A Poisson integrator for Gaussian wavepacket dynamics

Erwan Faou ${ }^{1}$ and Christian Lubich ${ }^{2}$

${ }^{1}$ INRIA Rennes, Campus de Beaulieu, Rennes, France
${ }^{2}$ Mathematisches Institut, Universität Tübingen, Tübingen, Germany

Time-dependent Schrödinger equation in quantum MD

$$
i \varepsilon \frac{\partial \psi}{\partial t}=H \psi, \quad \psi(x, 0)=\psi_{0}(x) .
$$

- Wave function $\psi=\psi(x, t), x=\left(x_{1}, \ldots, x_{N}\right)$ with $x_{k} \in \mathbb{R}^{d}(d=1$ or 3$)$ and time $t \in \mathbb{R}$.
- Hamiltonian $H=T+V$ with the kinetic and potential energy operators

$$
T=-\sum_{k=1}^{N} \frac{\varepsilon^{2}}{2 m_{k}} \Delta_{x_{k}} \quad \text { and } \quad V=V(x)
$$

Particle mass : $m_{k}>0$. Laplace operator $\Delta_{x_{k}}$. Real potential $V(x)$.

- ε is a (small) positive number representing the scaled Planck constant.

Dirac-Frenkel-McLachlan Principle

- $\mathcal{M} \subset L^{2}$ an approximation manifold.
- $T_{u} \mathcal{M}$ the tangent space at $u \in \mathcal{M}$ (the space of admissible variations).
- $t \mapsto u(t)$ solution of

$$
\operatorname{Re}\left\langle\delta u, \frac{\partial u}{\partial t}-\frac{1}{i} H u\right\rangle=0 \quad \text { for all } \quad \delta u \in T_{u} \mathcal{M} .
$$

This amounts to

$$
\frac{\partial u}{\partial t}=P(u) \frac{1}{i} H u .
$$

with the orthogonal projection $P(u): \mathcal{H} \rightarrow T_{u} \mathcal{M}$

- Applications :Time-dependent Hartree, Hatree-Fock, MCTDH, Gaussian wave packets, etc...

Gaussian wave packets

\mathcal{M} made of functions of the form $u(x, t)=e^{i \phi(t) / \varepsilon} \prod_{k=1}^{N} \varphi_{k}\left(x_{k}, t\right)$ with
$\varphi_{k}\left(x_{k}, t\right)=\exp \left(\frac{i}{\varepsilon}\left(a_{k}(t)\left|x_{k}-q_{k}(t)\right|^{2}+p_{k}(t) \cdot\left(x_{k}-q_{k}(t)\right)+c_{k}(t)\right)\right)$,
Finite dimensional complex submanifold parametrized by
$q_{k}=\langle u| x_{k}|u\rangle \in \mathbb{R}^{d}$ position average
$p_{k}=\langle u|-i \varepsilon \nabla_{x_{k}}|u\rangle \in \mathbb{R}^{d}$ momentum average
$a_{k}=\alpha_{k}+i \beta_{k}\left(\right.$ with $\left.\beta_{k}>0\right)$ complex width parameter,
$c_{k}=\gamma_{k}+i \delta_{k}$ complex phase parameter, and ϕ a real phase.
Heller (75), Lee \& Heller (82), Coalson \& Karplus (90)

GWP equations

$$
\begin{aligned}
\dot{q}_{k} & =\frac{p_{k}}{m_{k}} \\
\dot{p}_{k} & =-\langle u| \nabla_{x_{k}} V|u\rangle \\
\dot{a}_{k} & =-\frac{2 a_{k}^{2}}{m_{k}}-\frac{1}{2 d}\langle u| \Delta_{x_{k}} V|u\rangle \\
\dot{c}_{k} & =\frac{i \varepsilon d a_{k}}{m_{k}}+\frac{\varepsilon}{8 \beta_{k}}\langle u| \Delta_{x_{k}} V|u\rangle \\
\dot{\phi} & =\sum_{k=1}^{N} \frac{\left|p_{k}\right|^{2}}{2 m_{k}}-\langle u| V|u\rangle
\end{aligned}
$$

where $\left(a_{k}=\alpha_{k}+i \beta_{k}\right.$ and $\left.c_{k}=\gamma_{k}+i \delta_{k}\right)$

$$
\langle u| W|u\rangle=\int_{\mathbb{R}^{N}} W(x) \prod_{j=1}^{N} \exp \left(-\frac{2}{\varepsilon}\left(\beta_{j}\left|x_{j}-q_{j}\right|^{2}+\delta_{j}\right)\right) \mathrm{d} x
$$

This average depends only on the parameters q_{j}, β_{j}, and δ_{j}.

Poisson structure

- The GWP system has a Poisson structure $\dot{y}=B(y) \nabla K(y)$ where $u=\chi(y)$, $y=\left(q_{k}, p_{k}, \ldots\right)$ inherited from the symplectic structure of the Schrödinger equation.
- Conservation of the energy $K(y)=\langle u| H|u\rangle$:

$$
\langle u| H|u\rangle=\|u\|^{2} \sum_{k=1}^{N}\left(\frac{\left|p_{k}\right|^{2}}{2 m_{k}}+\frac{\varepsilon d}{2 m_{k}} \frac{\alpha_{k}^{2}+\beta_{k}^{2}}{\beta_{k}}\right)+\langle u| V|u\rangle
$$

As $\varepsilon \rightarrow 0$ and $\|u\|=1$, the energy tends to the classical one.

