. As L; cannot be updated at each
iteration of the control law, assumptions have been made
about the depth of the target.

5.2 Field of view

In this experiment we want to focus on a target (here
the top hole on the cylinder) while keeping the trailer (see
right of Figure 6) within the field of view of the camera. If
no specific strategy is achieved, the vehicle moves out of the
image during the camera motion due to the focusing task.

Figures 6.a and 6.b depict the initial image from the cam-
era and an external view of the scene. Figures 6.c and 6.d
show the final views. Figure 5.a shows the error between the
current position of the target in the image and its desired
position. Figure 5.b shows the position in the image of the
focused target and the position of the tow which is the clos-
est from the image border. Figure 5.c shows the value of the
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Figure 5: Field of view experiment (a) error P — P, (b) position of the focused target and of the vehicle tow in the image (c)

cost function hg

Figure 6: Field of view experiment

cost function hs. Note that the system reacts rapidly to mo-
tion of the vehicle toward the border of the image. A motion
along one of the previously unused translational degrees of
freedom (z axis) is performed.

5.3 Avoiding obstacles

In this experiment we want to insert a 4mm wide screw-
driver in a 5mm hole. It can be shown [6] that if the screw-
driver and the hole are superimposed in the two images, then
they are also superimposed in the 3D space. To achieve this
task, we have used the three translational d.o.f of the robot.
Introducing the rotational d.o.f into the process will require a
more complex planning strategy to avoid the obstacles. Fig-
ure 9). As a result, in this experiment, the primary task will
control 2 d.o.f (z and y in the mobile camera frame) while
the secondary task controls the last one (z in this frame).

Figure 7 depicts the first and the last image acquired
during the insertion process. The navigation function U is
computed in the vicinity of group obstacle/target/robot us-
ing the method proposed in [1]. Figure 8 shows the resulting
navigation function. Light areas correspond to high value of
the navigation function while dark ones correspond to lower
values. Obstacles are shown in black.

Figure 9.a depicts the error between the current and de-
sired position in the image of the mobile camera. A small
error (2 or 3 pixels which corresponds to a 1mm error in 3D
space) can be observed due to a bad estimation of projection
operators (W and I — W+W). Here again, the position of
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Figure 7: Insertion task in a cluttered environment: (a-b) initial
image acquired by the cameras (a) global camera (b) local camera,
and (c-d) final images. Note that the camera trajectory is depicted
in image (a).

a

Figure 8: Obstacle avoidance (a) Navigation function (b) camera
trajectory around the obstacle

the target w.r.t. the camera is unknown.

Figure 9.b depicts the error between the current and de-
sired position of the screwdriver in the fix (global) image. In
a first time (iterations 0-80) the error increases due to obsta-
cle avoidance process (see robot trajectory on Figure 8.b).
Figure 9.c depicts the cost function hs which is the value of
the navigation given the position of the robot.

6 Conclusion and future work

We have shown in various cases that it was possible to use
redundancy to achieve dynamic sensor planning in visual ser-
voing. Each time the constraints on the camera trajectory
has been expressed as a function to be minimized with re-
spect to the specified task. Results have been proposed for
occlusion avoidance, field of view constraints and in a simple
case for obstacle avoidance. Previous work has demonstrated
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Figure 9: Obstacle avoidance experiment (a) error P! — PY (b) error P? — P¥ (c) cost function h,

that the proposed method is able to deal with other prob-
lems such as singularities and joint limits avoidance [11] or
for trajectory tracking[2]. Other tasks may be achieved such
as introducing constraints on the measure of focus, resolv-
ability (Nelson gives some cost functions for those purposes
in [12]), visibility, resolution [3]. Most of these tasks have
been solved in the case of static sensor planning (see for ex-
ample [15]) and cost functions have been proposed. Using
these cost functions within the framework proposed here is
possible. However, here in each case, only image based con-
trol has been used. We have never used 3D information and
our system has never been calibrated. To solve some others
problems, more a priori informations (e.g., a CAD of the
scene) may be required.

Future work will be dedicated to incorporating an on-line
estimation of depth of the objects using dynamic vision into
the closed loop. Therefore we should be able to know if],
in the occlusion avoidance problem, an object will actually
occlude the target. Furthermore, this will give us a better
estimation of the interaction matrix and thus of the pro-
jection operators. Other work has to be done dealing with
the obstacle avoidance process. Obviously, the method pre-
sented here may fail (a path in the global image may not
exist) and may not be optimal (a shorter path may exists
using the other image). Future work will be devoted to de-
termine a good path by computing new camera viewpoints.
We will also consider the whole robot and be able to deal
with motion along the rotation axes.
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