
A Redundancy-Based Approach for Obstacle Avoidance
in Mobile Robot Navigation

Andrea Cherubini and François Chaumette

Abstract— In this paper, we propose a framework for visual
navigation with simultaneous obstacle avoidance. The obstacles
are modeled by using a vortex potential field, derived from an
occupancy grid. Kinematic redundancy guarantees that obstacle
avoidance and navigation are achieved concurrently, and the
whole scheme is merely sensor-based. The problem is solved
both in an obstacle-free and in a dangerous context, and the
control law is smoothened in the intermediate situations. In a
series of simulations, we show that with our framework, a robot
can replay a taught visual path while avoiding collisions, even
in the presence of visual occlusions.

Index Terms— Visual servoing, Navigation, Motion control.

I. INTRODUCTION

Recently, a great amount of research in the robotics fields
has focused on obstacle avoidance. Referring to [1], the ob-
stacle avoidance task consists of computing, at each sample
time, a motion control such that the trajectory generated is
free of collisions, and makes the robot progress to the goal.
One of the most common techniques for obstacle avoidance
is the potential field method [2]. The gap between global
path planning and real-time sensor-based control has been
closed with the elastic band [3], a deformable collision-free
path, whose initial shape is generated by a planner, and
then deformed in real time, according to the sensed data.
Instead of using a global model, which would infringe the
perception to action paradigm [4], we propose a framework
for obstacle avoidance with simultaneous execution of a
sensor-based task. The task that we focus on is appearance-
based navigation, which has been the target of our research
in [5] and [6]. In the framework that we have developed in
the past1, the path is a topological graph, represented by a
database of ordered key images. Navigation is divided into
subtasks, each consisting of reaching the next key image in
the database. Although this approach is quite popular in the
robotics community [7], it has been rarely extended to take
into account unexpected obstacles. An exception is presented
in [8], which exploits redundancy [9].

Our work is also based on redundancy. A kinematically
redundant robot possesses more DOFs than those required
to execute its primary task. This provides increased dexterity
that may be used for a secondary task (here, obstacle
avoidance). The tasks can be executed by using a projecting
operator [10], or a task priority strategy [11-12]. Sensor-
based tasks have been tackled with redundancy in various
works (e.g., on a robot arm in [13], and on a nonholonomic
manipulator in [8]. Here, we focus on the following problem:

A. Cherubini and F. Chaumette are with INRIA Rennes - Bretagne
Atlantique, IRISA, Campus de Beaulieu 35042, Rennes, France.
{Andrea.Cherubini, Francois.Chaumette}@irisa.fr

1See: www.irisa.fr/lagadic/demo/demo-cycab-vis-navigation/vis-navigation.

a wheeled robot equipped with an actuated pinhole camera
and with a range scanner must follow a visual path rep-
resented by a series of key images (primary task), while
avoiding collisions with the ground obstacles (secondary
task). The camera must detect the features necessary for
navigation, while the range scanner senses the obstacles in
front of the robot. In our work, the tasks are executed both
in a dangerous context (where many obstacles are present),
and in a safe context (where the near workspace is clear).
An appropriate function is used to smoothen the transitions
in between. Although similar to the one presented in [8], our
framework guarantees that obstacle avoidance has no effect
on visual navigation. Besides, we use a compact controller,
and the transition between contexts is operated only at the
secondary task level, whereas in [8], three controllers are
necessary, and the transitions are more complicated.

II. REDUNDANCY FRAMEWORK FOR 2 TASKS

We hereby utilize the relationships between the robot
kinematic control inputs and two desired tasks, to recall
the redundancy-based controller used in [12], and originally
introduced in [11]. We name s1 ∈ IRk the primary task
vector, and u ∈ IRm the control inputs. Redundancy exists
when m > k, and enables handling a secondary task,
s2 ∈ IRm−k. The tasks dynamics are related to the control
inputs by the equations:

ṡi = Jiu i = 1, 2 (1)

where J1 and J2 are the task jacobians, respectively of size
k×m and (m− k)×m. We assume that both have full rank.