- Conservation of the L^{2}-norm and of the linear and angular momentum.

Variational splitting

The decomposition $H=T+V$ induces the symmetric splitting scheme

$$
u^{n+1}=\varphi_{\Delta t / 2}^{V} \circ \varphi_{\Delta t}^{T} \circ \varphi_{\Delta t / 2}^{V}\left(u^{n}\right)
$$

- $u(t)=\varphi_{t}^{V}\left(u_{0}\right)$ is the solution of

$$
\langle\delta u, i \varepsilon \dot{u}-V u\rangle=0 \quad \text { for all } \delta u \in T_{u} \mathcal{M}, \quad u(0)=u_{0}
$$

- $u(t)=\varphi_{t}^{T}\left(u_{0}\right)$ is the solution of

$$
\langle\delta u, i \varepsilon \dot{u}-T u\rangle=0 \quad \text { for all } \delta u \in T_{u} \mathcal{M}, \quad u(0)=u_{0}
$$

Projection of the Strang or symmetric Trotter splitting algorithm.

The T-magic

Computation of $u_{1}=\varphi_{\Delta t}^{T}\left(u_{0}\right)$, where u_{0} is represented by $\left(q^{0}, p^{0}, a^{0}, c^{0}, \phi^{0}\right)$:

$$
\begin{aligned}
\dot{q} & =\frac{p}{m} \\
\dot{p} & =-\langle u| \nabla_{x} V|u\rangle \\
\dot{a} & =-\frac{2 a^{2}}{m}-\frac{1}{2 d}\langle u| \Delta_{x} V|u\rangle \\
\dot{c} & =\frac{i \varepsilon d a}{m}+\frac{\varepsilon}{8 \beta}\langle u| \Delta_{x} V|u\rangle \\
\dot{\phi} & =\frac{|p|^{2}}{2 m}-\langle u| V|u\rangle
\end{aligned}
$$

$$
\operatorname{GWP} \quad(N=1): \quad \dot{a}=-\frac{2 a^{2}}{m}-\frac{1}{2 d}\langle u| \Delta_{x} V|u\rangle
$$

The T-magic

Computation of $u_{1}=\varphi_{\Delta t}^{T}\left(u_{0}\right)$, where u_{0} is represented by $\left(q^{0}, p^{0}, a^{0}, c^{0}, \phi^{0}\right)$:

$$
\begin{aligned}
\dot{q} & =\frac{p}{m} \\
\dot{p} & =0 \\
\varphi_{\Delta t}^{T}: \quad \dot{a} & =-\frac{2 a^{2}}{m} \\
\dot{c} & =\frac{i \varepsilon d a}{m} \\
\dot{\phi} & =\frac{|p|^{2}}{2 m}
\end{aligned}
$$

The T-magic

Computation of $u_{1}=\varphi_{\Delta t}^{T}\left(u_{0}\right)$, where u_{0} is represented by $\left(q^{0}, p^{0}, a^{0}, c^{0}, \phi^{0}\right)$:

$$
\begin{aligned}
q^{1} & =q^{0}+\frac{\Delta t}{m} p^{0} \\
p^{1} & =p^{0} \\
\varphi_{\Delta t}^{T}: \quad a^{1} & =a^{0} /\left(1+2 \frac{\Delta t}{m} a^{0}\right) \\
c^{1} & =c^{0}+\frac{i \varepsilon d}{2} \log \left(1+2 \frac{\Delta t}{m} a^{0}\right) . \\
\phi^{1} & =\phi^{0}+\Delta t \frac{\left|p^{0}\right|^{2}}{2 m}
\end{aligned}
$$

The flow $\varphi_{\Delta t}^{T}$ can be computed exactly.

The V-magic

Computation of $u_{1}=\varphi_{\Delta t}^{V}\left(u_{0}\right)$, where u_{0} is represented by $\left(q^{0}, p^{0}, a^{0}, c^{0}, \phi^{0}\right)$:

$$
\begin{aligned}
\dot{q} & =\frac{p}{m} \\
\dot{p} & =-\langle u| \nabla_{x} V|u\rangle \\
\text { GWP : } \quad \dot{a} & =-\frac{2 a^{2}}{m}-\frac{1}{2 d}\langle u| \Delta_{x} V|u\rangle \\
\dot{c} & =\frac{i \varepsilon d a}{m}+\frac{\varepsilon}{8 \beta}\langle u| \Delta_{x} V|u\rangle \\
\dot{\phi} & =\frac{|p|^{2}}{2 m}-\langle u| V|u\rangle
\end{aligned}
$$

