# Effective dynamics using conditional expectations 

Frédéric Legoll

ENPC LAMI and INRIA
joint work with Tony Lelièvre (ENPC and INRIA)

```
http://cermics.enpc.fr/~legoll
```


## Classical $n$-body system

Atomistic system whose position is given by $X=\left(X^{1}, \ldots, X^{n}\right) \in \mathbb{R}^{n}$
Potential energy: $V(X)$, which contains all the physics of the system

A standard task in molecular dynamics is to compute thermodynamical averages wrt Gibbs measure:

$$
\langle\phi\rangle=\int_{\mathbb{R}^{n}} \phi(X) d \mu, \quad d \mu=Z^{-1} \exp (-\beta V(X)) d X
$$

with $\beta=1 /\left(k_{B} T\right)$ and $Z=\int_{\mathbb{R}^{n}} \exp (-\beta V(X)) d X$.

## A simple example

- Chain-like molecules (biological molecules, polymers, ... ):


$$
V(X)=\sum_{i} V_{2}\left(X^{i+1}-X^{i}\right)+\sum_{i} V_{3}\left(\theta_{i}\right)+\sum_{i} V_{4}\left(\cos \phi_{i}\right)
$$

with

$$
V_{2}\left(X^{i+1}-X^{i}\right)=\frac{k_{2}}{2}\left(\left|X^{i+1}-X^{i}\right|-d_{e q}\right)^{2}, \quad V_{3}\left(\theta_{i}\right)=\frac{k_{3}}{2}\left(\theta_{i}-\theta_{e q}\right)^{2}
$$

- end-to-end distance $\langle | X^{n}-X^{1}| \rangle$

Other examples: pressure in a liquid, ...

## Dynamics

Consider the dynamics (overdamped Langevin equation)

$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}} d W_{t} \quad \text { in } \mathbb{R}^{n},
$$

which is ergodic for $d \mu$ : for a.a. initial conditions $X_{0}$, and a.s.,

$$
\forall \text { smooth } \phi, \quad \frac{1}{T} \int_{0}^{T} \phi\left(X_{t}\right) d t=\int \phi(X) d \mu+O\left(\frac{1}{\sqrt{T}}\right) .
$$

In practice, the constant in the $O(\cdot)$ may be big (metastability). Reduced description of the system, that still includes some dynamical information?


$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}} d W_{t} \quad \text { in } \mathbb{R}^{n}
$$

Given a reaction coordinate $\quad \xi: \mathbb{R}^{n} \mapsto \mathbb{R}$, propose a dynamics $z_{t}$ that approximates $\xi\left(X_{t}\right)$.

- preservation of equilibrium properties:
when $X$ is distributed according to $d \mu$, then $\xi(X)$ distributed according to $\exp (-\beta A(z)) d z$ :

$$
\forall \text { smooth } \phi_{r}, \quad \int_{\mathbb{R}^{n}} \phi_{r}(\xi(X)) d \mu=\int_{\mathbb{R}} \phi_{r}(z) \exp (-\beta A(z)) d z
$$

The dynamics $z_{t}$ should be ergodic wrt $\exp (-\beta A(z)) d z$.

- estimation of the distance between $z_{t}$ and $\xi\left(X_{t}\right)$.


## Some related works

- Mori-Zwanzig projection formalism
- Normal modes decomposition
- system reduction in the framework on SDEs (E, Vanden-Eijnden, ...):

$$
\begin{aligned}
d x_{t} & =f\left(x_{t}, y_{t}\right) d t+\sqrt{2 \beta^{-1}} d B_{t}^{1} \\
d y_{t} & =\frac{1}{\varepsilon} g\left(x_{t}, y_{t}\right) d t+\sqrt{\frac{2 \beta^{-1}}{\varepsilon}} d B_{t}^{2}
\end{aligned}
$$

If $x_{t}$ is held fixed, then $y_{t}$ is ergodic w.r.t. a measure independant of $\varepsilon$.
Our framework:

- cartesian coordinates not adapted to slow/fast splitting.
- even if $\xi(x, y)=x$, the fast dynamics is different:

$$
\begin{aligned}
d x_{t} & =f\left(x_{t}, y_{t}\right) d t+\sqrt{2 \beta^{-1}} d B_{t}^{1} \\
d y_{t} & =\frac{1}{\varepsilon} g\left(x_{t}, y_{t}\right) d t+\sqrt{2 \beta^{-1}} d B_{t}^{2}
\end{aligned}
$$