With the Projected Gradient method [10], the solution
of (1), for tracking the primary task [4] is:

u = J+
1 ṡ∗1 + P1h (2)

In the above equation:

• J+
1 = J>1

(
J1J>1

)−1
is the m× k Moore-Penrose pseu-

doinverse of J1, i.e., a particular solution of: J1J+
1 = I;

• ṡ∗1 ∈ IR
k is the required primary task error evolution;

• h ∈ IRm is an arbitrary control input;
• P1 = I − J+

1 J1 projects h onto the null space of J1;
hence, the second part of (2) has no effect on the
primary task.

Vector h can be used to apply a command that will carry
out at best the secondary task s2, without disturbing s1.

Introducing (2) in (1) (with i = 2), we obtain:

ṡ2 = J2J+
1 ṡ∗1 + J2P1h

ω

v
x

y
δ

z

x’

z’

C

R

X

Y

O

y’

ϕ ϕ
.

x’

z’

c1
c2

c3 fc,2
fc,1

f

Ry’

fc,3

α

(a) (b) (c)

Fig. 1. Top view of the mobile robot (orange), equipped with actuated pinhole camera (blue). (a) Reference frames. (b) Outline of the obstacle-induced
vortex fields, and control variables (v, ω, ϕ̇). (c) Occupancy grid and potential field f construction.

The authors of [11] and [12] derive h from this equation
in order to track the desired secondary task dynamics ṡ∗2:

h = (J2P1)+
(
ṡ∗2 − J2J+

1 ṡ∗1
)

(3)

Plugging into (2), we obtain:

u = J+
1 ṡ∗1 + P1 (J2P1)+

(
ṡ∗2 − J2J+

1 ṡ∗1
)

The term J2P1 gives the available range for s∗2 to be
performed without affecting s1, while ṡ∗2−J2J+

1 ṡ∗1 is the sec-
ondary task function, without the part J2J+

1 ṡ∗1 accomplished
by the first task. Since P1 is Hermitian and idempotent (it is
a projection operator), the above equation becomes:

u = J+
1 ṡ∗1 + h (4)

with h defined in (3).
The desired evolution of the task errors can be written:

ṡ∗i = ˙̂si − λi (si − ŝi) i = 1, 2 (5)

with ŝi and ˙̂si indicating the desired values of the i-th task,
and of its first derivative, and λi > 0 the associated gain.

Controller (4) has the following properties.
• It guarantees convergence of the primary task. Replac-

ing (4) in (1) yields:

ṡ1 = ṡ∗1
Considering (5), this is equivalent to the linear system:

ṡ1 − ˙̂s1 = −λ1 (s1 − ŝ1)

for which, as desired,
(

ŝ1, ˙̂s1
)

is an exponentially stable
equilibrium, since λ1 > 0.

• The secondary task has no effect on the primary task,
since h is projected onto the null space of J1.

• The secondary task s2 is realized at best, under the
constraint that it does not affect the primary task.

III. PROBLEM CHARACTERISTICS
For the following definitions, the reader is referred to

Fig. 1. The robot control inputs are:

u = [v ω ϕ̇]>

These are, respectively, the linear and angular velocities of
the robot, and the camera pan angular velocity. We assume
that the camera angle is bounded: |ϕ| ≤ π

2 , and that the path
can be tracked with continuous v (t) > 0. This guarantees

safety, since only obstacles in front of the robot can be
detected by the range scanner. We also define the robot frame
FR (R, x′, y′, z′) (R is the center of rotation of ω), image
frame FI(O,X, Y) (O is the image center), and camera
frame FC(C, x, y, z) (C is the optical center). We neglect
the distance between C and the camera pan rotation axis.
The distance between R and C is denoted by δ ≥ 0. We use
the normalized perspective camera model:

X =
x

z
Y =

y

z

The four specifications that we intend to fulfill are:
1) visual path following,
2) desired linear velocity v̂,
3) security with respect to the obstacles,
4) maximal feature visibility.
In our problem, m = 3. Hence, we will fulfill a primary

task of dimension k = 2 (visual path following at desired
v̂), and use the extra degree of freedom for a secondary
task s2 ∈ IR that realizes the two other specifications.
Since only 1 DOF is available for the 2 specifications, we
discern two contexts (dangerous and safe): in each context,
one specification has priority over the other. To smoothen
transitions, we design an obstacle activation function:

H : C 7→ [0, 1]

where the context C indicates the danger represented by
detected obstacles. The definition of H will be given later.
• In the dangerous context (H = 1), the priority is

security. The robot must avoid collisions, by orienting
its heading to a desired value α, related to the obstacles
position (see Fig. 1), and defined later in the paper. This
is done by imposing:

ω = λ2α ∀ (s1, ṡ1) ∈ IR2 × IR2 (6)

This condition will be guaranteed by control input hd,
defined below.