The V-magic

Computation of $u_{1}=\varphi_{\Delta t}^{V}\left(u_{0}\right)$, where u_{0} is represented by $\left(q^{0}, p^{0}, a^{0}, c^{0}, \phi^{0}\right)$:

$$
\begin{aligned}
& \dot{q}=0 \\
& \dot{p}=-\langle u| \nabla_{x} V|u\rangle \\
& \varphi_{\Delta t}^{V}: \quad \dot{a}=-\frac{1}{2 d}\langle u| \Delta_{x} V|u\rangle \in \mathbb{R} \\
& \dot{c}=\frac{\varepsilon}{8 \beta}\langle u| \Delta_{x} V|u\rangle \in \mathbb{R} \\
& \dot{\phi}=-\langle u| V|u\rangle \\
& \Longrightarrow \quad \dot{q}=0, \dot{\beta}=0, \dot{\delta}=0 . \\
&(a=\alpha+i \beta \text { and } c=\gamma+i \delta)
\end{aligned}
$$

The V-magic

Computation of $u_{1}=\varphi_{\Delta t}^{V}\left(u_{0}\right)$, where u_{0} is represented by $\left(q^{0}, p^{0}, a^{0}, c^{0}, \phi^{0}\right)$: As $\left\langle u_{0}\right| W\left|u_{0}\right\rangle$ depends only on q^{0}, β^{0} and δ^{0},

$$
\begin{aligned}
q^{1} & =q^{0} \\
p^{1} & =p^{0}-\Delta t\left\langle u_{0}\right| \nabla_{x} V\left|u_{0}\right\rangle \\
\alpha^{1} & =\alpha^{0}-\frac{\Delta t}{2 d}\left\langle u_{0}\right| \Delta_{x} V\left|u_{0}\right\rangle \\
\varphi_{\Delta t}^{V}: \quad \beta^{1} & =\beta^{0} \\
\gamma^{1} & =\gamma^{0}+\frac{\Delta t \varepsilon}{8 \beta^{0}}\left\langle u_{0}\right| \Delta_{x} V\left|u_{0}\right\rangle \\
\delta^{1} & =\delta^{0} \\
\phi^{1} & =\phi^{0}-\Delta t\left\langle u_{0}\right| V\left|u_{0}\right\rangle
\end{aligned}
$$

The flow $\varphi_{\Delta t}^{V}$ can be computed exactly.

Properties

- Poisson integrator that preserve the L^{2} norm, and the linear and angulum momentum.
- Order 2 : $\left\|\left|u^{n}\right|^{2}-\left|u\left(t^{n}\right)\right|^{2}\right\|=O\left(\Delta t^{2}\right)$, but $\left\|u^{n}-u\left(t^{n}\right)\right\|=O\left(\Delta t^{2} / \varepsilon\right)$.
- Energy conservation : if the q_{k} are bounded and if $\beta_{k} \geq c_{0} \varepsilon$

$$
\left.\left|\left\langle u^{n}\right| H\right| u^{n}\right\rangle-\left\langle u^{0}\right| H\left|u^{0}\right\rangle \mid \leq C \Delta t^{2} \quad \text { for } n \Delta t \leq \exp (c / \Delta t)
$$

where c and C are positive constants that are independent of Δt, and ε.

Kepler 3D potential

$N=1, d=3$ and $V(q)=-1 /|q| \cdot p^{0}=(1,0,0)^{T}, q^{0}=(0,1,0)^{T}, \alpha^{0}=1$, $\beta^{0}=1, \gamma^{0}=0, \phi^{0}=0$, and $\delta^{0}=-\frac{3}{4} \varepsilon \log \left(2 \beta^{0} \pi^{-1} \varepsilon^{-1}\right)$ to ensure unit norm of the wavepacket. $\Delta t=0.1, \varepsilon=10^{-4}$. Energy error :

Extensions

Non-spherical GWP :

$$
\varphi_{k}\left(x_{k}\right)=\exp \left(\frac{i}{\varepsilon}\left(\left(x_{k}-q_{k}\right)^{T} A_{k}\left(x_{k}-q_{k}\right)+p_{k} \cdot\left(x_{k}-q_{k}\right)+c_{k}\right)\right)
$$

with a $d_{k} \times d_{k}$ complex matrix A_{k} with symmetric positive definite imaginary part.
Denoting by M_{k} the mass matrix for the (one or several) particles with the coordinates $x_{k} \in \mathbb{R}^{d_{k}}$, the equations of motion for A_{k} and c_{k} become

$$
\begin{aligned}
\dot{A}_{k} & =-2 A_{k} M_{k}^{-1} A_{k}-\frac{1}{2}\langle u| \nabla_{x_{k}}^{2} V|u\rangle \\
\dot{c}_{k} & =i \varepsilon \operatorname{tr}\left(M_{k}^{-1} A_{k}\right)+\frac{\varepsilon}{8}\langle u| \operatorname{tr}\left(B_{k}^{-1} \nabla_{x_{k}}^{2} V\right)|u\rangle
\end{aligned}
$$

where $B_{k}=\operatorname{Im} A_{k}$ and $\nabla_{x_{k}}^{2} V$ is the Hessian matrix of V with respect to the variables x_{k}. These equations admit the same splitting as previously which still can be solved explicitly by a straightforward adaptation of the previous formulas.