## Convergence to equilibrium: Fokker-Planck equation

$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}} d W_{t}
$$

The pdf $\psi(t, X)$ of $X_{t}$ satisfies the Fokker-Planck equation:

$$
\partial_{t} \psi=\operatorname{div}(\psi \nabla V)+\beta^{-1} \Delta \psi
$$

Introduce the equilibrium density

$$
\psi_{\infty}(X)=Z^{-1} \exp (-\beta V(X)), \quad d \mu=\psi_{\infty}(X) d X
$$

We have $\nabla \psi_{\infty}=-\beta \psi_{\infty} \nabla V$. Hence the Fokker-Planck equation reads

$$
\partial_{t} \psi=\beta^{-1} \operatorname{div}\left[\psi_{\infty} \nabla\left(\frac{\psi}{\psi_{\infty}}\right)\right]
$$

We wish to prove that $\psi(t, \cdot) \rightarrow \psi_{\infty}(\cdot)$ as $t \rightarrow \infty$. Relative entropy argument.

## Convergence to equilibrium: relative entropy

Introduce $e(t)=H\left(\psi \mid \psi_{\infty}\right):=\int_{\mathbb{R}^{n}} \ln \left(\frac{\psi(t, x)}{\psi_{\infty}(x)}\right) \psi(t, x) d x$. Then

$$
\begin{aligned}
\frac{d e}{d t} & =\int \ln \left(\frac{\psi}{\psi_{\infty}}\right) \partial_{t} \psi+\frac{\psi_{\infty}}{\psi} \frac{\partial_{t} \psi}{\psi_{\infty}} \psi \\
& =\int \ln \left(\frac{\psi}{\psi_{\infty}}\right) \beta^{-1} \operatorname{div}\left[\psi_{\infty} \nabla\left(\frac{\psi}{\psi_{\infty}}\right)\right] \\
& =-\beta^{-1} \int \nabla\left[\ln \left(\frac{\psi}{\psi_{\infty}}\right)\right] \psi_{\infty} \nabla\left(\frac{\psi}{\psi_{\infty}}\right) \\
& =-\beta^{-1} \int\left|\nabla\left[\ln \left(\frac{\psi}{\psi_{\infty}}\right)\right]\right|^{2} \psi=:-\beta^{-1} I\left(\psi \mid \psi_{\infty}\right)
\end{aligned}
$$

Assume that $\psi_{\infty}$ satisfies a Log-Sobolev Inequality (LSI): there exists $\rho>0$ such that, for any probability measure of density $\nu$,

$$
H\left(\nu \mid \psi_{\infty}\right) \leq(2 \rho)^{-1} I\left(\nu \mid \psi_{\infty}\right)
$$

Then $\quad \frac{d e}{d t} \leq-2 \rho \beta^{-1} e(t)$, hence $e(t) \rightarrow 0$.

## Outline of the talk

- Construction of an effective dynamics
- Assessment of its quality in terms of marginals
- Pathwise convergence in a specific case
- Numerical examples


## A non-constructive closure

From the dynamics on $X_{t}$, we obtain

$$
\begin{aligned}
d \xi\left(X_{t}\right) & =\nabla \xi\left(X_{t}\right) \cdot d X_{t}+\beta^{-1} \Delta \xi\left(X_{t}\right) d t \\
& =\left(-\nabla V \cdot \nabla \xi+\beta^{-1} \Delta \xi\right)\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}} \nabla \xi\left(X_{t}\right) \cdot d W_{t} \\
& =\left(-\nabla V \cdot \nabla \xi+\beta^{-1} \Delta \xi\right)\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}}|\nabla \xi|\left(X_{t}\right) d B_{t}
\end{aligned}
$$

where $d B_{t}=\frac{\nabla \xi\left(X_{t}\right) \cdot d W_{t}}{|\nabla \xi|\left(X_{t}\right)}: B_{t}$ is a 1D standard noise.

$$
\begin{aligned}
\widetilde{b}(t, z) & :=\mathbb{E}\left[\left(-\nabla V \cdot \nabla \xi+\beta^{-1} \Delta \xi\right)\left(X_{t}\right) \mid \xi\left(X_{t}\right)=z\right] \\
\widetilde{\sigma}^{2}(t, z) & :=\mathbb{E}\left[|\nabla \xi|^{2}\left(X_{t}\right) \mid \xi\left(X_{t}\right)=z\right]
\end{aligned}
$$

and consider

$$
d \widetilde{z}_{t}=\widetilde{b}\left(t, \widetilde{z}_{t}\right) d t+\sqrt{2 \beta^{-1}} \widetilde{\sigma}\left(t, \widetilde{z}_{t}\right) d B_{t}, \quad \widetilde{z}_{0}=\xi\left(X_{0}\right)
$$