• In the safe context (H = 0), the priority is maximal
visibility. We do not take directly into account occlu-
sions, or feature position, and assume that the visible
features are homogeneously distributed in the environ-
ment. Then, visibility can be maximized by pointing the
camera forward: ϕ = 0. This can be obtained with:

ϕ̇ = −λ2ϕ ∀ (s1, ṡ1) ∈ IR2 × IR2 (7)

KEY
IMAGES

CURRENT IMAGE I

I1… IN

DESIRED IMAGE I

Visual path
following task

X

X

KEY
IMAGE

DATABASE

CURRENT IMAGE

NEXT KEY IMAGE

COARSE
LOCALIZATION

ˆ
ˆ

Fig. 2. The current and desired images contain some common visual
features, which are used for navigation.

This condition will be guaranteed by control input hs,
defined just below.

A smooth transition between the inputs associated to the two
contexts can be obtained by setting, in (4):

h = Hhd + (1−H) hs
to obtain:

u = J+
1 ṡ∗1 +Hhd + (1−H) hs

hd = (JdP1)+
(
ṡ∗d − JdJ+

1 ṡ∗1
)

hs = (JsP1)+
(
ṡ∗s − JsJ+

1 ṡ∗1
) (8)

In the above equation:
• ṡ∗d,s are the desired secondary tasks dynamics, in the

dangerous and safe context; as in (5), they are:{
ṡ∗d = ˙̂sd − λ2 (sd − ŝd)
ṡ∗s = ˙̂ss − λ2 (ss − ŝs)

(9)

• Jd,s are the corresponding jacobian matrices.
In the next section, controller (8) will be instantiated for the
problem of visual navigation with obstacle avoidance.

IV. VISUAL NAVIGATION AMONG OBSTACLES
A. Primary Task

Visual Path Following: The robot must follow a path
defined by a set of N ordered key images I1, . . . , IN (Fig. 2).
This task is divided into N subtasks, each consisting of
driving the current image I to the next key image Î . We
consider that Î is reached, as soon as the image error e (i.e.,
the average distance in the image space between the points
matched in I and Î) is below a threshold τ , and starts to rise.
When Î is reached, a topological transition is made: the next
image in the set becomes the desired one, and so on, until
IN is reached. This task can be achieved by using only 1
visual feature: the abscissa X of the centroid of the points
matched on I and Î [5]. Hence, for the first component of
s1 we use:

s1,1 = X ŝ1,1 = X̂ ˙̂s1,1 = 0

which, replaced in (5), yields: ṡ∗1,1 = λ1

(
X̂ −X

)
.

Assuming static features, the corresponding row of J1 is:

[jv jω jϕ̇] (10)

where a good approximation of the scalar components is
(see [6]):

jv = − sinϕ+X cosϕ
z

jω = δ(cosϕ+X sinϕ)
z + 1 +X2

jϕ̇ = 1 +X2

(11)

In (11), to avoid depth estimation, which can be unreliable,
we set the depths to a fixed value z, as in [6].

Desired Linear Velocity: To track a desired linear
velocity v̂ (t), we define the second component of s1 as:

s1,2 =
∫ t

0

v (t) dt ŝ1,2 =
∫ t

0

v̂ (t) dt ˙̂s1,2 = v̂ (t)

which, replaced in (5), yields:

ṡ∗1,2 = v̂ + λ1

[∫ t

0

(v̂ − v) dt
]

It is trivial to obtain the corresponding row of J1:

[1 0 0] (12)

Jacobian: The primary task Jacobian is obtained by
stacking (10) and (12):

J1 =
[
jv jω jϕ̇
1 0 0

]
The Moore-Penrose pseudoinverse of J1 is:

J+
1 =

1
j2ω + j2ϕ̇

 0 j2ω + j2ϕ̇
jω −jωjv
jϕ̇ −jϕ̇jv

Since jϕ̇ 6= 0, ∀X ∈ IR (see (11)), J1 and J+

1 are full rank.
The projecting operator P1 can also be derived:

P1 =
1

j2ω + j2ϕ̇

 0 0 0
0 j2ϕ̇ −jωjϕ̇
0 −jωjϕ̇ j2ω

B. Secondary Task

Modeling the Obstacles: For obstacle modeling, we use
an occupancy grid [14], shown in Fig. 1 (c): it is rigidly
linked to FR, with cell sides parallel to the x′ and z′ axes.
Its extension is limited by the sensor range, and we limit
it laterally by ignoring obstacles too far on the sides, to
jeopardize the robot. The grid is built from the latest K
scans. For each cell centered at c = [x′ z′]>, we define the
K occupancies r at the j-th oldest iteration as:

rj (c) = {0, 1} j = 0, . . . ,K

We set rj = 1 if an obstacle has been sensed in c at the j-th
iteration prior to the current one, and 0 otherwise. Then, we
associate to each cell a coefficient µ (c), obtained by linear
combination of the occupancies, weighed with a factor that
diminishes for the more remote data:

µ (c) =
K∑
j=0

e−j/Krj (c)

Although local, the grid is effective for two reasons. First,
if the sensor acquisition time is negligible with respect to the
robot velocity, the grid is consistent with the robot position,
and even moving obstacles, are unlikely to be missed. Sec-
ond, the use of consecutive sensor readings provides smooth
transitions in the model evolution.

Obstacle avoidance is derived by using vortex potential
fields [15]. For each cell c, we define the potential:

Uc =
µ (c)
‖c‖

where ‖c‖ is the distance of the cell from R2. The vortex
field for each cell is simply the rotor of Uc:

fc =

[
fc,x′

fc,z′

]
=

 ±
∂U

∂z′

∓∂U
∂x′

 = µ (c)

∓ z′

‖c‖3

± x′

‖c‖3

The signs of fc,x′ and fc,z′ depend on the cell abscissa:

positive (negative) x′ will induce a clockwise (counter-
clockwise) vortex, so that the field always points forward.
The fields fc,i generated by all the nc cells ci are then
superimposed to obtain the total field:

f =
nc∑
i=1

fc,i

The orientation α ∈
[
−π2 ,

π
2

]
of this field (see Fig. 1) is:

α =
{

0 if f = 0
−ATAN2 (fx′ , fz′) otherwise

This variable will be used to define both the context C, and
the desired heading in dangerous situations.

Obstacle Activation Function: For interpolating be-
tween the safe and dangerous contexts, we use:

H =

0 if α = 0
1 if |α| >= β
1
2

(
1+tanh

(
1

1−α/β −
β
α

))
otherwise

where β > 0 tunes the length of the transition interval]0, β[.
Function H is C∞ for all α, and monotonically increases
with |α|, from H = 0 when no obstacle is detected, to H = 1
when the obstacle vector field strongly deviates the robot
from the forward direction. We evaluate the danger by using
the field orientation, rather than its norm: near obstacles
which do not cause strong deviations are thus considered
less dangerous than farther - but deviating - obstacles.

Dangerous Context: In the dangerous context, the sec-
ondary task consists of aligning the robot with f . Hence, its
heading must be shifted by α, with null angular speed at the
equilibrium. Denoting with θ the current robot orientation,
this can be done by using:

sd = θ ŝd = θ + α ˙̂sd = 0

which, replaced in (9), yields:

ṡ∗d = λ2α

Since deriving sd yields ω, the corresponding secondary task
Jacobian is:

Jd =
[

0 1 0
]

2Designing the grid without the cell at R = [0 0]> (where obstacles are
not detectable by the range scanner), guarantees that Uc is non-singular.

Safe Context: In the safe context, the camera pan should
point forward. Hence, the pan angle should be set to 0,
with null angular speed at the equilibrium. This task can
be realized by using:

ss = ϕ ŝs = 0 ˙̂ss = 0

which, replaced in (9), yields:

ṡ∗s = −λ2ϕ

Since deriving ss yields ϕ̇, the corresponding secondary task
Jacobian is:

Js =
[

0 0 1
]

C. Complete Control Design
Let us now use the variables defined above, to instantiate

our controller (8) for visual navigation:
v = v̂ + λ1

[∫ t
0

(v̂ − v) dt
]

