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Statement of application problem

Γ =
[

q

p

]
,

d
dt

Γ = J∇H(Γ), J =
[

0 I

−I 0

]
Chaotic.

Concern: discretization errors overwhelm numerical trajectories
in long time integrations. Frenkel and Smit (2002) speculates that
shadowing may provide the justification but concludes by saying

that there is clearly still a corpse in the closet. We believe
this corpse will not haunt us, and we quickly close the
closet.
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Aim

Characterize and design suitable numerical integrators,

but first

Define the computational goal.

In a nutshell . . .
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Coping with chaos
Incorporate uncertainty stochastically,
1. in initial conditions

Γ(0) = random values,

(2. in boundary conditions
d
dt

Γ = J∇H(Γ) + random terms)

and compute expected values for some “observable”A(Γ(t)):
typically calculate an ensemble{Γ(ν)(t)} and use

1
Ntrials

Ntrials∑
ν=1

A(Γ(ν)(t)).
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Sensitivity (condition, robustness)

Are statistical properties sensitive to perturbations inH?

Crisanti, Falcioni, and Vulpiani,Physica A(1989)
“. . . the evolution law of chaotic dynamical systems . . . .
In spite of the short predictability time tp on a single trajectory
we found that the statistical properties are not sensitive to
small changes in the evolution law . . . . This feature holds also
for correlation functions at a delay larger than tp.”
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Summary

• It is standard to incorporate randomness into MD and it is
appropriate to require onlyaccurate expectations.

• Clever numerical experiments show thevalue of being
symplectic.

• Symplectic integrators are useful because theyconserve
energy well and preserve volumein phase space.
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Molecular dynamics

Typically, molecular dynamics is not dynamics
but a method for generating random numbers.

Sometimes, molecular dynamics is dynamics
but often not the calculation of a real trajectory.
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Classical biomolecular dynamics

5–500 million steps

10–100 million flops/step

use of a 32-processor cluster is representative

folding@home is extreme:
200,000 desktops over the Internet
e.g., 200 yr. of CPU time to do 700µsec. of simulation

the world’s 2 fastest computers are MD simulators
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Classical atomistic model

H(q, p) = 1
2p

TM−1p + U(q) whereU(q) is a sum of

O(N) few-body potentials for covalent bonded forces,

O(N2) 2-body potentials for nonbonded forces, e.g.,

U el(~r1, ~r2, . . . , ~rN) =
1
2

N∑
i=1

N∑
j=1

′ ZiZj

4πε0|~rj − ~ri|

where the primed sum omitsi and those atoms covalently
interacting withi. The forces:~F el

i = −∇iU
el(· · · ).
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Liouville equation
Consider random initial conditionsonly:

Γ(0) = random with prob. densityρ0(Γ),
d
dt

Γ = J∇H(Γ).

Define
ρ(Γ, t) = p.d.f. forΓ(t).

Then

ρ(Γ, 0) = ρ0(Γ),

ρt +∇ · (ρJ∇H) = 0, (Liouville equation)

a linear hyperbolic PDE, for whichΓ(t) is a characteristic.
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Transient simulations
To describe the value of a time-dependent quantityA(Γ(t)), a
time-dependentρ-weighted average is used:

E[A(Γ(t))] =
∫

A(Γ)ρ(Γ, t)dΓ.

This might be calculated as

E[A(Γ(t))] ≈ 1
Ntrials

Ntrials∑
ν=1

A(Γ(ν)(t)),

which requires an ensemble of, say, 10 to 10 000 dynamical
trajectories with random initial conditions.
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An example: conformational dynamics
Let q-space be partitioned asA + B + C (states or
conformations).
Consider the calculation of

Pr(q(t) ∈ B | q(0) ∈ A)

given a distribution forΓ(0).
That is, calculate ∫ ∫

1B(q)ρ(q, p, t) dq dp

where

1X(q) def=
{

1, q ∈ X,

0, q 6∈ X.
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A specific example

Flow of water through aquaporin (membrane protein)
Tajkhorshid et al.,Science(2002)