Then, for any $t$, the law of $\widetilde{z}_{t}$ is equal to the law of $\xi\left(X_{t}\right)$ (Gyongy 1986)
But $\widetilde{b}(t, z)$ and $\widetilde{\sigma}(t, z)$ are extremely difficult to compute $\ldots$

## An approximate closure

Need for approximation:

$$
\begin{aligned}
\widetilde{b}(t, z) & =\mathbb{E}\left[\left(-\nabla V \cdot \nabla \xi+\beta^{-1} \Delta \xi\right)\left(X_{t}\right) \mid \xi\left(X_{t}\right)=z\right] \\
b(z) & :=\mathbb{E}_{\mu}\left[\left(-\nabla V \cdot \nabla \xi+\beta^{-1} \Delta \xi\right)(X) \mid \xi(X)=z\right]
\end{aligned}
$$

Idea: $\widetilde{b}(t, z) \approx b(z)$ if, in the manifold

$$
\Sigma_{z}=\left\{X \in \mathbb{R}^{n}, \quad \xi(X)=z\right\},
$$

$X_{t}$ quickly reaches equilibrium. $\xi\left(X_{t}\right)$ much slower than evolution of $X_{t}$ in $\Sigma_{z}$.
Consider the effective dynamics

$$
d z_{t}=b\left(z_{t}\right) d t+\sqrt{2 \beta^{-1}} \sigma\left(z_{t}\right) d B_{t}, \quad z_{0}=\xi\left(X_{0}\right)
$$

with $\sigma^{2}(z):=\mathbb{E}_{\mu}\left[|\nabla \xi|^{2}(X) \mid \xi(X)=z\right]$.
OK from the statistical viewpoint: this dynamics is ergodic wrt $\exp (-\beta A(z)) d z$.

## Accuracy of the effective dynamics

- In the general case, obtain estimates between the law of $z_{t}$ and the law of $\xi\left(X_{t}\right)$, for any $t$, in terms of relative entropy.
- the potential $V$ is frequently of the form

$$
V_{\varepsilon}(X)=V_{0}(X)+\frac{1}{\varepsilon} q^{2}(X)
$$

- rough dependence of the above estimate in $\varepsilon$ ?
. exploit this structure to properly define $\xi(X)$ ?
- consider a more restrictive case to obtain stronger results (pathwise convergence):

$$
\mathbb{E}\left[\sup _{t \in(0, T)}\left|\xi\left(X_{t}\right)-z_{t}\right|^{2}\right] .
$$

## An entropy convergence result

$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}} d W_{t}, \quad \text { pdf } \psi(t, X)
$$

The pdf of $\xi\left(X_{t}\right)$ is

$$
\bar{\psi}(t, z)=\int_{\mathbb{R}^{n}} \psi(t, X) \delta(\xi(X)-z)
$$

On the other hand, we have introduced the effective dynamics

$$
d z_{t}=b\left(z_{t}\right) d t+\sqrt{2 \beta^{-1}} \sigma\left(z_{t}\right) d B_{t}, \quad z_{0}=\xi\left(X_{0}\right)
$$

Let $\phi(t, z)$ be the pdf of $z_{t}$. Introduce the relative entropy:

$$
E(t):=H(\bar{\psi} \mid \phi)=\int_{\mathbb{R}} \ln \left(\frac{\bar{\psi}(t, z)}{\phi(t, z)}\right) \bar{\psi}(t, z) d z .
$$

We would like $\bar{\psi} \approx \phi$, e.g. $E$ small..

## Decoupling assumptions

$$
\Sigma_{z}=\left\{X \in \mathbb{R}^{n}, \xi(X)=z\right\}, \quad d \mu_{z} \propto \exp (-\beta V(X)) \delta(\xi(X)-z)
$$

- assume that the conditioned probability measures $d \mu_{z}$ satisfy a $\log$-Sobolev inequality with a large constant $\rho$ (uniform in $z$ ). They can be quickly sampled.
- assume that the coupling between the dynamics of $\xi\left(X_{t}\right)$ and the dynamics in $\Sigma_{z}$ is weak:

At equilibrium, $\quad \xi \sim \exp (-\beta A(z)) d z$ with $\quad A^{\prime}(z)=\int_{\Sigma_{z}} F(X) d \mu_{z}$
We assume that $\left\|\nabla_{\Sigma_{z}} F\right\|_{L^{\infty}} \leq \kappa$.

$$
\text { When } \xi(x, y)=x, \quad \nabla_{\Sigma_{z}} F=\partial_{x y} V \text { : weak-coupling between } x \text { and } y .
$$

- assume that $|\nabla \xi|$ is close to a constant on each $\Sigma_{z}$, e.g.