ω = (1−H)
λ1(X̂−X)−jvv+jϕ̇λ2ϕ

jω
+Hλ2α

ϕ̇ = H
λ1(X̂−X)−jvv−jωλ2α

jϕ̇
− (1−H)λ2ϕ

(13)

This control law has the following nice properties.
1) In the dangerous context (H = 1), (13) becomes:

v = v̂ + λ1

[∫ t
0

(v̂ − v) dt
]

ω = λ2α

ϕ̇ =
λ1(X̂−X)−jvv−jωλ2α

jϕ̇

The angular velocity aligns the robot with f . The
camera velocity compensates such rotation, to keep the
features in view. Note that, for large z, and small image
error, ϕ̇ ≈ −ω (since, from (11), jv ≈ 0 and jω ≈ jϕ̇),
which is an expected behavior.

2) In the safe context (H = 0), (13) becomes:
v = v̂ + λ1

[∫ t
0

(v̂ − v) dt
]

ω =
λ1(X̂−X)−jvv+jϕ̇λ2ϕ

jω
ϕ̇ = −λ2ϕ

(14)

The camera is driven forward, to ϕ = 0. The image
error is controlled only by ω, as in [5] and [6], where
obstacles were not considered.

3) Controller (13) is well defined when the centroid is
visible, if z > δ

2 , as we will show in Theorem 1.
Moreover, in [6], we have shown that overestimating
z with respect to its real value, is more effective than
underestimating it, in terms of navigation performance.

Theorem 1: For (13) to be well defined when the centroid
is visible, it is sufficient to set: z > δ

2 .
Proof: A sufficient condition for (13) to be well defined,

is that both jω and jϕ̇ are non-null. The first case (jω 6= 0)
is equivalent to:

δ (cosϕ+X sinϕ)
z

+ 1 +X2 6= 0 (15)

Since |ϕ| ≤ π
2 : cosϕ+X sinϕ ≥ −X , ∀X ∈ IR. Hence, a

sufficient condition for (15) is:

X2 − δ

z
X + 1 > 0

which occurs ∀X ∈ IR when δ
z < 2. The second case (jϕ̇ 6=

0), is guaranteed ∀X ∈ IR.

V. EXPERIMENTS
For simulations, we made use of Webots3, where a uni-

cycle robot with a 320 × 240 pixels camera and a scanner
of range 3 m have been designed. Both sensors operate at
30 Hz. The offset between R and C is δ = 0.7 m. The
visual features, represented by green spheres, are distributed
randomly in the environment. We set z = 5 m (which meets
the condition in Theorem 1) and we limit the lateral extent
of the grid to 1.5 m on each side. We impose a constant
linear velocity v̂ = 2 m s−1. At this speed, since the scanner
acquires at 30 Hz, the grid is consistent with the robot
position, because 45 grids are built while the robot covers
the sensor extension. At first, no obstacle is present in the
environment; the robot is driven along a 60 m closed path
(black in Fig. 3), and N = 32 key images are acquired.
Then, 4 obstacles are located, near and on the taught path,
and the robot must replay the visual path and avoid the
obstacles. In addition to endangering the robot, the obstacles
may occlude the features. Although the sensors are noise-
free, and feature matching is ideal, these simulations allow
validation of controller (13).

I8

scenario A scenario B scenario C scenario D

C

A
B

D

Fig. 3. Four obstacle scenarios designed for replaying the same taught
path (black). Visual features are represented by the green points, the range
scanner by a yellow disk, and the replayed paths are drawn in red (scenario
A), green (B), blue (C), and brown (D).

By displacing the obstacles, we have designed the 4
scenarios in Fig. 3. In all scenarios, the robot is able to
navigate without colliding, and this is done with the same
parameters: K = 5, β = 0.45, λ1 = 3 and λ2 = 1. The
threshold on image error e is τ = 10 pixels. The metrics used
to assess the experiments are: the image error with respect
to the visual database, averaged over the whole experiment
(ē, in pixels), and the distance, at the end of the experiment,
from the final 3D key pose (∆, in cm). The latter metric is
less relevant, since navigation is defined in the image space.

The robot behavior is different in the four scenarios:
• Scenario A: the purple, gray, and cyan obstacles are

located on the path, whereas the green one is near the
path. The robot first senses the purple one, which is
overtaken on the left, and then the green (also overtaken
on the left). Then, the gray obstacle is overtaken on the
right; finally, the robot converges back to the path using
vision, and avoids the cyan obstacle, before returning to
the initial position. The experiment is successful, with
ē = 9, and ∆ = 35.