Very occasionally a water molecule coloredyellow
traverses the channel:

command-L

produced with VMD, Theoretical and Computational Biophysics Group
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Another example: time correlation functions

The velocity isv = M−1p and its autocorrelation function is

E[v(t)Tv(0)]√
E[v(t)Tv(t)]

√
E[v(0)Tv(0)]

assuming thatE[v(t)] = 0.
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Steady state

Settingρt = 0 gives

∇H · J · ∇ρ = 0,

which is satisfied for
ρ(Γ) = function(H(Γ)),

e.g., the Boltzmann distribution

ρ(Γ) = e−H(Γ)/kBT/
∫

e−H(Γ)/kBTdΓ.

models a system of constant volume kept in an environment of
constant temperatureT wherekB is Boltzmann’s constant.
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Approach to steady-state

Can ρ(Γ, t) → steady-state for a linear hyperbolic PDE?

Rate of convergence? exponential? power law?

If so, . . .
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Steady state density

For simplicity, assume thatH(Γ) is the only conserved quantity.

Given a distributionρ0(Γ), we smear it out uniformly in each
shell,E ≤ H(Γ) ≤ E + dE, of equal energy to get a densityρ0,
which is a function only ofH(Γ). Formally,

ρ0(Γ) =
∫

δ(H(Γ′)−H(Γ))ρ0(Γ′)dΓ′∫
δ(H(Γ′)−H(Γ))dΓ′

.
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Example of steady state density

H(q, p) =
1
8
(q2 − 1)2 +

1
8
(q + 1) +

1
2
p2
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Mixing

Convergence occurs if the dynamics ismixing,

ρ(Γ, t) weak→ ρ0(Γ) ast → +∞,

i.e.,

lim
t→+∞

∫
A(Γ)ρ(Γ, t)dΓ =

∫
A(Γ)ρ0(Γ)dΓ

for any smoothA(Γ).

e.g.,sin tx
weak→ 0 ast → +∞,
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Animation of mixing

Hénon-Heiles Hamiltonian

H(q, p) = 1
2(p

2
1 + p2

2) + 1
2(q

2
1 + q2

2 + 2q2
1q2 − 2

3q
3
2)

with 14130 initial values uniformly distributed
in a sphere of radius 0.0045

on the energy surfaceH(q, p) = 1/8.
1000 steps of dynamics with step size 0.125

projected onto the two position variables.

command-L
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Ergodicity

If the dynamics isergodic,

1
t

∫ t

0

ρ(Γ, t′) dt′→ ρ0(Γ) ast → +∞.

The existence of the limit is guaranteed by a theorem of
Birkhoff; its value is the essence of ergodicity.
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Steady-state simulations
In most applications, onlyρ(Γ) is needed

and equations of motion are not essential.
To describe the value of an “observable”A(Γ), such as
temperature, aρ-weighted average is used:

E[A(Γ)] =
∫

A(Γ)ρ(Γ)dΓ.

This might be calculated as

E[A(Γ)] ≈ 1
Ntrials

Ntrials∑
ν=1

A(Γ(ν)),

which requires random sampling of phase space.

Bionumerics Research Group



Representative “observables”

• structure determination: most probable conformations

• free energy differences: relative probabilities of two states

• potentials of mean force: relative probabilities of differing
valuesξ′ of a reaction coordinateξ(q):∫ ∫

δ(ξ(q)− ξ′)ρ(q, p)dqdp.
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Conformations
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• clusters of configurations

• better still, regions of configuration space such that transitions
between them are rare (Schütte, Deuflhard)

• more conveniently, dihedral angle ranges and occurrences of
hydrogen bonds (strong noncovalent associations)
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Sampling methods

Use a stochastic (or deterministic!) ergodic Markov chain to
generateΓ1, Γ2, . . . having the desired distribution:

• Monte Carlo methods are unbiased: well designed moves are
needed or hybrid Monte Carlo can be used.

• Molecular dynamics with stochastic terms can be used.