$$
\lambda=\left\|\frac{|\nabla \xi|^{2}(X)-\sigma^{2}(\xi(X))}{\sigma^{2}(\xi(X))}\right\|_{L^{\infty}}<+\infty
$$

## A bounded entropy result

$$
E(t):=H(\bar{\psi} \mid \phi)=\int_{\mathbb{R}} \ln \left(\frac{\bar{\psi}(t, z)}{\phi(t, z)}\right) \bar{\psi}(t, z) d z .
$$

Under the above assumptions, for all $t \geq 0$,

$$
E(t) \leq \frac{\|\nabla \xi\|_{L^{\infty}}^{2}}{4}\left(\lambda+\frac{\beta^{2} \kappa^{2}}{\rho^{2}}\right) H\left(\psi(0, \cdot) \mid \psi_{\infty}\right)
$$

Hence, if $\xi$ is such that

- $\rho$ is large (strong mixing in $\Sigma_{z}$ ),
- $\kappa$ is small (small coupling between dynamics in $\Sigma_{z}$ and on $z_{t}$ ),
- $\lambda$ is small $\left(|\nabla \xi|\right.$ is close to a constant on each $\left.\Sigma_{z}\right)$,
then the effective dynamics $z_{t}$ obtained by conditional expectations is close to the real dynamics $\xi\left(X_{t}\right)$ in the sense of relative entropy.


## A particular case

$$
\text { Standard expression in MD: } \quad V_{\varepsilon}(X)=V_{0}(X)+\frac{1}{\varepsilon} q^{2}(X)
$$

- LSI estimate for the measure $\mu$ restricted on $\{X ; \xi(X)=z\}$ :

This measure essentially looks like a gaussian measure of variance $O(\varepsilon)$. Such gaussian measures satisfy a LSI with $\rho_{\varepsilon}=O(1 / \varepsilon)$.

- Mean-force $F(X)$ estimation: $A^{\prime}(z)=\int_{\Sigma_{z}} F(X) d \mu_{z}, \kappa_{\varepsilon}=\left\|\nabla_{\Sigma_{z}} F\right\|_{L^{\infty}}$ ?

$$
\begin{aligned}
F(X) & =\frac{\nabla V \cdot \nabla \xi}{|\nabla \xi|^{2}}-\beta^{-1} \operatorname{div}\left(\frac{\nabla \xi}{|\nabla \xi|^{2}}\right) \\
& =\frac{2 q(X)}{\varepsilon} \frac{\nabla q \cdot \nabla \xi}{|\nabla \xi|^{2}}+O(1), \quad \text { assuming that } \nabla \xi=O(1) .
\end{aligned}
$$

If $\nabla \xi \cdot \nabla q=0$, then $\kappa_{\varepsilon}=O(1)$, otherwise $\kappa_{\varepsilon}=O(1 / \varepsilon)$.

## Explicit entropy bounds

$$
E(t) \leq \frac{\|\nabla \xi\|_{L^{\infty}}^{2}}{4}\left(\lambda+\frac{\beta^{2} \kappa^{2}}{\rho^{2}}\right) H\left(\psi(0, \cdot) \mid \psi_{\infty}\right)
$$

where $\lambda$ measures how much $|\nabla \xi|$ deviates from a constant on $\Sigma_{z}$.

$$
\rho_{\varepsilon}=O(1 / \varepsilon) .
$$

- If $\nabla \xi \cdot \nabla q=0$, then $\kappa_{\varepsilon}=O(1)$, hence $\kappa_{\varepsilon} / \rho_{\varepsilon}=O(\varepsilon)$, and "good" estimate. In the abscence of $\lambda$,

$$
E(t)=O\left(\varepsilon^{2}\right) .
$$

- If $\nabla \xi \cdot \nabla q \neq 0$, then $\kappa_{\varepsilon}=O(1 / \varepsilon)$, hence $\kappa_{\varepsilon} / \rho_{\varepsilon}=O(1)$, and

$$
E(t)=O(1),
$$

hence the laws of $\xi\left(X_{t}\right)$ and of $z_{t}$ are not close one to each other.
Can we get stronger results?