• Scenario B: it is identical to A, except that the green
obstacle is farther from the path. This causes the robot
to pass it on the right. Then, the gray and cyan obstacles
are overtaken on the left. We obtain ē = 10, ∆ = 39.

3www.cyberbotics.com

• Scenario C: the difference with respect to B is that the
purple obstacle is rotated clockwise. Thus, the robot
overtakes both this and the gray obstacle on the right.
We obtain ē = 8, and ∆ = 31. The experiment
shows the utility of ignoring lateral data in the grid:
considering the green obstacle, would have made the
robot curve farther from the path.

• Scenario D: this scenario is designed to test the con-
troller in the presence of potential field local minima.
In fact, when detected, the purple obstacle is centered
on the z′ axis and orthogonal to it; this induces α = 0
and drives the robot towards the obstacle; however, after
only 2 iterations, the position of the visual features
misaligns the robot and the obstacle, which is thus
avoided. The rest of the experiment is very similar to
B, with ē = 10, and ∆ = 39.

The experiments are shown in the video attached to this
paper. It is difficult to find a general interpretation of the
results, since these are dependent on many factors (e.g., the
obstacles position and orientation with respect to the taught
path, and to the visual features position). However, in all
cases, the robot is able to follow the visual path, without
colliding. Since this is not equivalent to following the 3D
path, some portions of the replayed path are far from the
taught one. However, these errors correspond to the obstacle
locations, and are indispensable to avoid collisions. Path
following has been achieved in spite of occlusions, although
a minimal number of visual features is obviously required.
In two cases (scenarios A and C), navigation was possible
using only 3 points. Since obstacle avoidance is defined
as secondary task, it is realized in the best way without
affecting visual navigation. This implies that in particularly
constrained environments, the only way of avoiding colli-
sions is to set v̂ = 0 in order to stop the robot.

In Scenario D, although the purple obstacle induces a
potential which ’attracts’ the robot to collision, the non-
symmetric visual features distribution enabled the robot to
exit the minimum. We have repeated this experiment with
10 randomly generated visual feature distributions, and in
all cases the robot exited the minimum. The rare situation
where both obstacle and visual data are symmetric could be
tackled with standard escape methods [16].

In Fig. 4, we show 4 stages of scenario A. First, the visual
features are driving the robot towards the gray obstacle.
When detected, this obstacle forces the robot away from
the path, while occluding many features. The camera rotates
clockwise to maintain visibility. Finally, the controller drives
the robot back to the path, and the camera to the forward-
looking position. Note that at these iterations, in spite of
having been detected, the obstacle is not considered, because
of its non influential pose.

Further details can be obtained by studying some relevant
variables. In Fig. 5, we have plotted activation function
H , during the 4 experiments. The curves show when the
obstacles have intervened in (13) (i.e., when H > 0): just
the purple, gray and cyan obstacles in C (blue curve), and
all 4 obstacles in the other cases. The purple and gray
obstacles, which are the most difficult to circumnavigate,
generate a long-lasting H 6= 0, whereas the green one is

quickly avoided. In most cases, there is a spike to H = 1
when an obstacle is sensed, since we related H to α, which
leaps from 0 (in the safe context) to a value greater than β, as
soon as the obstacle is detected. An exception is D (brown),
where, because of the potential field minimum, H increases
gradually. Since 3 obstacles have been detected only for C,
we have shown, in Fig. 6, ω, e, ϕ and ϕ̇ during navigation in
this scenario. Since we have set v = v̂ throughout replaying,
the primary task error on s1,2 is null, and plotting v is
unnecessary. In the graphs, we have highlighted in yellow
the iterations, with strong H 6= 0. At iteration 15, the purple
obstacle is detected: the obstacle vector field induces an
abrupt rotation on the robot (green in Fig. 6), and on the
camera. The strategy proves efficient since the consequent
image error increase is slight (approximately 30 pixels, black
in the figure) and is reduced as the robot overtakes the ob-
stacle. Both velocities are almost zeroed, until iteration 280,
when the gray obstacle triggers a positive robot rotation and
negative pan velocity. Finally, H is activated by the detection
of the cyan obstacle. In this case, the robot angular velocity
is negative, whereas the camera velocity is positive. From
iteration 700 onwards, the activation function is canceled.
Correspondingly, the variables are driven by (14). Note also
that the camera angle (blue) is reset to 0 in less than 100
iterations, and remains null until the end of the experiment.