• Molecular dynamics with extended Hamiltonians can be used
if ergodic.
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What is needed for steady state
A numerical integratorΓn+1 = Ψ(Γn), Γn “≈” Γ(n∆t),
generates approximate densitiesρn(Γ).
for steady state, what is desired is some result like

ρ∆t(Γ) = ρ(Γ) + O(∆tk)

where
1
t

∫ t

0

ρ(Γ, t′) dt′→ ρ(Γ) ast → +∞,

1
N

N∑
n=1

ρn(Γ) → ρ∆t(Γ) asN → +∞,

andρ0(Γ) = ρ(Γ, 0).
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Example

average length of butane vs. step size

Deuflhard,
Dellnitz,
Junge &
Scḧutte
(1996,1999)

The choppy behavior is hardly consistent with an asymptotic
expansion forρ∆t(Γ) in powers of∆t.
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Necessary conditions

• near conservation of energy on long time intervals

• near preservation of phase space volume: An integrator
Γn+1 = Ψ(Γn) is volume preserving if

det ∂ΓΨ(Γ) = 1.

Indeed, one can show that ergodicity requires preservation of
phase-space volume.

• small local error forΨ.

Are these sufficient?
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Steady state—some numerical evidence
Tupper(2002) creates problems for which we know analytically
the distribution ofA(Γ) on most of phase space and uses this to
test the accuracy of numerical integrators:

• The symplectic Euler method produces accurate results even
for large step sizes.

• The Euler method with a projection on each step to exactly
conserve energy produces miserable results.

• The projected backward Euler method produces good results
only for small step sizes.
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What is needed for transients

Is there an analytical trajectory that shadows a numerical
trajectoryΓn? Probably not.
However, all we need isweak accuracy:

E[A(Γn)] ≈ E[A(Γ(n∆t))] +O(∆tk).

or, equivalently, thatρn(Γ) = ρ(Γ, n∆t) +O(∆tk) in the weak
sense.
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Importance of mixing

Long-time accuracy of numerical solutions of the Liouville
equation would seem to require that

it have the character of a parabolic PDE,
which is to say that

the ODE have the character of a stochastic DE.
The mixing property gives it this character.
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Transients—some numerical evidence

Tupper(200x) constructs a parameterized Hamiltonian system
which is arbitrarily close to a Gaussian process for which is
known the exact time correlation functionfor the positionand
uses this to test the accuracy of numerical integratorsfor
moderately long time periods:

• The symplectic Euler method accurately calculates time
correlation functions even for large step sizes.

• The symplectic Euler method with energy projection
produces inaccurate results for practical step sizes.
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Is accuracy possible for long time periods?
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Importance of being symplectic
The integratorΨ is symplectic if

(∂ΓΨ(Γ))T
J∂ΓΨ(Γ) = J.

• exact preservation of phase space volume

• near conservation of energy for very long times

If (and only if) Ψ is symplectic, there exists a shadow (or
modified) HamiltonianH∆t(Γ) for which

H∆t(Γn)−H∆t(Γ0) = O(e−c/∆t) for timen∆t ≤ ec/∆t.
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Energy conservation for molecular dynamics

Conservation of shadow Hamiltonian implies that energy
fluctuates but does not drift.

Example of a 24th order shadow Hamiltonian for a 100 ps
simulation of 125 flexible TIP3P water molecules.

Bionumerics Research Group



Fluctuation range vs.1/∆t
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Shadow Hamiltonian vs. time for∆t = 1 fs

-271.61026

-271.61025

-271.61024

-271.61023

-271.61022

-271.61021

-271.61020

-271.61019

0 10 20 30 40 50 60 70 80 90 100

Bionumerics Research Group



Summary

• It is standard to incorporate randomness into MD and it is
appropriate to require onlyaccurate expectations.

• Clever numerical experiments show thevalue of being
symplectic.

• Symplectic integrators are useful because theyconserve
energy well and preserve volumein phase space.
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Further remark

Rigorous results are beyond reach. Making progress is possible
only by patching together

• limited theoretical results, and

• conjectures supported by experimental results.
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