## A commutative diagram?

$$
V_{\varepsilon}(X)=V_{0}(X)+\frac{1}{\varepsilon} q^{2}(X), \quad X \in \mathbb{R}^{2}
$$

2D dynamics on $X_{t}^{\varepsilon}$


Nonclosed dynamics on $\xi\left(X_{t}^{\varepsilon}\right)$


Conditional expectations


Dynamics on $z_{t}^{\varepsilon} \approx \xi\left(X_{t}^{\varepsilon}\right)$

$$
d z_{t}^{\varepsilon}=b_{\varepsilon}\left(z_{t}^{\varepsilon}\right) d t+\sigma_{\varepsilon}\left(z_{t}^{\varepsilon}\right) d B_{t}
$$

${ }_{\rightarrow \rightarrow 0}^{[p a t h w i s e ~ c v]}$
1D limit dynamics on $\bar{X}_{t}$


One-to-one change of variable

$\rightarrow ?$

Dynamics on $\xi_{t}$

## Sufficient conditions for the diagram to commute

Sufficient conditions for the two dynamics to be identical:

$$
\nabla \xi(X) \cdot \nabla q(X)=0 \text { for all } X \in \mathbb{R}^{2}
$$

Recall $V_{\varepsilon}(X)=V_{0}(X)+\frac{1}{\varepsilon} q^{2}(X)$, hence the limit dynamics lives on

$$
\mathcal{M}=\left\{X \in \mathbb{R}^{2} ; q(X)=0\right\} .
$$

We ask that the parametrization $\xi$ of $\mathcal{M}$ is orthogonal to the direction $\nabla q$ where sampling is fast.

Hence, if the orthogonality condition holds:

- our effective dynamics is a good approximation of the true dynamics $\xi\left(X_{t}\right)$, on finite time intervals $\left(X \in \mathbb{R}^{2}\right)$.
- good entropy estimate $\left(X \in \mathbb{R}^{n}\right)$.


## A toy example

$$
V(x, y)=\left(x^{2}-1\right)^{2}+\left(y+x^{2}-1\right)^{2}
$$

Two wells $V( \pm 1,0)=0$, one saddle point $V(0,1)=1$.


## A numerical 2D example: $\varepsilon=0.01, \beta=3$



Two possible reaction coordinates: $\quad \xi_{1}(x, y)=x, \quad \xi_{2}(x, y)=x \exp (-2 y)$

## Effective dynamics with the second reaction coordinate



$$
q(x, y)=x^{2}+y-1, \quad \xi_{2}(x, y)=x \exp (-2 y): \quad \nabla \xi_{2} \cdot \nabla q=0
$$

## Effective dynamics with the first reaction coordinate



## Effective dynamics and free energy

Free energy barriers are often associated with residence times in the wells.
Is our effective dynamics the same as

$$
d u_{t}=-A^{\prime}\left(u_{t}\right) d t+\sqrt{2 \beta^{-1}} d B_{t},
$$

e.g. the dynamics driven by the free energy $A$ associated with the reaction coordinate $\xi(X)$ ?

$$
\begin{array}{cl}
\text { Recall } & \sigma^{2}(z)=\mathbb{E}_{\mu}\left[|\nabla \xi|^{2}(X) \mid \xi(X)=z\right] \\
\text { and } & d z_{t}=b\left(z_{t}\right) d t+\sqrt{2 \beta^{-1}} \sigma\left(z_{t}\right) d B_{t}
\end{array}
$$

- If $|\nabla \xi(X)|=1$, then $\sigma(z)=1$, and $b(z)=-A^{\prime}(z)$. We recover the free energy. An example: $\xi(X)=X^{j}$.
- In general, $\sigma(z)$ is not a constant, and $b(z) \neq-A^{\prime}(z)$, even up to a multiplicative constant.


## Approximation of residence times $(\varepsilon=0.01, \beta=3)$



| Reac. Coord. | Full dyn. | Reduced dynamics |
| :---: | :---: | :---: |
| $\xi_{2}(x, y)=x \exp (-2 y)$ | $32.5 \pm 0.5$ | $32.7 \pm 0.5$ (Eff. dyn.) |
| $\xi_{2}(x, y)=x \exp (-2 y)$ | $32.5 \pm 0.5$ | $6.4 \pm 0.3 \quad$ (based on $\left.A\left(\xi_{2}\right)\right)$ |
| $\xi_{1}(x, y)=x$ | $31.6 \pm 0.5$ | $24.4 \pm 0.4$ |

If $\xi_{1}(x, y)=x$, effective dynamics $\equiv$ dynamics driven by free energy.
It seems that residence times are well approximated by the reduced dynamics when the "good" reaction coordinate and the "good" dynamics are used.

## Conclusions

- We have proposed a "natural" way to obtain a closed equation on $\xi\left(X_{t}\right)$, by conditional expectations (natural extension of the Gyongy result).
- In some cases, we are able to estimate the accuracy of this effective equation.
- Encouraging numerical results on some simple cases.
F. Legoll, T. Lelièvre, Effective dynamics using conditional expectations, Arxiv preprint 0906.4865