I7 I8 I13 I14 I14

iteration 232 iteration 268 iteration 301 iteration 365 iteration 377

I I I I I

Fig. 4. The robot overtakes the gray obstacle in scenario A. For each
iteration we show: the occupancy grid (bottom left), and current and next
key image (bottom right).

1

0
0 900

Fig. 5. Obstacle activation function H during simulations in the four
scenarios A (red), B (green), C (blue) and D (brown).

VI. CONCLUSIONS

We have applied a redundancy-based approach to the
problem of visual navigation with obstacle avoidance. Our
approach is novel in appearance-based navigation: it merges
techniques from potential fields, redundancy and visual ser-
voing to tackle a sensor-based problem. Simulations are
successful in various situations, and in future work, we plan
to assess the controller on a real robot.

ACKNOWLEDGMENTS

This work was funded by the ANR CityVIP project. The
authors thank G. Zecca and O. Kermorgant for their help.

0

0

0

2.0

-2.0

60

-2.0

2.0

900

900

900Scenario C

Fig. 6. Evolution of relevant variables during navigation in scenario C: ω
(green, in rad s−1), image error e (black, in pixels), ϕ (blue, in rad) and ϕ̇
(red, in rad s−1). The iterations with non-null H are highlighted in yellow.

REFERENCES

[1] J. Minguez, F. Lamiraux and J. P. Laumond, “Motion planning and
obstacle avoidance”, in Springer Handbook of Robotics, B. Siciliano,
O. Khatib (Eds.), Springer, 2008, pp. 827–852.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots”, IEEE Int. Conf. on Robotics and Automation, 1985.

[3] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning
and control”, IEEE Int. Conf. on Robotics and Automation, 1993.

[4] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manip-
ulators, Springer, 2000.

[5] A. Diosi, A. Remazeilles, S. Šegvić and F. Chaumette, “Outdoor Visual
Path Following Experiments”, IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2007.

[6] A. Cherubini, M. Colafrancesco, G. Oriolo, L. Freda and F. Chaumette,
“Comparing appearance-based controllers for nonholonomic naviga-
tion from a visual memory”, ICRA Workshop on safe navigation in
open and dynamic environments, 2009.

[7] F. Bonin-Font, A. Ortiz and G. Oliver, “Visual navigation for mobile
robots: a survey”, Journal of Intelligent and Robotic Systems, vol. 53,
2008, pp. 263–296.

[8] D. Folio and V. Cadenat, “A redundancy-based scheme to perform safe
vision-based tasks amidst obstacles”, IEEE Int. Conf. on Robotics and
Biomimetics, 2006.

[9] S. Chiaverini, G. Oriolo and I. D. Walker, “Kinematically redun-
dant manipulators”, in Springer Handbook of Robotics, B. Siciliano,
O. Khatib (Eds.), Springer, 2008, pp. 245–268.

[10] A. Liegeois, “Automatic supervisory control of configurations and
behavior of multibody mechanisms”, IEEE Trans. on Systems, Man,
and Cybernetics, vol. 7, no. 6, 1977, pp. 868-871.

[11] H. Hanafusa, T. Yoshikawa, Y. Nakamura, “Analysis and control of
articulated robot arms with redundancy”, IFAC World Congress, 1981.

[12] P. Baerlocher and R. Boulic, “An inverse kinematic architecture
enforcing an arbitrary number of strict priority levels”, The Visual
Computer, vol. 6, no. 20, 2004, pp. 402-417.

[13] F. Chaumette and E. Marchand, “A redundancy-based iterative ap-
proach for avoiding joint limits: Application to visual servoing”, IEEE
Trans. on Robotics and Automation, vol. 17, no. 5, 2001, pp. 719-730.

[14] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation”, Computer, vol. 22(6), 1989, pp. 46-57.

[15] A. De Luca and G. Oriolo, “Local Incremental Planning for Nonholo-
nomic Mobile Robots”, IEEE Int. Conf. on Robotics and Automation,
1994.

[16] J. C. Latombe, Robot Motion Planning, Kluwer Academic, 1991.

